The efficacy of 24-month metformin for improving menses, hormone and metabolic profiles in polycystic ovary syndrome.

Po-Kai Yang, Chih-Yuan Hsu, Mei-Jou Chen, Mei-Yu Lai, Zheng-Rong Li, Chen-Hsin Chen, Shee-Uan Chen, and Hong-Nerng Ho

The Journal of Clinical Endocrinology & Metabolism
Endocrine Society

Submitted: August 07, 2017
Accepted: January 04, 2018
First Online: January 09, 2018

Advance Articles are PDF versions of manuscripts that have been peer reviewed and accepted but not yet copyedited. The manuscripts are published online as soon as possible after acceptance and before the copyedited, typeset articles are published. They are posted "as is" (i.e., as submitted by the authors at the modification stage), and do not reflect editorial changes. No corrections/changes to the PDF manuscripts are accepted. Accordingly, there likely will be differences between the Advance Article manuscripts and the final, typeset articles. The manuscripts remain listed on the Advance Article page until the final, typeset articles are posted. At that point, the manuscripts are removed from the Advance Article page.

DISCLAIMER: These manuscripts are provided "as is" without warranty of any kind, either express or particular purpose, or non-infringement. Changes will be made to these manuscripts before publication. Review and/or use or reliance on these materials is at the discretion and risk of the reader/user. In no event shall the Endocrine Society be liable for damages of any kind arising references to, products or publications do not imply endorsement of that product or publication.
Metformin effects on PCOS.

The efficacy of 24-month metformin for improving menses, hormone and metabolic profiles in polycystic ovary syndrome.

Po-Kai Yang¹,²*, Chih-Yuan Hsu³*, Mei-Jou Chen²,⁴,⁵, Mei-Yu Lai³, Zheng-Rong Li³, Chen-Hsin Chen³,⁶, Shee-Uan Chen²,⁴, and Hong-Nerng Ho²,⁴

¹Department of Obstetrics and Gynecology, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan; ²Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; ³Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; ⁴College of Medicine, National Taiwan University, Taipei, Taiwan; ⁵National Taiwan University Livia Shangyu Wan Scholar; and ⁶Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.

Received 07 August 2017. Accepted 04 January 2018.

* The first two authors Yang PK and Hsu CY contributed equally to this study.

Context: The long-term effects of metformin in women with polycystic ovarian syndrome (PCOS) are inadequately studied.

Objective: The effects of metformin on women with PCOS over 24-month with respect to menses, hormones and metabolic profiles are assessed.

Design: Prospective cohort.

Setting: A reproductive endocrinology clinic in a university-affiliated medical center.

Patients: 119 women with PCOS, defined by the Rotterdam criteria, were enrolled.

Intervention: Metformin was given daily for 24 months.

Main Outcome Measures: The primary outcome was the proportion of patients with regular menstruation during treatment. Changes in anthropometric, hormonal, and metabolic parameters were also assessed. Analyses were performed using segmented regression analysis with a generalized estimating equation methodology. Outcomes are expressed as magnitude of change from the baseline.

Results: Both overweight and normal-weight women with PCOS had increased menstrual frequency and decreased body mass index (BMI), testosterone, and luteinizing hormone levels in the first 6-month. Further stratification showed that normal-weight women exhibiting elevated testosterone at baseline had the largest magnitude of improvement at 6-month (OR: 7.21, 95% CI: 2.35-22.17), whereas overweight patients with normal testosterone were most likely to achieve normal menses at 12-month (0.63, 95% CI: 0.47-0.77).

Conclusions: Metformin was associated with improvements in the menstrual cycle and most hormonal profiles in overweight and normal-weight women with PCOS over 24 months of
treatment. Most parameters reached maximal response and steady state after 6 months. Phenotypic differences in baseline BMI and testosterone level can be utilized as patient selection criteria or treatment prognostics.

Variable improvements in menses, hormones and metabolism were seen during 24 months of metformin use in 119 women with polycystic ovary syndrome sub-grouped by baseline weight and androgen status.

Introduction

Women with polycystic ovarian syndrome (PCOS) are characterized by hyperandrogenism, anovulation, and polycystic ovarian morphology on ultrasound (1). There is ample evidence to indicate that PCOS is not restricted to the ovaries, but manifests as system-wide aberrations, such as dyslipidemia, insulin resistance, abdominal obesity, and hypertension (2). The relationship between PCOS and insulin resistance is well documented (3). Although the primary etiology remains unclear, multiple factors contribute to the occurrence of insulin resistance in PCOS, including obesity (4), hyperandrogenism (3), and defect in the cellular insulin signaling pathway (5). Hyperinsulinemia in response to the insulin resistance further exacerbates the hormonal and ovulatory dysfunctions associated with PCOS (6).

