

Enhancing Future Rounds of Alberta's REP

CanSIA Discussion with Alberta REP Forum

Webinar, 19 Jan. 2018

CanSIA

CANADIAN SOLAR
INDUSTRIES
ASSOCIATION

L'ASSOCIATION DES
INDUSTRIES SOLAIRES
DU CANADA

PRESENTATION OVERVIEW

- Background & Introduction.
- Discussion of Indexed-REC:
 - A. Maximizing Competition.
 - B. Maximizing Efficiency.
 - C. Minimizing Cost.
- Options for Future Rounds of REP.
- Conclusion & Next Steps.

Background & Introduction

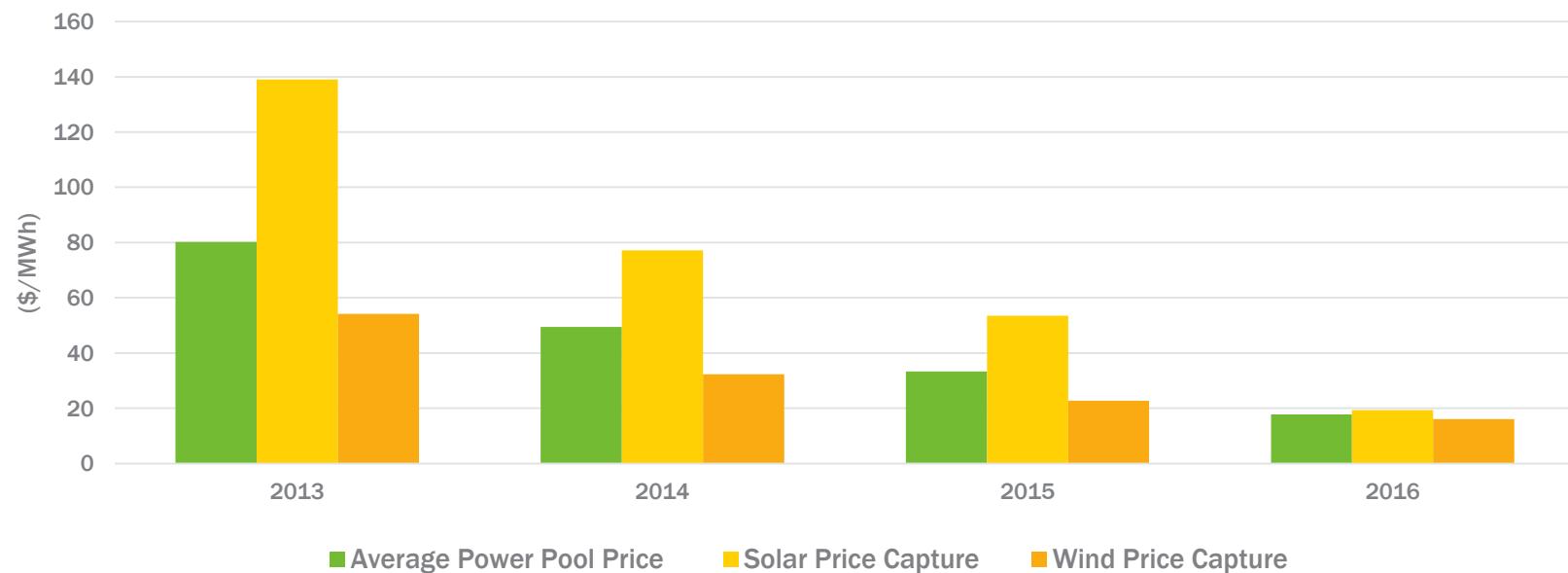
BACKGROUND & INTRODUCTION (1/2)

- Alberta's Renewable Electricity Program (REP) implemented by AESO will support 5,000 MW of utility-scale renewables by 2030.
- The “Indexed-REC” & “Fixed-REC” were considered by AESO as approaches to purchasing renewable attributes through the REP.
- Indexed-REC chosen for reasons including that it “allocates risk appropriately”, is “likely to draw the highest number of competitors”, & “minimizes the total cost of the first competition”.

BACKGROUND & INTRODUCTION (2/2)

- First round of REP delivered excellent results, demonstrated long-term revenue certainty minimizes renewable electricity cost, esp. during period of uncertainty (i.e. coal retirement schedule).
- However, the first round of REP did not consider a facility's power pool price capture and thus market price signals are muted.
- Important enhancements could be adopted for future rounds to maximize competition and efficiency and to minimize cost.

