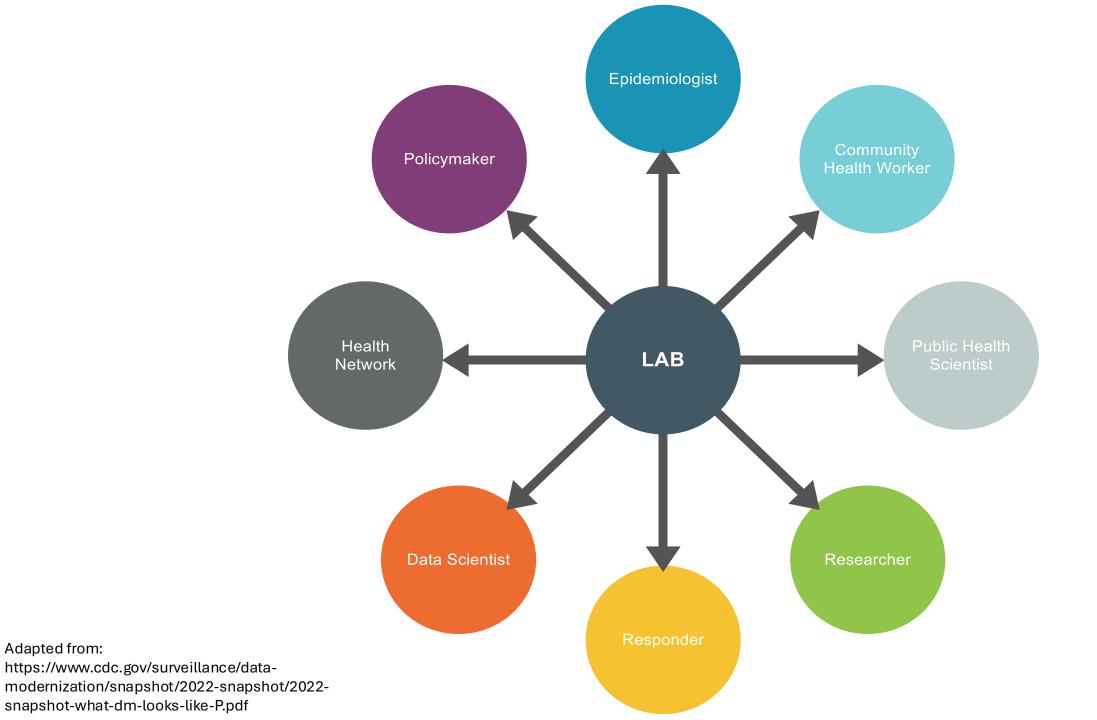
The PIHOA Laboratory Data Exchange Initiative

Paula Fernandes MBA PHD
Enny Pounders MPH PMP
PIHOA Annual Board Meeting 26-Mar-2025

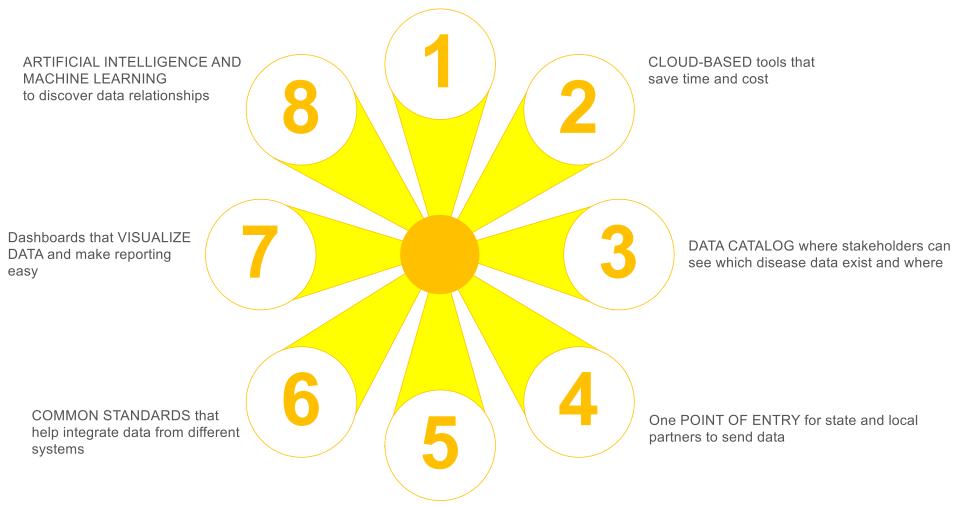
www.GSSHealth.com

Presentation Overview


Data Modernization Initiative

- Rationale
- Key Modernization Initiatives
- Resources
- Importance of LIS
- LIS Requirements

PIHOA LDX Progress Report


- Project Overview
- Participants
- Current Situation and SCOR
- Outputs and Inputs
- Next Steps

Data Modernization Initiative

Adapted from:

Automated, ELECTRONIC REPORTING replacing paper and reducing staff burden

A NORTH STAR ARCHITECTURE for data that can be used by every level of public health to collect, transform, and share information