Metformin, an insulin sensitizer, has been evaluated as a therapeutic option for reducing insulin resistance in women with PCOS (7). Initial results from non-controlled studies demonstrate that metformin has beneficial effects on hyperinsulinemia, hyperandrogenemia, ovarian steroidogenesis, menstrual cycles, and pregnancy rates (7-10). More recently, several prospective randomized studies and a meta-analysis have confirmed the positive effects of metformin on metabolic derangements, hyperinsulinemia, hyperandrogenemia, blood pressure, and clinical pregnancy rates (11-19).

Concerning the effects of metformin on restoring normal menses, data from non-controlled studies are promising (7), but the benefits have not been consistently reproduced in controlled studies (13-19). This variation in results may be due to the substantial heterogeneity in treatment duration across the different studies, which ranged from 3 months to a year (13,16,19). Furthermore, past studies were limited to obese and/or hyperandrogenic patients (13,15,16), rather than conforming to the more comprehensive Rotterdam criteria (1). Despite the fact that insulin resistance tends to manifest in obese women with PCOS (20), there is evidence to indicate that metformin is effective in non-selected women with PCOS, as controlled studies that did not select for obesity displayed good efficacy in the restoration of normal menses (17,19).

Therefore, evaluating the effect of metformin on the menstrual cycle in non-selected women with PCOS in a longitudinal design is needed, preferentially with a focus on phenotypic differences. In particular, attention should be paid to the non-obese, normal androgenic
phenotype for being underrepresented in past studies and being the more prevalent phenotype in Asians (21). In this study, we compare the treatment response, including changes in the menstrual cycle, hormonal, metabolic, and anthropometric profiles, in overweight (OW) and normal-weight (NW) women with PCOS treated with metformin over the course of 24 months. We also investigate the efficacy of menstrual cycle restoration with respect to baseline body mass index (BMI) and androgen phenotypes. The repeatedly-measured, longitudinal data were analyzed using the generalized estimating equation (GEE) methodology in a segmented regression model (22), which assesses for changes in clinical parameters in response to treatment duration.

Material and Methods

Subjects

One-hundred-nineteen women with PCOS were enrolled into the study at the National Taiwan University Hospital from 2008 to 2013. All patients initially sought evaluation at our reproductive endocrinology clinic for problems relating to menstrual irregularities and/or symptoms of hyperandrogenism. Diagnosis of PCOS was based on the criteria proposed at the Rotterdam revised consensus meeting (1), which requires at least two of the following phenotypes: the presence of oligomenorrhea or amenorrhea; clinical/biochemical hyperandrogenism; and polycystic ovaries as visualized by pelvic ultrasonography (23). Oligomenorrhea was defined as less than eight spontaneous menstrual cycles per year, which averaged to a cycle interval greater than 45 days in the 3 years preceding enrollment, in alignment with our previous study (24). Hyperandrogenism was defined as a serum testosterone level ≥ 0.7 ng/mL, in accordance with the published upper limit for normal females using the direct radioimmunoassay (RIA) methodology (25), and/or clinical hyperandrogenism, manifesting as persistent acne, hirsutism (a Ferriman-Gallwey score > 8), or androgenic alopecia. Women with hyperprolactinemia, thyroid dysfunction, Cushing syndrome, congenital adrenal hyperplasia, adrenal tumors, or other virilizing ovarian tumors were excluded. Additional exclusion criteria included ongoing pregnancy, pregnancy in the past year, documented use of oral contraceptives or other medications that affect the hypothalamic–pituitary–ovarian axis in the previous 6 months, any concomitant major systemic disease, such as an autoimmune disease, malignancy, central nervous system disease, or prior chemotherapy or immunosuppressive agent use. The Institutional Review Board of National Taiwan University Hospital approved this study, and signed informed consents were obtained from all patients or their legal guardians before commencing data collection.

Protocol and data collection
Clinical evidence of hyperandrogenism, oligomenorrhea/amenorrhea, polycystic morphology and baseline anthropometric measurements were recorded at patient enrollment. During the 24-month study period, patients were prescribed 500 mg metformin (Loditon, Standard Chem and Pharm, Taiwan) per day in the first month, followed by 1000 mg per day in the second month and 1500 mg per day from the third to 24th month. A decrease to 1000 mg daily dose was allowed in patients reporting intolerable gastrointestinal side effects. Patients were evaluated for blood pressure, anthropometric measurements, hormonal profiles, and metabolic profiles at enrollment (M0) and after the 3rd (M3), 6th (M6), 12th (M12), and 24th month (M24) of metformin use.

At baseline, overnight fasting blood samples were collected before hormone-induced withdrawal bleeding in amenorrheic women, and in the early follicular phase in women with spontaneous menses. The collection of blood samples were repeated at each of the 4 aforementioned time-points. The procedure used for blood sample collection has been previously described in detail (26). BMI was calculated as weight (kg) divided by squared height (m²), and the OW subgroup was defined as a BMI ≥ 25 kg/m², which corresponds to an overweight status in the general population (27) and obesity in the Asian population (28).