Discussion of Indexed-REC


Competition, Efficiency & Cost

A: COMPETITION

- REP1 attracted 12 Proponents bidding 26 facilities, including a negligible # of solar facilities. Commercial Operation Date (Dec. 2019) limited # of shovel-ready solar facilities.
- However, many solar facilities could be shovel-ready by 2020, 75 solar facilities (3,800 MW) in AESO Connection Queue (Jan. 2018).
- Attracting higher level of participation from solar facilities would draw a higher number of bids to future rounds and increase competition.

B: EFFICIENCY (1/2)

- Price signals based on supply/demand dynamics (rewarding highest value generation) delivers most efficient outcomes in market.
- Solar captures premium to the average power pool price, averaging 50% higher than the average (9 – 73%) in years 2013 – 2016.

B: EFFICIENCY (2/2)

- However, Indexed-REC mutes price signals by not taking a facility's power pool price capture into consideration.
- In example below, "A" would be contracted despite requiring more support (i.e. out-of-market payments) than "B".
- Considering power pool price capture during bid selection would ensure only the most viable facilities receive support.

	Renewable Facility "A"	Renewable Facility "B"
Strike Price (\$/MWh)	Lower than "B"	Higher than "A"
Power Pool Price Capture	Discount to Average Power Pool	Premium to Average Power Pool
Out-Of Market Payments Required	Higher than "B"	Lower than "A"
Result	Receives Support	Does not Receive Support

C: COST

- By not considering power pool price capture, bids requiring higher out-of-market payments can win, thus higher cost to Carbon Levy.
- On average, between 2013 – 2016 a solar strike price of <\$77/MWh would require less out-of-market payments than wind at \$37/MWh.

	Wind Strike-Price (\$/MWh)	Equivalent Solar Strike-Price (\$/MWh)	Wind:Solar Ratio
2013	37	120	0.31
2014	37	81	0.46
2015	37	68	0.54
2016	37	39	0.95
Average	37	77	0.48

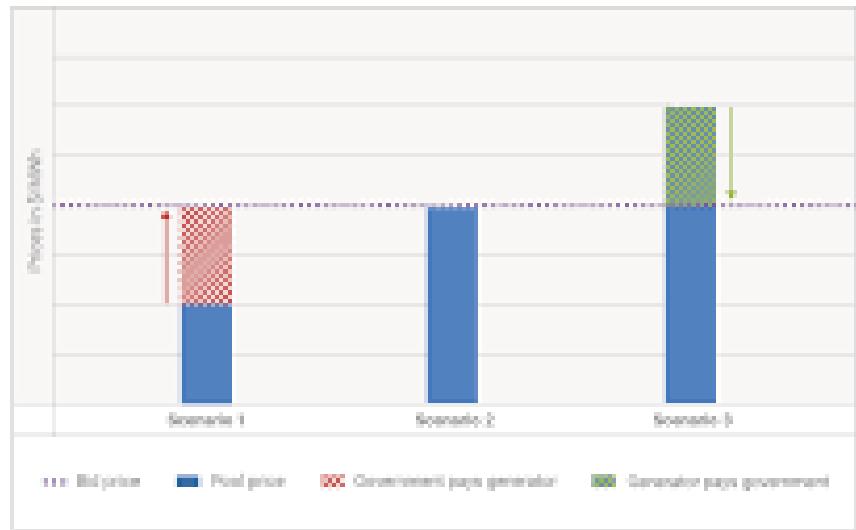
- In addition to potentially lower unit costs (\$/REC), solar has lower capacity factor (MWh/MW) thus lower costs per MW in given round.

Options for Future REP's

Indexed-, Benchmark- & Fixed-REC/Floor

OPTIONS TO ENHANCE REP (1/2)

- CanSIA has explored several alternative options for future rounds of the REP including:
 - Indexed-REC:
 - Business as usual (as per REP 1).
 - With Adjustment Factor (applied during bid selection).
 - Technology Carve-Outs (i.e. “capacity set-asides”).
 - Benchmark-REC (preserve risk reduction, but incents value).
 - Floor (preserve risk reduction, but incents value).
 - Fixed-REC (as per Climate Leadership Report).


