WELCOME to:

Power Operations & Planning Training

For Internal MWD Training

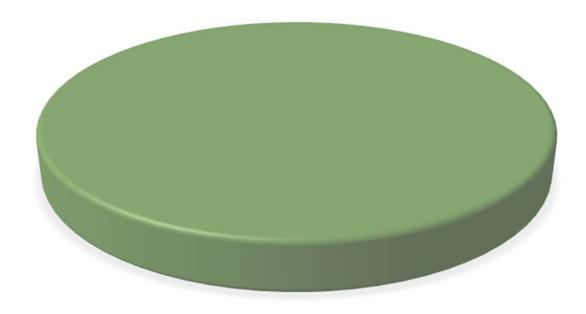
Guidelines:

- By default, all participants are on mute. If you would like to speak, please raise your hand by clicking the hand icon at the bottom of your screen.
- Feel free to use the Q&A box at bottom of your screen to submit your questions to the panelists during the presentation. However, please note that questions will be answered at the end of the presentation.
- After the presentation, audio and camera use will be available for all participants to ask questions

Sit back, relax and enjoy

Sal Heredia

Why the CAISO needs Resource Adequacy Capacity & How Resource Adequacy works for MWD



Topics for Today

- What Resource Adequacy is
- Why the CAISO needs Resource Adequacy
- How Resource Adequacy works for MWD
- Questions & Answers

2021 CRA Resource Adequacy Value

MWD's CRA Annual RA Value: \$24 Million

What is Resource Adequacy?

In the CAISO Market There Are 3 Types of Resource Adequacy Obligations...

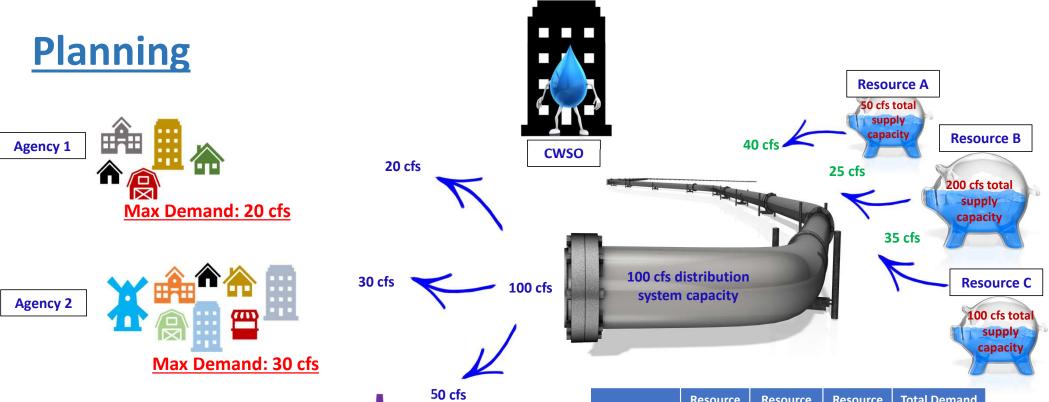
- 1. System RA -97% of obligation
- 2. Flex RA- 3% of obligation
- 3. Local RA-0% of obligation

A Parallel Example...