Menstrual regularity at the time of enrollment was assessed using self-reported menstrual intervals of the past 3 years, which were based on diary review. Normal menstrual cycle was defined as a cycle interval ≥ 21 days and ≤ 45 days. This more stringent definition of the normal menstrual cycle was employed due to the inclusion of adolescents in this study (29). During the study period, a normal menstrual cycle was defined as ≥ 2 ovulatory menses in a 3-month interval, consistent with the aforementioned menstrual interval of 45 days. Ovulatory mense was defined as vaginal bleeding following either biphasic basal body temperature (BBT) chart or elevated serum progesterone, which was checked weekly in patients with non-phasic BBTs.

Assay methods

Plasma glucose concentrations were measured using an autoanalyzer (Toshiba TBA-120 FR; Toshiba, Tokyo, Japan). The serum levels of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) were measured using a biochemical autoanalyzer (Toshiba TBA-200FR; Toshiba). Serum insulin levels were determined using a microparticle enzyme immunoassay in an AxSYM system (Abbott Laboratories, Dainabot Co., Tokyo, Japan). Serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol and progesterone levels were measured using indirect chemiluminescence (VitrosEci; Ortho-Clinical Diagnostics, Rochester, NY, USA). Serum sex hormone-binding globulin (SHBG) levels were measured using electrochemiluminescence (Elecsys 2010; Roche Diagnostics GmbH, Mannheim, Germany). Serum testosterone and
dehydroepiandrosterone-sulfate (DHEA-S) levels were measured using radioimmunoassays (RIA; Diagnostic Systems Laboratories, Webster, TX, USA). The free androgen index (FAI) was calculated using the equation FAI (%) = testosterone (ng/ml) × 3.47 × 100/SHBG (nmol/l), and homeostatic model assessment-insulin resistance (HOMA-IR) was calculated as HOMA-IR = (glucose (mg/dl) × 0.05551) × insulin (IU/ml)/22.5 (30). The LH/FSH ratio was calculated as LH (mIU/mL) divided by FSH (mIU/mL). A normal testosterone (NT) level was defined as a serum level < 0.7 ng/mL (25), while an elevated testosterone (ET) level was ≥ 0.7 ng/mL. The intra-assay and inter-assay coefficients of variation (CVs) of the aforementioned assays were all <10%.

Statistical analysis

For comparisons between the two BMI subgroups at baseline, the two-sample Wilcoxon rank-sum test and chi-square test were applied. The numerical variables are presented as the median, the first and the third quartiles, and binary variables, such as the proportion of patients with normal menstrual cycle or normal testosterone, are presented as percentages. All statistical tests used a two-sided significance level of 0.05.

For regression analysis of the repeatedly-measured variables in respect to duration of metformin use, the GEE approach was performed with stratification by BMI and/or testosterone phenotype. Normal menstrual cycle, recorded as a binary outcome variable, was expressed as the log odds of having the outcome. Quantitative outcome variables, such as FAI, SHBG, LH, FSH, the LH/FSH-ratio, DHEA-S, insulin and HOMA-IR, were expressed at each time-point as the log ratios to the baseline values. Treatment periods were designated as [M0, M3], [M3, M6], [M6, M12], and [M12, M24], and a segmented regression analysis over the 4 treatment periods was performed by fitting a separate line segment to each interval and connecting all of these line segments. Line segments were combined if 2 adjacent time periods significantly exhibited the same time trend effect. Besides evaluating the effects of treatment duration and OW individually, interactions between treatment interval and OW were considered as explanatory variables in the regression models. The association between an outcome and an explanatory variable was assessed as the odds ratio (OR) or the ratio with a 95% confidence interval (CI).

The link function, which describes the relationship between the mean responses of the distribution function and the linear explanatory variables, was the logit link function for the binary variable and the identity link function for quantitative variables. In this study, we adopted an unstructured working correlation matrix to describe the associations between the 5 repeated measurements of the same outcome variable. The selection of an optimal GEE model for each outcome variable was based on the preference for smaller values of the quasi-likelihood under the independence model criterion (QIC) (31), which is analogous to the Akaike information.
criterion (AIC) (32). The estimates of regression coefficients in a selected model were considered jointly significant and not necessarily individually significant.

Predicted values and their corresponding 95% CIs at each time-point were calculated by performing an inverse transformation of the associated link function on the log odds or log ratio calculated from the GEE model coefficients. The results for the binary variable normal menstrual cycle were presented as the predicted proportions with normal menses and the ORs of having normal menses in relation to the baseline. An OR greater than 1 indicates an improvement in the proportion of patients with regular menstrual cycles. The results for the quantitative variables were reported as the predicted ratios in relation to the baseline. A ratio less than 1 indicates a decrease in the value. All analyses were performed using R (version 3.3.1; The R Foundation for Statistical Computing, Vienna, Austria), and the GEE analyses were performed using the geeglm function in the geepack package (33).