OPTIONS TO ENHANCE REP (2/2)

- Each option varies in three key respects:
 - Revenue Certainty:
 - Proportion achieved by generator (i.e. full or partial).
 - Full revenue certainty minimizes cost of capital (thus LCOE).
 - Down-Side Risk:
 - Effectively how out-of-market payments are structured.
 - Mitigation approaches vary (i.e. CfD, weight for price capture etc.).
 - Up-Side Risk:
 - Allocation to generators and/or government.
 - Potential trade-off between price-signals & revenue certainty.

OPTION 1: INDEXED-REC (AS PER REP 1)

- The Indexed-REC in REP1:
 - Provided full revenue certainty for Generator.
 - Down-side and up-side held by Government.
 - No market price signals considered.
- Net-effect:
 - Inefficiency (i.e. higher out-of-market payments).
 - Cost (i.e. higher \$/MWh).
 - Non-diverse (i.e. technology or region)

Indexed Renewable Energy Credit

Scenario 1

The pool price is low, so the government payment to generators (red) is needed to meet the bid price.

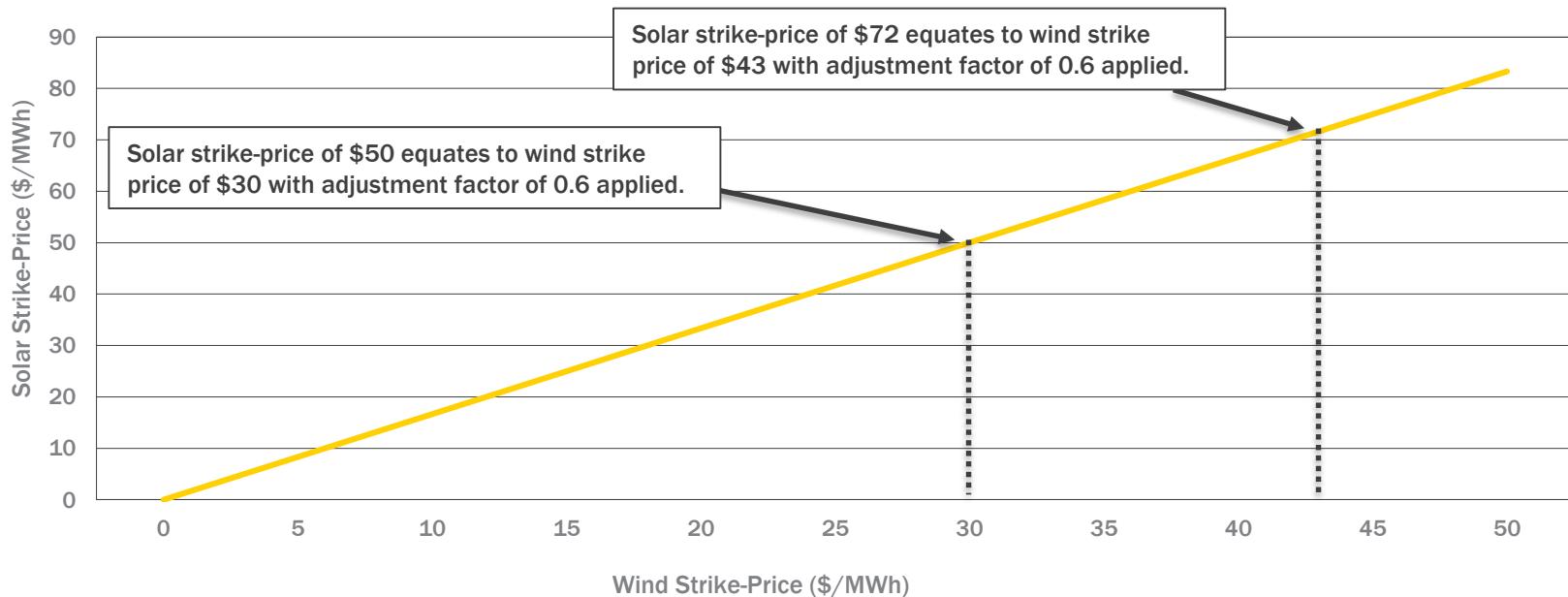
Scenario 2

The pool price is equivalent to the bid price, so the government should issue no payment to the generator.