Adapted from:

https://www.cdc.gov/surveillance/data-modernization/snapshot/2022-snapshot/2022-snapshot-what-dm-looks-like-P.pdf

RESOURCES

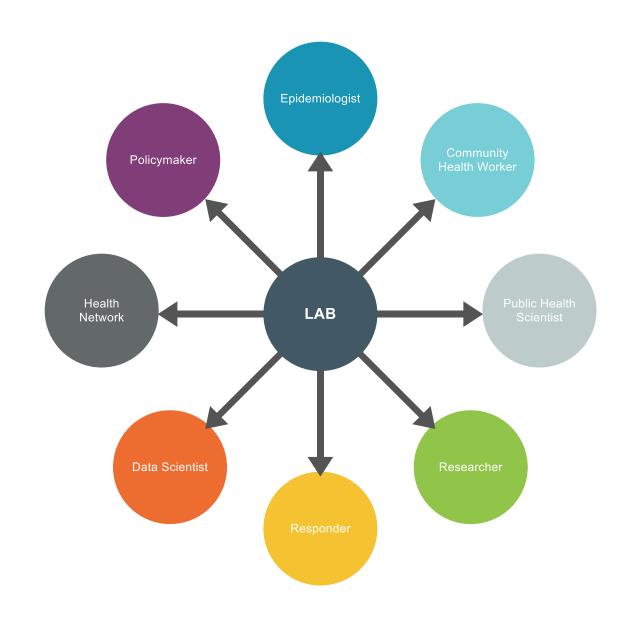
- Leadership & Governance
- Funding & Infrastructure
- People & Capacity
- Technology & Tools
- Partnerships & Collaboration
- M&E & Adaptation

Public Health Infrastructure Grant (PHIG)

Recruit, hire, retain, train, public health workers including epidemiologists, lab staff, data scientists, and community health workers.

Assessment,
partnerships, policy
development,
emergency
preparedness and
response,
communications.

Planning, coordination, and capacity building to deploy scalable, flexible, and sustainable technologies.


Adapted from: https://www.cdc.gov/infrastructure-phig/php/funding-profiles/counties.html

CDC PHIG: https://www.cdc.gov/infrastructure-phig/about/index.html

PHIG Partner Site: https://www.phinfrastructure.org/

Why LDX and Why Now?

- The laboratory is a central component.
- COVID-pandemic lessons learned.
- Laboratories face growing volumes of data from diverse sources.
- Inconsistent data standards hinder interoperability.
- Regulatory pressure is growing for real-time reporting and traceability.

LIS is the Main Source of Exchanged Data

Pre-analytical

- Patient Management
- Provider Management
- Request Management
- Specimen Management
- Test Catalog

Analytical

- Instrument Interfacing
- Quality Control Management
- Results Management
- Scheduling Management
- Testing Management

Post-analytical

- Reports Management
- Billing Management

Cross Cutting

- Alerts
- Backup and Disaster Recovery
- Interoperability and Data Exchange
- Inventory Management
- Localization
- Maintenance Manavgement
- Specimen Tracking/ Chain of Custody
- User Management/ Role-based Access

Benefits of a Robust LIS

Efficiency

Reduces turnaround time by automating and streamlining processes.

Accuracy

Minimizes errors with standardized data capture.

Compliance

Improves compliance with audit trails and security measures.

Patient Care

Enables timely delivery of test results for clinical decisions.

Data Management

Provides a centralized, secure, and organized data repository.

Traceability

Ensures visibility and tracking throughout the specimen journey.

Financial

Automation of tasks and reduction of errors lead to lower costs.

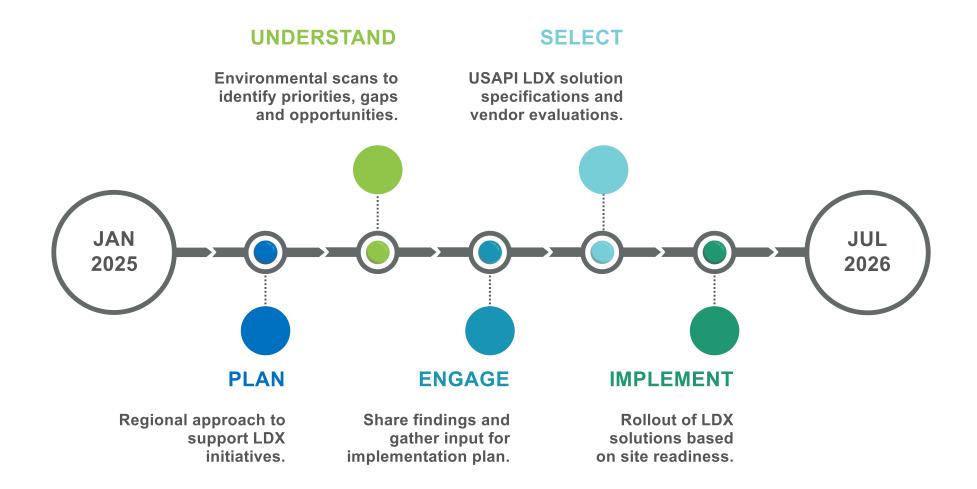
Integration and Interoperability

Connects lab instruments, EMRs, surveillance, and reporting systems.