Results

Baseline characteristics

At study entry, the percentages of the 119 women with PCOS that fulfilled the diagnostic criteria for hyperandrogenism/anovulation, hyperandrogenism/polycystic ovarian morphology, anovulation/polycystic ovarian morphology, and all three were 17.6%, 12.6%, 20.2%, and 49.6%, respectively. Forty-seven of the patients were OW, and 72 were NW. The baseline (M0) anthropometric, hormone, and metabolic characteristics are shown in Table 1. As expected, baseline measurements such as waist circumference, body weight, FAI, glucose, insulin, HOMA-IR, TG, and LDL were significantly higher in the OW subgroup. SHBG, FSH, LH, the LH/FSH ratio, and HDL-C levels were significantly higher in the NW subgroup. The proportion of patients with normal menstrual cycles was higher in the OW subgroup than in the NW subgroup.

Changes in ovulatory menstrual cycles after 24 months of metformin treatment

Patients were stratified by BMI or testosterone status, and menstrual regularity was assessed by segmented regression analysis. Details of the methodology, formula, and regression coefficients for the GEE segmented logistic regression model are included in the supplement (Supplemental Appendix A, Supplemental Table 1, and Supplemental Table 2, respectively). Results are presented as the predicted proportions of patients with normal menstrual cycles at each time-point (Table 2a and Figure 1) and ORs of having normal menses in relation to the baseline (Table 2b).

Regardless of whether the patients were stratified by BMI or testosterone status, the proportion of patients with normal menstrual cycles after receiving metformin was generally higher than the proportion at the baseline (Figure 1, Table 2). When stratified by BMI, the
improvement in the NW subgroup was significant at M3 (Table 2b) and remained significant up to M24 (Table 2a). By contrast, when stratified by testosterone levels, both subgroups exhibited significant improvements in the first 6 months. The NT subgroup continued this trend at a constant slope from M3 to M24 (slope estimate = 0.033, SE=0.014, \(p < 0.05 \), Supplemental Table 2), whereas the ET subgroup diverged non-significantly from this trend after M6 (slope estimate = 0.088, SE=0.073, Supplemental Table 2).

In a further analysis, BMI and testosterone stratifications were combined, resulting in four subgroups: NW-NT, NW-ET, OW-NT and OW-ET. Analyses demonstrated a lower proportion of women with spontaneous menstruation in the NW-ET subgroup at M0, but a higher rate of improvement from M0 to M6 (Figure 2, Table 2b). The NW-ET subgroup was also associated with the largest overall improvement over the baseline (OR: 7.21, 95% CI: 2.35-22.17). All four subgroups exhibited improvements at 6-month, with the percentages of women with normal menses ranging from 42% to 47% (Figure 2, Table 2a). With the exception of the OW-NT subgroup, no further changes in menstrual pattern was seen after 6-month. The OW-NT subgroup continued to exhibited improvements up to M12, and had the highest predicted proportion of patients with normal menstrual cycles at the end of the 24-month period (0.63, 95% CI: 0.47-0.77).

Longitudinal changes in other phenotypes after 24 months of metformin treatment in overweight and normal-weight women

Changes in hormonal and metabolic variables in response to metformin treatment are presented as ratios to the baseline at M3, M6, M12, and M24 in Table 3 and Figure 3. The box plots for each variable and the regression coefficients of the GEE model are summarized in Supplemental Appendix B and Supplemental Table 3, respectively. Compared with the baseline, BMI, testosterone, FAI, LH levels, and LH/FSH ratios were all significantly lower at M24 in the metformin-treated patients in both subgroups. A significant decline in BMI, testosterone, FAI, and LH levels was observed in response to metformin at M6, but there were no further significant changes after M6 in most parameters. The only exception was a decline in FAI in the NW subgroup from M12 to M24 (Figure 3 and Supplemental Table 3). There were significant differences between the NW and OW subgroups during the first 3 months with respect to BMI, testosterone, FAI, and LH levels. At M3, significantly greater changes in BMI, testosterone, and FAI were associated with the OW status, while there was a significantly larger decline in LH in the NW subgroup (Table 3, Figure 3).