Scenario 3

The pool price is higher than the bid price, so the generator would be paying that amount (shown in green) back to the government.

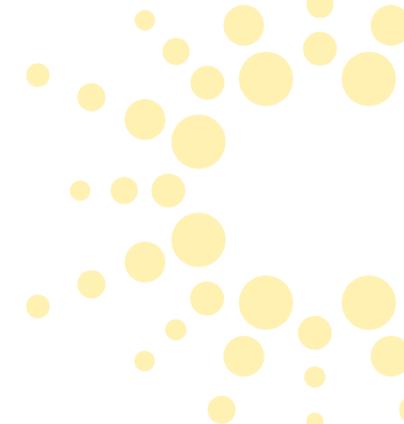
OPTION 1A & B: CARVE-OUT & ADJUSTOR

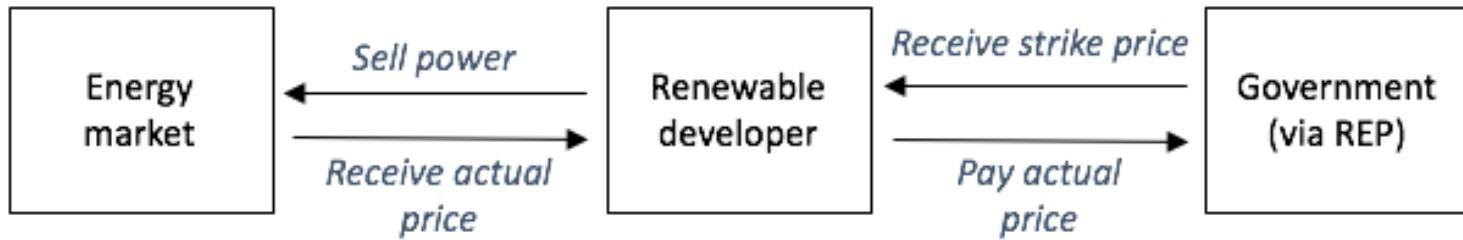

- CanSIA explored two options to enhance the Indexed-REC:
 - “Technology Carve-Outs”: capacity procured is allocated by technology.
 - “Strike-Price Adjustment Factor”: a factor applied to strike-prices bid to account for inter-technology power pool price captures.

	A	B	C
Approach	<u>Business As Usual</u>	<u>Strike-Price Adjustment Factor</u>	<u>Technology Carve-Outs</u>
Revenue Certainty	Full	As per “A”	As per “A”
Down-Side Merchant Risk	Held by Government as “CfD”	As per “A”	As per “A”
Up-side Merchant Risk	Held by Government as “CfD”, as a result market price signals absent.	As per “A”, however “Adjustment Factor” serves as proxy for market price-signal.	As per “A”, however central-planning can seek to serve as proxy for market-signal.

- Aversion to carve-out as Alberta is not centrally-planned. “Strike-price adjustment factor” could serve as near-term “stop-gap” measure.

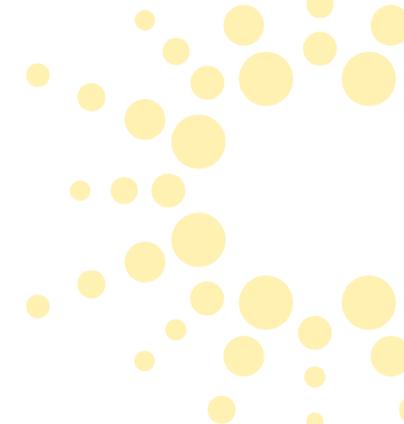
OPTION 1B: “ADJUSTMENT FACTOR”