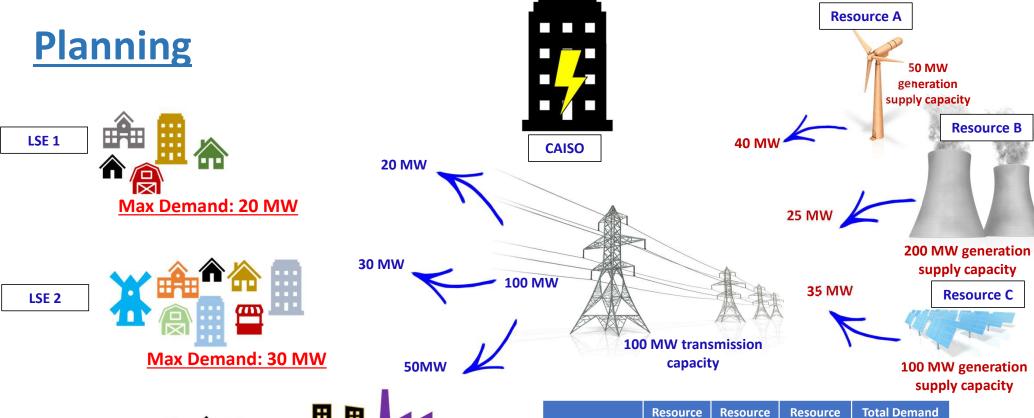
Max Demand: 20 cfs

Agency 2

Max Demand: 30 cfs



Max Demand: 50 cfs

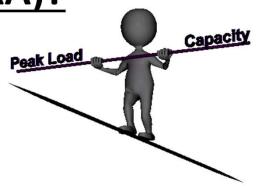

•

Max Demand: 50 cfs

	Resource A	Resource B	Resource C	Total Demand
Agency 1	10	10	-	20
Agency 2	-	15	15	30
Agency 3	30	-	20	50
Total Supply	40	25	35	100

^{*}units are cfs

Max Demand: 50 MW


LSE 3

В Α C Agency 1 20 10 10 15 Agency 2 30 15 Agency 3 30 20 50 **Total Capacity** 40 25 35 100

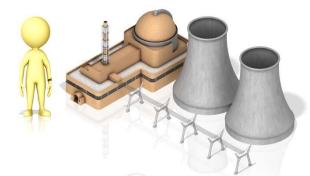
^{*}units are MW

What is Resource Adequacy (RA)?

 RA is the regulatory construct by which CAISO ensures there is enough generation capacity ("adequate resources") to meet peak electricity demand

 Load Serving Entities (LSEs) are required to demonstrate enough generation capacity to meet their share of the grid's peak demand, plus a little extra

 LSEs can either own or contract generation capacity to meet RA obligations- RA is priced in terms of \$/kW-month



Some Highlights of RA...

 RA process is based on having sufficient generation capacity available to meet peak demands at all times

 Generators may remain on standby until needed by the CAISO; in some cases, they may not be dispatched at all

 RA is an additional cost, but it is a tool that ensures grid reliability so the lights stay on for everyone

Why does CAISO need Resource Adequacy?

Grid Reliability

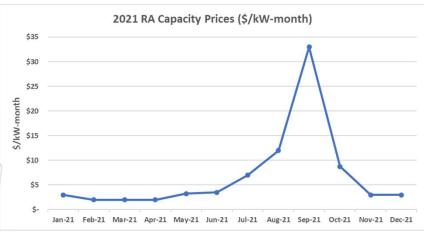
 Prevents power shortages and potential blackouts by making sure sufficient generation capacity is contracted to meet system peak demand

 RA is like managing your bank account- you want to have enough money not only to cover known expenses, but also the cost of unforeseen emergencies

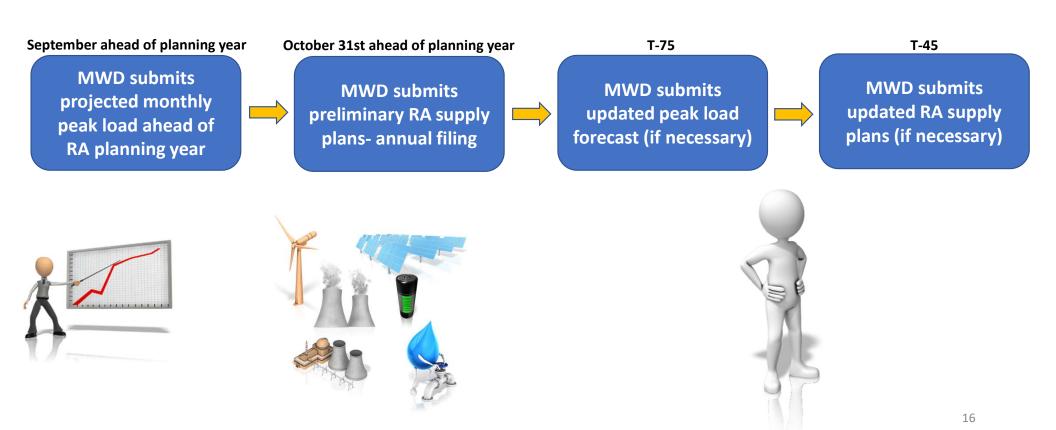
Manage Power Price Spikes

 Power, like any other good or commodity is also governed by the law of supply and demand