Compared with M0, predicted SHBG levels were significantly lower at M12, but higher than the baseline at M24 in the NW subgroup (Table 3, Figure 3). By contrast, changes in SHBG from M12 to M24 were non-significant in the OW subgroup. The predicted DHEA-S levels were not
significantly different between the two BMI subgroups and exhibited an increasing trend from M0 to M12 that reversed in the second year (slope estimate = -0.01, SE=0.003, \(p < 0.001 \), Supplemental Table 3), and eventually returned to baseline levels at M24. Both insulin and HOMA-IR significantly decreased in the OW subgroup during the first year, but these improvements did not persist beyond M12 and returned to the baseline level by M24. The slope increase from M12 to M24 was considered significant (slope estimate = 0.039, SE=0.016, \(p < 0.05 \), Supplemental Table 3). No discernible change in insulin and HOMA-IR was seen in the NW subgroup during the whole treatment period.

Discussion

The results of our study demonstrate that there are differences in treatment response to metformin between different BMI/testosterone phenotypes. Regarding menstrual regularity, although the NW-ET subgroup was associated with a lower proportion of normal menses at baseline, all four BMI/testosterone subgroups achieved similar rates of normal menses at M6. The NW-ET subgroup was associated with the most significant improvement from the baseline, whereas the OW-NT subgroup was associated with the longest duration of improvement, and the highest rate of normal menses after treatment. The association between baseline BMI/testosterone phenotype and response in menstrual pattern can be useful as clinical prognostics.

The etiology for this difference in menstrual response between BMI/testosterone phenotypes is unknown, but probably relates to the different pathophysiological mechanisms displayed over the spectrum of clinical manifestations in PCOS. Although insulin resistance is a prominent feature of PCOS, it is heterogeneously present in women with PCOS (34), and tends to manifest in obese patients (20). By contrast, lean women are more often associated with markers of gonadotropic dysfunction, such as elevated LH, and LH/FSH ratios (34). Although the culpable defect in PCOS remains undetermined, anovulation may result from a combination of hyperinsulinemia associated hyperandrogenism (35), and LH-FSH related ovulatory dysfunction (36). Both pathways have been linked to metformin.

In lean women with PCOS, metformin has reduced LH levels (37), while reductions in insulin resistance are seen in obese women (38). Although these findings were reported separately and attributed by some researchers to differences in study design rather than phenotypic differences (39), both effects were seen in our study. In addition, although reductions in LH and testosterone were seen in both subgroups, the change in LH was greater in the lean subgroup than in the obese subgroup. This was reversed for testosterone. The variable reductions in LH and testosterone across the different phenotypes may be the basis for the variable response in menstrual patterns. However, this is a conjecture only, as the relative contributions of
hyperandrogenism and LH/FSH imbalance on menstrual regularity across the spectrum of PCOS phenotypes are currently unknown.

Taken together, there are still gaps in our understanding of the mechanisms through which metformin affects women with PCOS, particularly in relation to the changes in LH. Hypothetically, the effects of metformin are derived from its insulin-sensitizing activities (6), but the relationship between insulin metabolism and LH level remains controversial. Although insulin potentiates the GnRH-elicited LH response in rat pituitary cells, this effect is not seen in vivo in humans (40). Furthermore, the suppressive effects of metformin on LH are often reported in non-insulin-resistant groups rather than insulin-resistant groups (41). Whether the effects of metformin on LH result from insulin-dependent or insulin-independent pathways remain uncertain (40), but much less is known about latter. Increased promoter activities of the gonadotrophin genes in the pituitary (42), and reduced androgen synthesis in ovarian theca cells have been seen in direct response to metformin (43), and could be the basis for the decreased in LH. Further work is needed to delineate this relationship.

One strength of the current study is the stratification of patients by BMI and testosterone phenotypes in the comparison of menstrual response, which has not been reported before. Although BMI and testosterone have been considered separately as prognostic markers in the treatment of PCOS (20,44), the use of BMI in combination with testosterone in the evaluation of treatment response to metformin is novel. Testosterone is a determinant of menstrual regularity (35) and stratification by both factors provides information pertaining to the interactions between these characteristics. Another strength of the current study is the longitudinal design, the repeated measurements obtained during follow-up, and the novel use of GEE models that adjusts for within-subject variations in repeated measurements while assessing for the effects of BMI/androgen phenotype on each of the outcome variables. This provides valuable information regarding how each clinical parameter changes in relation to the duration of treatment. For instance, a time frame of particular importance in our study was the first 6 months of metformin use. This period was associated with most of the significant changes in BMI, testosterone and LH levels. Significant changes in outcome measurements were rare after the first 6 months, and were observed only for DHEA-S, SHBG, insulin and HOMA in the OW subgroup, and for menstrual regularity in the OW-ET subgroup.