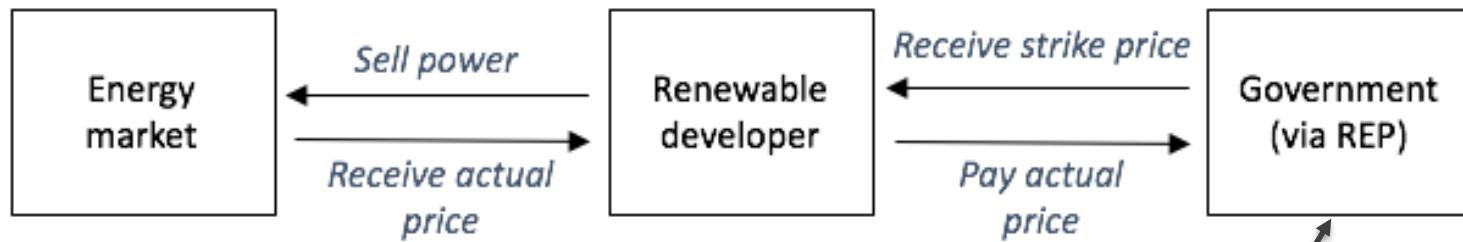

- Adjustment factor should be set to reflect the range of solar:wind strike-price ratios (weighted average = 0.48, see slide 9).
- The graph below demonstrates how a solar adjustment factor of 0.6 would relate to the winning wind strike-prices from REP 1.


OPTION 2: BENCHMARK-REC

- While “strike price adjustment factor” serves as a proxy for “inter-technology market price signals, it doesn’t account for “intra” tech.
- I-REC & B-REC are similar, they pay difference between fixed-price (i.e. “strike-price” determined by auction) and a floating price.
- They are dissimilar in two key ways:
 - Floating Price:
 - I-REC: the facility’s actual power pool price capture.
 - B-REC: a weighted average benchmark of “peers”.
 - Risk Allocation:
 - I-REC: Government holds down-side and up-side risk.
 - B-REC: Government holds down-side, generator receives up-side.

OPTION 2: B-REC CONCEPT (1/3)


“Indexed-REC” design

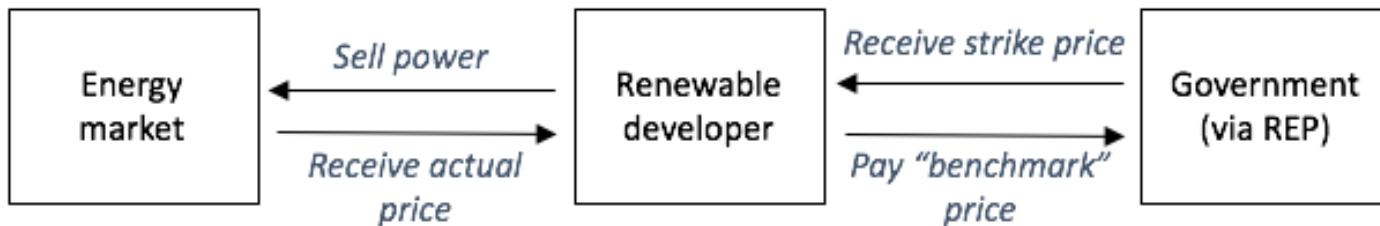

Net Payoff: Receive strike price

Reference: Blake Shaffer (November, 2017) "Assessing Alberta's Renewable Electricity Program: Solar Electricity, the "Indexed REC" & Cost to the Carbon Levy

OPTION 2: B-REC CONCEPT (1/3)