 RA capacity alleviates tight supply concerns


 RA capacity availability can directly affect the forward power market

Encourage Infrastructure Investment


 RA helps to counter power price volatility and offset "negative" pricing by providing steady stream cash flow

 RA is a mid and long-term planning process that helps indicate when and where new generation capacity will be needed

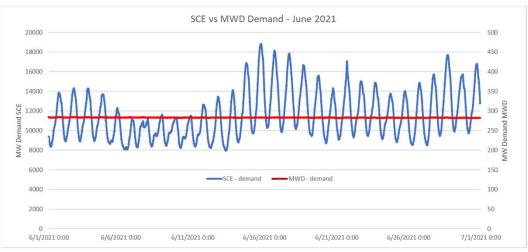
The RA process-How does Resource Adequacy work for MWD?

RA Process Timelines

Determining Peak Load

- RA obligation is a function of peak load
- POP works with Water Ops to obtain CRA pumping forecast
 - Historical meter data allows us to use a pump flow forecast from Water Ops to estimate peak load in Megawatts
 - Coordination between POP and Water Ops required to assess peak load appropriately and not unnecessarily under/over-set our RA obligation

CRA Pump Flow	Megawatt Load (MW)	
0	1	
1	39	
2	77	
3	114	
4	152	
5	189	
6	226	
7	261	
8	291	

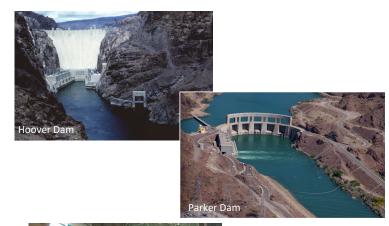

Calculating MWD's RA Obligation(s)

Forecasted Peak Demand (MW)

** 100 % + Planning Reserve Margin (MW)

Reserve Margin (MW)

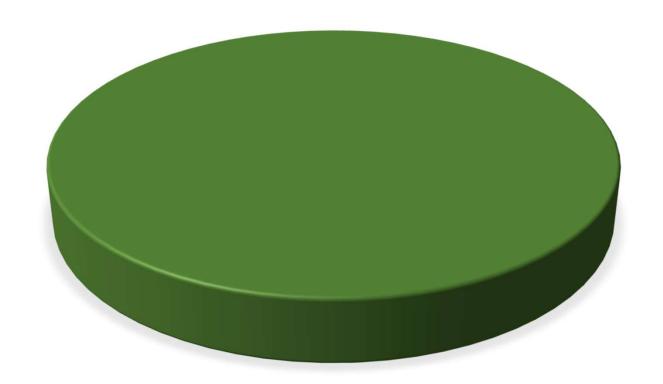
- Planning reserve margin is the percentage by which generation capacity exceeds projected peak demand
 - Accounts for unforeseen emergenciesgenerators outages, extreme weather etc.
 - 15% reserve margin for most LSE's
 - MWD has a planning reserve margin of 5%

