

CALL FOR ABSTRACTS

- > Preference will be given to abstracts describing early stage ideas, novel hypotheses and preliminary or current work and in obesity, diabetes and cardiovascular disease.
- > Abstracts that are not selected for talks will by default be considered for inclusion in the poster session, which will be displayed on electronic poster
- > Successful applicants MUST be available to talk or present a poster at the virtual Obesity Research Incubator Session on May 14th.

Additional Rules and Information:

- Prizes of \$250-\$500 will be awarded to all speakers and selected posters.
- Talks and Posters selected for presentation will be notified by April 19, 2021.
- Previously presented research is acceptable for both short talks and posters.

9th Annual Obesity Research Incubator Session

Friday, May 14th, 2021 1-5PM

To promote vibrant scientific discussions, stimulate new research and connect researchers from all Boston area institutions, faculty with a rank of assistant professor and below and all non-faculty researchers are invited to submit an abstract to share their work by giving a short talk or presenting a poster. Abstracts in any area of basic, clinical, translational or epidemiological research related to obesity are welcome.

DEADLINE FOR ABSTRACTS: Monday, April 19th, 2021

SUBMIT AT: bwhresearch.org/incubator

Keynote Speaker

Frank Scheer, PhD

Frank A.J.L. Scheer, PhD is Professor of Medicine at Harvard Medical School (HMS) and the Director of the Medical Chronobiology Program (MCP) at Brigham and Women's Hospital (BWH), Boston. Dr. Scheer's work focuses on influences of the endogenous circadian system and its disruption—such as with shift work—on cardiovascular, pulmonary, and metabolic regulation and disease states, including hypertension, asthma, obesity and diabetes. Dr. Scheer co-founded and currently directs the MCP, an interdisciplinary research program at BWH to foster the translational research in sleep and circadian biology to understand the basis behind time-variant changes in disease severity, the effects of circadian misalignment (typical in night shift workers), and their interaction with genetics (e.g., the common MTNR1B variant). Understanding the biological basis of these changes across the day and night and their interaction with genetics may help in the development of personalized and time-based behavioral, environmental, and pharmaceutical interventions (e.g. appropriately timed meals, exercise or melatonin to target specific phases of the body clock) to prevent, treat, and/or manage disease.