“Indexed-REC” design

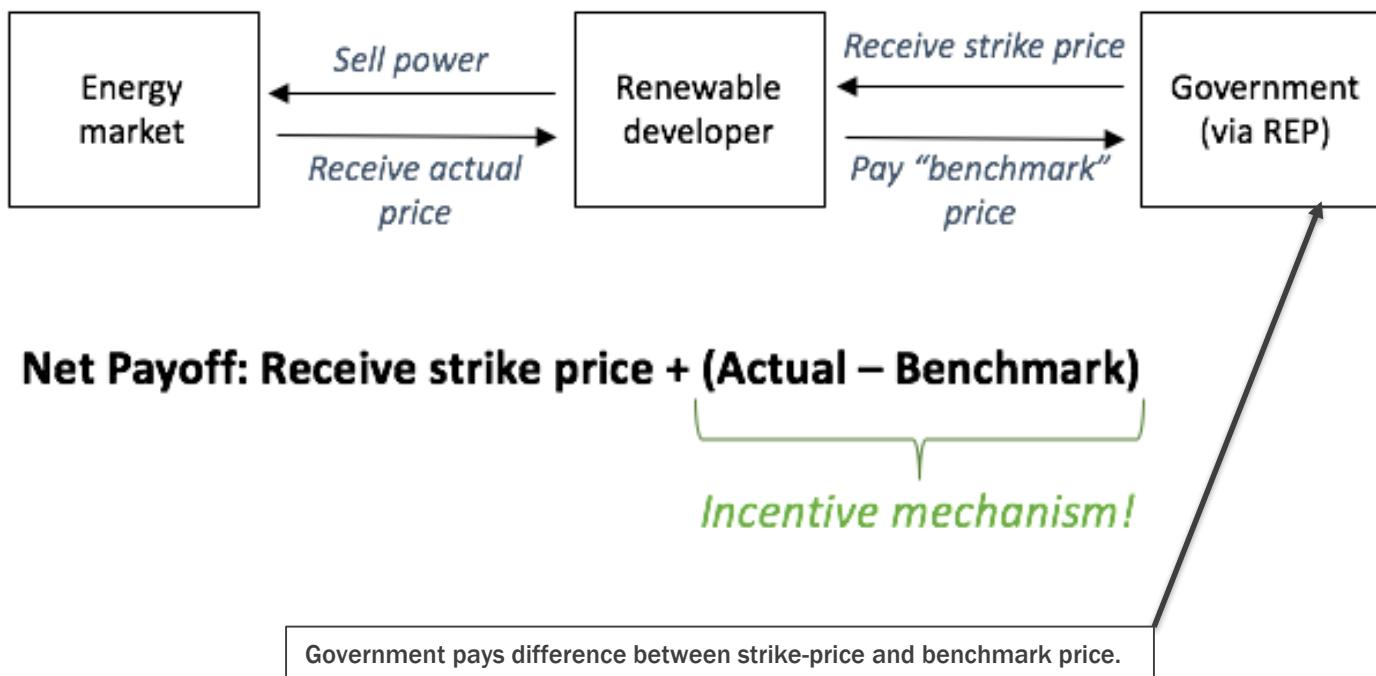
Net Payoff: Receive strike price


Government pays/receives difference between strike-price and actual power pool price capture.

Reference: Blake Shaffer (November, 2017) “Assessing Alberta’s Renewable Electricity Program: Solar Electricity, the “Indexed REC” & Cost to the Carbon Levy

OPTION 2: B-REC CONCEPT (2/3)