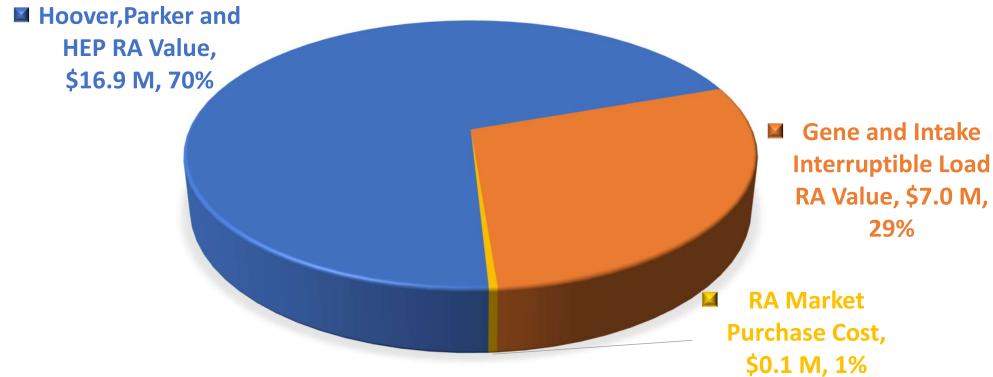


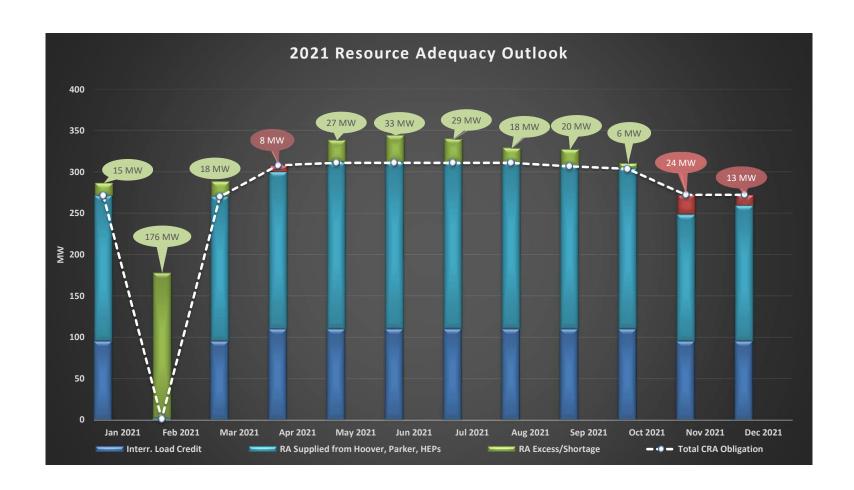
MWD's RA Supply Resources

Hoover Capacity- MWD is entitled to 12.0515% of Hoover Dam's total generation capacity

- Interruptible Load Credits- CAISO allows for MWD to claim RA credit for load that can be interrupted at Intake and Gene plants
- HEP Fleet- MWD can submit RA supply from HEPs that are not under contract and that are expected to generate during operational month
- Market Purchase- MWD can procure RA supply capacity in the bilateral market




2021 CRA RA Value


MWD's CRA Annual RA Value: \$24M

2021 CRA RA Value

MWD's CRA Annual RA Value: \$24M

Pumping, resource capacity, and RA pricing vary by month, all of which affect RA cost potential

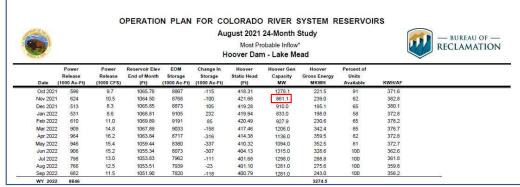
Example- MWD's RA Planning Process for November 2021

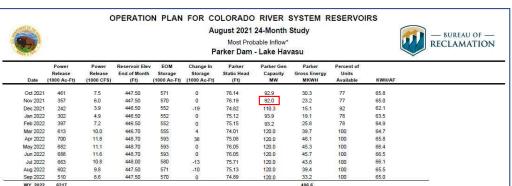
Annual filing completed October 2021 showed CRA peak demand at 114 Annual filing completed October 2021 showed CRA peak demand at 114 MW for November 2021, reflective of maximum 3 pump flow

At T-75, alternatively August 17, 2021, MWD submitted a peak load update for November of 261 MW, reflective of 7 pump flow

At T-45, which is on September 17, 2021, MWD is responsible for submitting the supply stack to meet the new RA obligation as set per the peak demand update executed at T-75

	CRA Pump Flow	Megawatt Load (MW)	
	0	1	
	1	39	
	2	77	
	3	114	>
	4	152	
	5	189	
	6	226	
<	7	261	
	8	291	

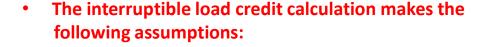

Calculating MWD's November 2021 RA Obligation(s)