A limitation of this study is the lack of a control arm. As we were interested in the long-term effects of metformin, this study was designed as an observational study due to ethical concerns about the long-term use of placebos. Another point of concern is the high rate of dropouts and the effects it may have on the outcome of the study. The percentages of patients that completed follow-up at M3, M6, M12 and M24 were 94%, 95%, 68% and 37%, respectively. Although most patients completed follow-up visits for at least 6 months, the percentages of
The segmented regression analysis utilizing the GEE methodology evaluated all data in the longitudinal dataset and has been shown to be less susceptible to the effects of missing data (46). In addition, we compared the drop-out patients to the non-drop-out patients using the logistic regression model, which tested all baseline characteristics as predictor of non-drop-out status (Supplemental Table 4). No baseline characteristic was associated with non-drop-out status. We also tested the consistency of the results by repeating the GEE segmented regression analysis solely on the 44 non-drop-out patients. The results were generally compatible with the results from all 119 patients (Supplemental Table 5).

In conclusion, our study shows that metformin is associated with improvements in menstrual cycle regularity and most hormonal parameters in both OW and NW women with PCOS treated with metformin over the course of 24 months. In general, most clinical parameters reached maximal response after 6 months and subsequently maintained a steady state. Variations in the pattern of improvements in the menstrual, hormonal, and metabolic profiles were seen among patients with different baseline BMI and testosterone phenotypes. This can serve as patient selection criteria or prognostics for metformin use.

Corresponding author: Mei-Jou Chen, M.D., Ph.D., Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 8, Chung-Shan South Road, 100, Taipei, Taiwan. Tel: +886-2-2312-3456-71505; E-mail: mjchen@ntu.edu.tw

Reprint request: Mei-Jou Chen, M.D., Ph.D., Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 8, Chung-Shan South Road, 100, Taipei, Taiwan. Tel: +886-2-2312-3456-71505; E-mail: mjchen@ntu.edu.tw

Financial support: The study was supported by grants from the Ministry of Science and Technology of Taiwan (MOST 105-2628-B002-043-MY4, MOST 104-2325-B-002-032 and MOST 105-2325-B-002-027).

Ministry of Science and Technology, Taiwan, http://dx.doi.org/10.13039/501100004663, MOST 105-2628-B002-043-MY4, Mei-Jou Chen; Ministry of Science and Technology, Taiwan, http://dx.doi.org/10.13039/501100004663, MOST 104-2325-B-002-032, Chen-Hsin Chen; Ministry of Science and Technology, Taiwan, http://dx.doi.org/10.13039/501100004663, MOST 105-2325-B-002-027, Chih-Yuan Hsu;

Disclosure Statement: All authors declare no conflict of interest.

Clinical Trial number: NCT00172523.
References

39. Genazzani AD, Battaglia C, Malavasi B, Strucchi C, Tortolani F, Gamba O. Metformin administration modulates and restores luteinizing hormone spontaneous episodic secretion and

44. Luotola K, Piltonen TT, Puurunen J, Morin-Papunen LC, Tapanainen JS. Testosterone is associated with insulin resistance index independently of adiposity in women with polycystic ovary syndrome. Gynecol Endocrinol 2017; 1-5.

Figure 1. Predicted and observed proportions of patients with normal menstrual cycles at each time-point with 95% confidence intervals in BMI (left) and testosterone (right) stratified analyses. Abbreviations: NW: normal-weight, BMI < 25 kg/m²; OW: overweight, BMI ≥ 25 kg/m²; NT: normal testosterone, serum testosterone < 0.7 ng/ml; ET: elevated testosterone, serum testosterone ≥ 0.7 ng/ml; N (subgroup): sample size at each follow-up time.

Figure 2. Predicted and observed proportion of patients with normal menstrual cycles at each time-point in a combined BMI and testosterone stratified analysis. Abbreviations: NW: normal weight, BMI < 25 kg/m²; OW: overweight, BMI ≥ 25 kg/m²; NT: normal testosterone, serum testosterone < 0.7 ng/ml; ET: elevated testosterone, serum testosterone ≥ 0.7 ng/ml; N (subgroup): sample size at each follow-up time.

Figure 3. Predicted and observed ratios of the mean measurement at each time-point to the baseline measurement and the 95% confidence intervals. Abbreviations: NW: normal weight, BMI < 25 kg/m²; OW: overweight, BMI ≥ 25 kg/m², BMI: body mass index, SHBG: sex hormone-binding globulin, FAI: free androgen index, LH: luteinizing hormone, FSH: follicle-
stimulating hormone, DHEA-S: dehydroepiandrosterone sulfate, HOMA-IR: homeostasis model assessment-insulin resistance, N (subgroup): sample size at each follow-up time.