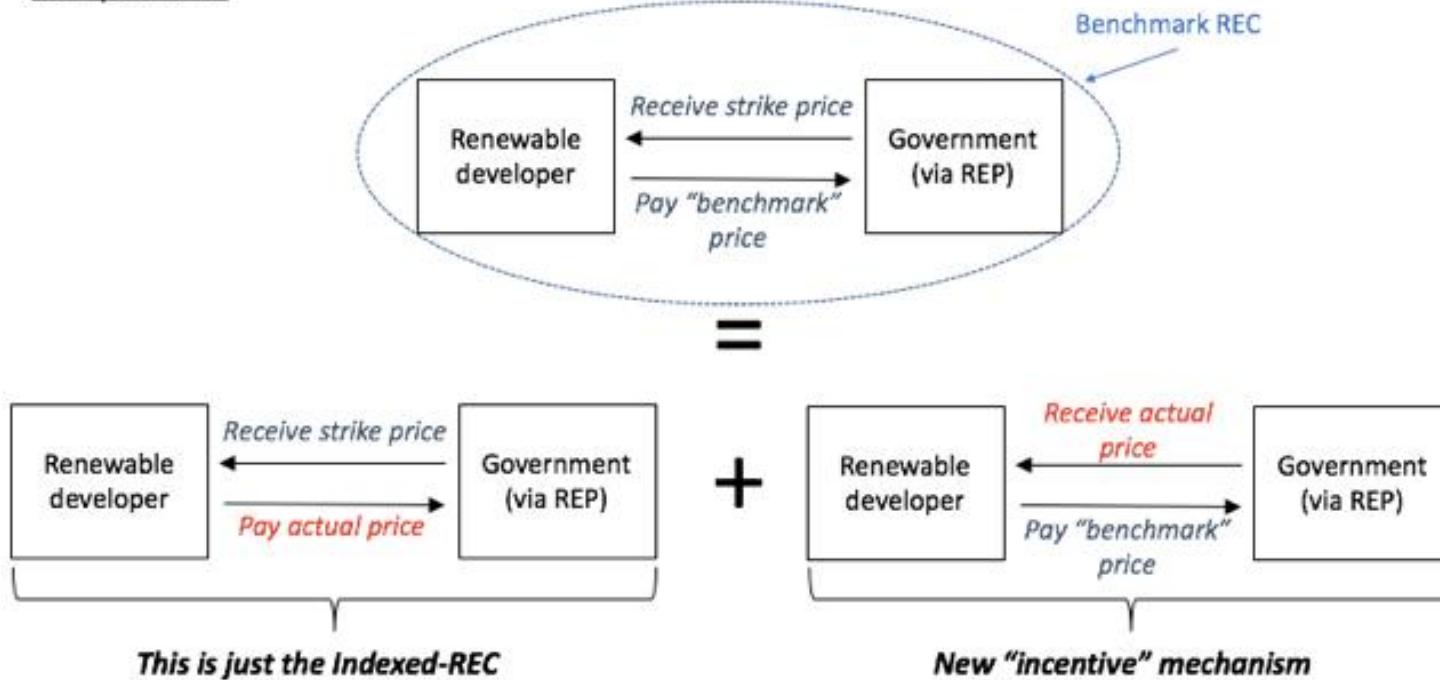
“Benchmark-REC” design


Net Payoff: Receive strike price + (Actual – Benchmark)

Incentive mechanism!

Reference: Blake Shaffer (November, 2017) “Assessing Alberta’s Renewable Electricity Program: Solar Electricity, the “Indexed REC” & Cost to the Carbon Levy

OPTION 2: B-REC CONCEPT (2/3)


“Benchmark-REC” design

Reference: Blake Shaffer (November, 2017) “Assessing Alberta’s Renewable Electricity Program: Solar Electricity, the “Indexed REC” & Cost to the Carbon Levy

OPTION 2: B-REC CONCEPT (3/3)

"Benchmark-REC" design: Breaking it into components

Reference: Blake Shaffer (November, 2017) "Assessing Alberta's Renewable Electricity Program: Solar Electricity, the "Indexed REC" & Cost to the Carbon Levy

B-REC: BENCHMARK COMPOSITION (1/2)

- What should the “group of peers” be composed of?
 - Option 1 – All renewable facilities, regardless of technology type:
 - Recognizes inter- & intra-technology differences (technology-neutral).
 - “Beating benchmark” enables competition between low- & high-LCOE.
 - Market allocates tech. choices (not an administrator i.e. carve-outs).
 - However, disparity in profiles & capture prices introduces uncertainty.
 - Option 2 – Separate benchmarks by technology (e.g. wind, solar etc.):
 - Motivation would be purely to decrease facility-specific risk.
 - Developers still try to “beat benchmark” of group of peers.
 - Doesn’t recognize inter-technology differences (i.e. low- & high-LCOE).
 - Thus, tech.-specific benchmarks occur with “Carve-Outs”.

B-REC: BENCHMARK COMPOSITION (2/2)

- What should the “group of peers” be composed of?
 - Option 3 – A “virtual” benchmark:
 - Consists of a predetermined hourly profile of generation.
 - E.g. Alberta’s wind fleet historic profile on a go-forward basis.
 - Reflects expected average gen. profiles, lacks hourly correlation with prices (e.g. increased wind discount without geo. diversity)
 - Holding constant a historical profile would not recognize this negative correlation.
- Is option 1 best as it enables competition inter- and intra- technologies and is correlated with hourly prices?

B-REC: BENCHMARK UPDATING

- Should composition be updated as new facilities come online? If so, how?
 - Option 1 – Pre-existing REP winners
 - Include past winners of the REP in the creation of the benchmark.
 - Such a benchmark would be known and clear to current bidders.
 - Option 2 – Benchmarked by cohort
 - Each REP retains its benchmark for the duration of the contract.
 - For example benchmark set based on ~400MW procured during each REP.
 - Cohort stays fixed for duration of contract.
 - One issue, however, is that 400MW may consist of only a few facilities.
 - A very large facility's Benchmark-REC very similar to Indexed-REC of REP1.
 - Option 3 – Updated benchmark
 - Another option would be to update the benchmark as more facilities come into being based on future REP rounds.
 - This is potentially problematic for early REP winners, as their baseline will be unknown at the time of bidding.
- Is option 1 best as it minimizes risk for bidders in each successive procurement round?