An Effective LIS

An effective LIS is accurate, secure, scalable, flexible, easy to use, and interoperable while supporting lab-specific workflows.

- Core Functionalities support the full lifecycle of lab testing and management
- **Data Quality and Accuracy** ensure high-quality and accurate data is essential for patient safety and clinical decision-making
- Compliance and Security essential for protecting patient data and ensuring regulatory compliance
- Scalability and Flexibility should be able to grow with the needs of the lab
- **User-Friendly Interface** should be designed for ease of use by lab staff and other stakeholders
- **System Integration** should integrate seamlessly with other healthcare and laboratory systems


LIS Options

Feature	OpenELIS, SENAITE	HCLab, QBench, Agilent
Туре	Open-source	Proprietary (Commercial)
Best For	Public health, clinical, environmental, and research labs	Hospital and clinical labs
Deployment Complexity	Moderate-high (requires technical expertise for setup)	Moderate (vendor-supported installation and configuration)
Deployment Model	Web-based, on-premise, or cloud	On-premise and cloud options
Support and Community	Active community, good support for integration	Vendor-supported
Cost	Free (may require consulting fees at start)	Paid (license and support fees)

PIHOA LDX Initiative

Progress Report

PIHOA Laboratory Data Exchange Initiative

To establish a robust, **regionally coordinated** Laboratory Data Exchange (LDX) ecosystem to facilitate seamless, **automated**, and **bidirectional data sharing** and enhance data accuracy and interoperability in the USAPI region.

Desired State for Readiness to LDX Adoption

Infrastructure and Technology*

Workforce and Skills*

Leadership and Governance**

Regulatory and Policy Environment **

Funding and Sustainability*

Stakeholder Engagement*

Readiness for Change*

Monitoring and Evaluation**

Participating Laboratories

- American Samoa DOH Clinical Laboratory
- American Samoa LBJ Tropical Medical Center Laboratory
- Guam Public Health Laboratory
- Palau, Koror Belau National Hospital Laboratory
- RMI, Ebeye Leiroj Kitlang Memorial Health Center Laboratory
- RMI, Majuro Majuro Hospital Laboratory

Key Findings

Current Situation: LIS Implementation

- Operational LIS (OpenELIS and SENAITE) integrated with some analyzers.
- Operational laboratory middleware (Instrument Manager) connecting some analyzers with the Electronic Health Record – LIS implementation in progress.
- Paper and Excel-based systems but in the process of developing a LIS implementation plan.


Challenges (Internal Strengths (Internal **AUL** Governance gaps **Factors Enabling Factors Hindering** LDX Adoption) LDX Adoption) Data security concerns **Existing LIS** Limited LIS implementation Leadership Support Infrastructure constraints Desire for increased efficiency Limited end-user involvement Standardization of lab process Resource and budget constraints Regional Laboratory Strengthening Initiative Workforce knowledge and skill gaps in LIS and LDX Sustainability challenges Digital Health strategy Cybersecurity threats New funding initiatives Rapid technological change Training opportunities Competition for funds Growing Health IT standards Infrastructure instability Open-source platforms Digital divide **COVID** lessons Risks (External **Opportunities** Vendor lock-in PPP (External Factors **Factors Hindering Favoring LDX Adoption)** LDX Adoption)

AUL Group Discussions

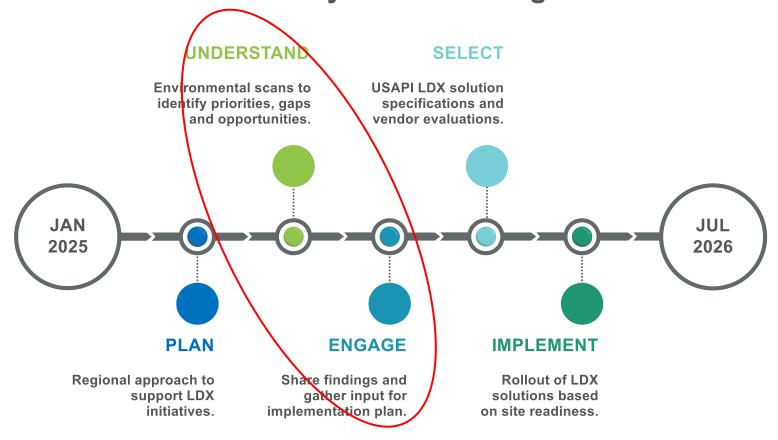
Bridging the gaps between the current state and the desired future state

How and/or what can we (**lab**) do to achieve the desired state so that we (**lab**) are ready to adopt and implement LDX capabilities?

Infrastructure and Technology

Workforce

Sustainability



Engagement and Readiness

Next Steps

PIHOA Laboratory Data Exchange Initiative