Table 1. Patient characteristics at baseline

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>NW(n = 72)</th>
<th>OW(n = 47)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Median [Q1, Q3]</td>
<td>24.5 [21.0, 27.0]</td>
<td>25.0 [19.0, 29.5]</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>78.8 [74.9, 83.1]</td>
<td>98.0 [91.3, 105.5]</td>
<td><0.001*</td>
</tr>
<tr>
<td>BW (kg)</td>
<td>54.3 [50.2, 58.0]</td>
<td>77.6 [68.7, 84.2]</td>
<td><0.001*</td>
</tr>
<tr>
<td>Testosterone (ng/ml)</td>
<td>0.6 [0.4, 0.7]</td>
<td>0.6 [0.5, 0.9]</td>
<td>0.139</td>
</tr>
<tr>
<td>SHBG (nmol/l)</td>
<td>39.0 [30.9, 52.8]</td>
<td>18.3 [14.8, 25.1]</td>
<td><0.001*</td>
</tr>
<tr>
<td>FAI (%)</td>
<td>4.7 [3.2, 7.2]</td>
<td>12.2 [7.9, 15.0]</td>
<td><0.001*</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>13.4 [10.6, 16.1]</td>
<td>8.4 [5.2, 10.6]</td>
<td><0.001*</td>
</tr>
<tr>
<td>FSH (mIU/ml)</td>
<td>6.6 [5.5, 7.8]</td>
<td>6.0 [5.2, 6.7]</td>
<td>0.027*</td>
</tr>
<tr>
<td>LH/FSH-ratio</td>
<td>2.0 [1.6, 2.7]</td>
<td>1.3 [1.0, 1.7]</td>
<td><0.001*</td>
</tr>
<tr>
<td>DHEA-S (µg/dl)</td>
<td>268.3 [189.0, 354.9]</td>
<td>255.7 [167.6, 324.5]</td>
<td>0.369</td>
</tr>
<tr>
<td>Insulin (IU/ml)</td>
<td>2.8 [2.0, 4.2]</td>
<td>14.4 [7.7, 22.6]</td>
<td><0.001*</td>
</tr>
<tr>
<td>Glucose (IU/ml)</td>
<td>80.5 [77.0, 84.3]</td>
<td>85.0 [80.9, 89.0]</td>
<td>0.001*</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0.5 [0.4, 0.8]</td>
<td>3.0 [1.5, 5.0]</td>
<td><0.001*</td>
</tr>
<tr>
<td>LDL-C (mg/dl)</td>
<td>95.3 [79.8, 114.3]</td>
<td>110.0 [95.0, 135.0]</td>
<td><0.001*</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>50.0 [52.0, 68.0]</td>
<td>46.0 [41.0, 52.0]</td>
<td><0.001*</td>
</tr>
<tr>
<td>TG (mg/dl)</td>
<td>65.5 [49.0, 87.5]</td>
<td>97.0 [75.5, 142.0]</td>
<td><0.001*</td>
</tr>
<tr>
<td>Menstrual cycle interval (days)</td>
<td>135 [75, 360]</td>
<td>81 [45, 172.5]</td>
<td>0.031*</td>
</tr>
<tr>
<td>Normal menstrual cycle</td>
<td>7/72 (9.7%)</td>
<td>12/47 (25.5%)</td>
<td>0.021*</td>
</tr>
<tr>
<td>Normal testosterone</td>
<td>49/72 (68.1%)</td>
<td>27/47 (57.4%)</td>
<td>0.239</td>
</tr>
</tbody>
</table>

Q1 and Q3 denote the 1st and 3rd quartiles, respectively. Normal menstrual cycle was defined as a menstrual interval ≤ 45 days, and normal testosterone level was defined as testosterone level < 0.7 ng/ml. Values are expressed as the median with the first and the third quartiles, and proportions (percent) as appropriate. Abbreviations: NW: normal-weight, BMI < 25 kg/m²; OW: overweight, BMI ≥ 25 kg/m²; BW: body weight; SHBG: sex hormone-binding globulin; FAI: free androgen index; LH: luteinizing hormone; FSH: follicle-stimulating hormone; DHEA-S: dehydroepiandrosterone sulfate; HOMA-IR: homeostasis model assessment-insulin resistance; LDL-C: low-density lipoprotein-cholesterol; HDL-C: high-density lipoprotein-cholesterol; TG: triglycerides. The p-values are obtained from the Wilcoxon rank-sum test, and p < 0.05 is denoted by *.

Table 2. (a) Proportion of patients with regular menstrual cycles and (b) Odds ratio of having regular menstrual cycles during treatment in relations to the baseline are presented with the corresponding 95% confidence interval, as calculated from the GEE models.

(a)
Abbreviations: NW: normal-weight, BMI < 25 kg/m^2; OW: overweight, BMI ≥ 25 kg/m^2; NT: normal-testosterone, serum testosterone < 0.7 ng/ml; ET: elevated-testosterone, serum testosterone ≥ 0.7 ng/ml; p < 0.05 is denoted by *.