B-REC: BENCHMARK TIME-FRAME

- What should the time-frame for calculating the benchmark price be?
 - Option 1 – Monthly
 - Aligns with payment cycles within AESO, and provides reasonably frequent updating.
 - Reflects differences across all hours of a month (intraday & daily value differences).
 - Option 2 – Annually
 - Extending timeframe to annual basis would better differentiate value captured by resources that generate more in higher valued period of year, not just within a month.
 - It would apply a weight to a different monthly generation volumes, whereas the monthly timeframe treats each month with equal weight.
 - Issues would include delay in settlement payments for the REP contract, although an interim plus true-up settlement process could be easily designed.
 - Option 3 – Quarterly (or Seasonally)
 - This timeframe offers a compromise between the above methods, to pick up differences in volumes within quarters (or seasons), but not across them.
 - Is option 1 best as it sends the clearest price signal?

B-REC: PROPOSED DESIGN SUMMARY

- Does a Benchmark composed of “all renewables”, fixed for the term of the contract (i.e. “pre-existing”), using “monthly” generation weighted prices best balance all pros/cons?

COMPOSITION	Efficiency	Cost	Value	Risk Allocation	Diversity	Simplicity
1. All renewables	Green	Yellow	Green	Green	Green	Yellow
2. Separate by technology	Yellow	Green	Yellow	Yellow	Green	Green
3. Virtual benchmark	Red	Green	Red	Yellow	Yellow	Green

UPDATING	Efficiency	Cost	Value	Risk Allocation	Diversity	Simplicity
1. Pre-existing	Green	Green	Green	Green	Green	Green
2. Cohort	Green	Yellow	Green	Yellow	Green	Green
3. Updated	Green	Yellow	Green	Yellow	Green	Yellow

TIMEFRAME	Efficiency	Cost	Value	Risk Allocation	Diversity	Simplicity
1. Monthly	Yellow	Green	Yellow	Green	Green	Green
2. Annual	Green	Green	Green	Green	Green	Yellow
3. Quarterly (or Seasonal)	Yellow	Green	Yellow	Green	Green	Yellow

OPTION 3 A & B: FIXED-REC OR FLOOR

- A Fixed-REC (as proposed in the Climate Leadership Report) and a Floor are additional alternative options.
- They are similar in that:
 - Revenue Certainty: proponents bid price representing min. threshold.
 - Down-side risk: higher LCOE generation accepts more (%) than lower.
 - Up-side risk: generators are incented to respond to price signals.
- They differ in that Fixed-REC payment is made regardless of the power pool price, Floor only paid when power pool < floor.
- Both options approaching ideal from market-signals/out-of-market perspective, but lenders need comfort with merchant risk (i.e. liquidity in forward hedge market, role for Canada Infrastructure Bank?)

SUMMARY

- Indexed-REC:
 - Provides full revenue certainty thus delivers lower LCOE (\$/MWh).
 - Doesn't send efficient price signal, low \$/MWh beats low \$/REC.
- Benchmark-REC:
 - Provides most revenue certainty (%) for lower LCOE generation.
 - “Beating benchmark” sends price signal and preserves risk reduction.
- Fixed-REC/Floor:
 - Provides more revenue certainty (%) for lower LCOE generation.
 - Allocating up-side risk to generators sends clearer market signals.
 - Down-side risk for higher LCOE generation = higher costs of capital.

Conclusion

Discussion, Q&A and Next Steps

CONCLUSION & NEXT STEPS

- First round of REP delivered excellent results, demonstrated long-term revenue certainty can minimize renewable electricity cost.
- Enhancements would maximize competition/efficiency, reduce costs:
 - Near-Term: ensure level playing-field for solar.
 - Long-Term: guide facility contracting with market price signals.
- CanSIA is proposing a “strike-price adjustment factor” for Member consideration for near-term future rounds of REP.
- CanSIA is seeking proposals from Members for long-term future rounds of REP (i.e. benchmark-, fixed-, floor or other?) and asking that Government consult with stakeholders on a long-term plan.

CONTACT DETAILS

Patrick Bateman, Director of Market Intelligence & Research

Direct: **343-700-3576**
Toll-Free: **1-866-522-6742, ext. 227**
Email: pbateman@cansia.ca
LinkedIn: linkedin.com/in/pdbateman