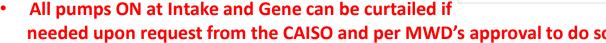

$$261 \text{ MW } x (100\% + 5\%) = 275 \text{ MW}$$

Quantifying RA Supply Resources-

Hoover and Parker

- Hoover and Parker Generation Capacity
 - USBR's 24-Month provides total projected monthly generation capacity for each of these hydro resources
 - Most recent study show that for the month of November, Hoover and Parker are projected to have generation capacities of 861.1 MW and 92 MW, respectively


Hoover: 861.1 MW total capacity * 12.0515% share = 103 MW available to MWD


Parker: 92 MW total capacity * 50% share = 46 MW available to MWD

Quantifying RA Supply Resources-

Interruptible Load Credit

Depending on reservoir levels, Intake and Gene pumps can be shut-off for varying periods of time while maintaining flow through the rest of the CRA

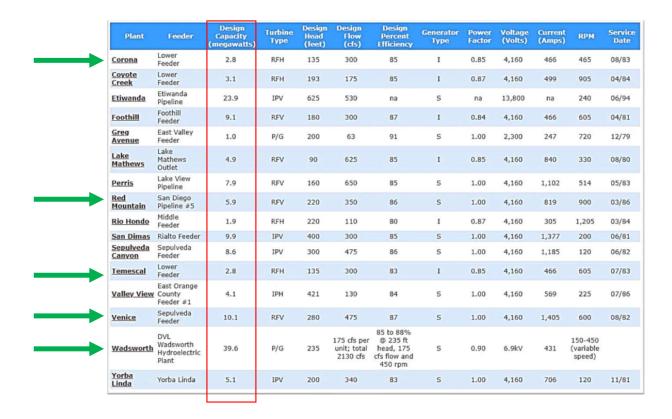
The 5% Planning Reserve Margin can be applied to the interruptible load credit

Quantifying RA Supply Resources-Interruptible Load Credit

- Recall, peak flow on the CRA for November is forecasted to be 7 pumps
 - At 7 pump flow, and accounting for the need for periodic cycling of one pump at Intake, at any one instant there may be 6 or 7 pumps ON at Intake and 7 pumps ON at Gene
 - Conservatively then, at any one time a total of 13 pumps from Intake and Gene can be curtailed

(# of Curtailable Pumps) * (MW/pump) * (Reserve Margin Adder) = Interruptible Load Credit Available

13 pumps


7 MW/pump

105%

95 MW

Quantifying RA Supply Resources- MWD HEP Fleet

• MWD can claim RA capacity from HEPs not currently under contract and still receive the revenue from power sales into the CAISO market

November 2021 Total RA Supply

MWD's Hoover Capacity (MW)	MWD's Parker Capacity (MW)	Interruptible Load Credit Available (MW)	HEP Fleet RA (MW)	Total Supply Available (MW)
103	46	95	4	248

November 2021 RA Obligation

RA Supply – RA Obligation = RA position

248 MW – 275 MW = -27 MW

November 2021 Total RA Supply- with RA Purchase

MWD's Hoover Capacity	MWD's Parker Capacity	Interruptible Load Credit Available	HEP Fleet RA (MW)	RA Purchase (MW)	Total Supply Available (MW)
(MW)	(MW)	(MW)			
103	46	95	4	27	275
				Y	

November 2021 RA Obligation

275 MW - 275 MW = 0 MW

Summary

What is RA:

- •Ensure generation capacity (capability) meets peak demand
- •CAISO's role coordination and oversight
- •Each LSE must meet their share of peak demand, or RA obligation, by submitting supply plans
- •CAISO only procures additional capacity if system deficit occurs

Why we need RA:

- Promotes grid reliability
- •Helps control power price spikes
- •Encourages infrastructure investment

How RA works for MWD:

- •Process timelines- T-45 and T-75
- •Peak load assessment and RA obligation calculations
- •RA supply resources and quantifying their RA capacity- Hoover, Parker, interruptible load, HEP fleet

Additional Resources

- RESOURCE ADEQUACY PRIMER for STATE REGULATORS, July 2021
 - National Association of Regulatory Utility Commissioners
 - https://pubs.naruc.org/pub/752088A2-1866-DAAC-99FB-6EB5FEA73042