Table 3. Relative changes in value of clinical variables during treatment in relations to the baseline are presented as ratios with corresponding 95% confidence intervals, as calculated from the GEE models.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Subgroup</th>
<th>M0</th>
<th>M3</th>
<th>M6</th>
<th>M12</th>
<th>M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>NW</td>
<td>1.00* [0.99, 1.01]</td>
<td>0.98* [0.97, 0.99]</td>
<td>0.98* [0.97, 0.99]</td>
<td>0.98* [0.97, 0.99]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OW</td>
<td>0.97* [0.96, 0.97]</td>
<td>0.95* [0.95, 0.96]</td>
<td>0.95* [0.95, 0.96]</td>
<td>0.95* [0.95, 0.96]</td>
<td></td>
</tr>
<tr>
<td>Testosterone</td>
<td>NW</td>
<td>0.91* [0.83, 1.00]</td>
<td>0.79* [0.71, 0.86]</td>
<td>0.71* [0.64, 0.79]</td>
<td>0.71* [0.64, 0.79]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OW</td>
<td>0.78* [0.69, 0.88]</td>
<td>0.67* [0.58, 0.77]</td>
<td>0.61* [0.54, 0.69]</td>
<td>0.61* [0.54, 0.69]</td>
<td></td>
</tr>
<tr>
<td>SHBG</td>
<td>NW</td>
<td>1.02* [0.96, 1.07]</td>
<td>0.98 [0.93, 1.04]</td>
<td>0.92* [0.86, 0.98]</td>
<td>1.13* [1.04, 1.24]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OW</td>
<td>1.06* [0.98, 1.14]</td>
<td>1.02 [0.95, 1.10]</td>
<td>0.96 [0.89, 1.03]</td>
<td>1.00 [0.91, 1.10]</td>
<td></td>
</tr>
<tr>
<td>FAI</td>
<td>NW</td>
<td>0.90 [0.81, 1.00]</td>
<td>0.78* [0.71, 0.86]</td>
<td>0.78* [0.71, 0.86]</td>
<td>0.63* [0.54, 0.73]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OW</td>
<td>0.75* [0.64, 0.87]</td>
<td>0.65* [0.56, 0.75]</td>
<td>0.65* [0.56, 0.75]</td>
<td>0.62* [0.51, 0.77]</td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>NW</td>
<td>0.83* [0.70, 0.97]</td>
<td>0.70* [0.61, 0.81]</td>
<td>0.70* [0.61, 0.81]</td>
<td>0.70* [0.61, 0.81]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OW</td>
<td>0.97 [0.82, 1.15]</td>
<td>0.83* [0.69, 0.99]</td>
<td>0.71* [0.56, 0.89]</td>
<td>0.84 [0.66, 1.08]</td>
<td></td>
</tr>
<tr>
<td>FSH</td>
<td>NW</td>
<td>0.92* [0.85, 0.99]</td>
<td>0.92* [0.85, 0.99]</td>
<td>0.92* [0.85, 0.99]</td>
<td>1.01 [0.91, 1.11]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OW</td>
<td>0.96 [0.87, 1.05]</td>
<td>0.98 [0.90, 1.07]</td>
<td>1.03 [0.94, 1.13]</td>
<td>1.13* [1.08, 1.27]</td>
<td></td>
</tr>
<tr>
<td>LH/FSH</td>
<td>NW</td>
<td>0.86* [0.75, 0.98]</td>
<td>0.82* [0.73, 0.93]</td>
<td>0.76 [0.68, 0.85]</td>
<td>0.65* [0.53, 0.79]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OW</td>
<td>0.98 [0.86, 1.12]</td>
<td>0.87* [0.79, 0.97]</td>
<td>0.69 [0.57, 0.83]</td>
<td>0.74* [0.61, 0.89]</td>
<td></td>
</tr>
<tr>
<td>DHEA-S</td>
<td>NW</td>
<td>1.06* [1.01, 1.11]</td>
<td>1.08* [1.03, 1.13]</td>
<td>1.12* [1.05, 1.20]</td>
<td>1.00 [0.92, 1.07]</td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>NW</td>
<td>1.03 [0.91, 1.16]</td>
<td>1.03 [0.91, 1.16]</td>
<td>1.03 [0.91, 1.16]</td>
<td>1.03 [0.91, 1.16]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OW</td>
<td>0.83* [0.71, 0.97]</td>
<td>0.83* [0.71, 0.97]</td>
<td>0.65* [0.45, 0.93]</td>
<td>0.10 [0.07, 0.12]</td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>NW</td>
<td>1.03 [0.91, 1.17]</td>
<td>1.03 [0.91, 1.17]</td>
<td>1.03 [0.91, 1.17]</td>
<td>1.03 [0.91, 1.17]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OW</td>
<td>0.82* [0.69, 0.96]</td>
<td>0.82* [0.69, 0.96]</td>
<td>0.65* [0.45, 0.93]</td>
<td>1.03 [0.81, 1.32]</td>
<td></td>
</tr>
</tbody>
</table>