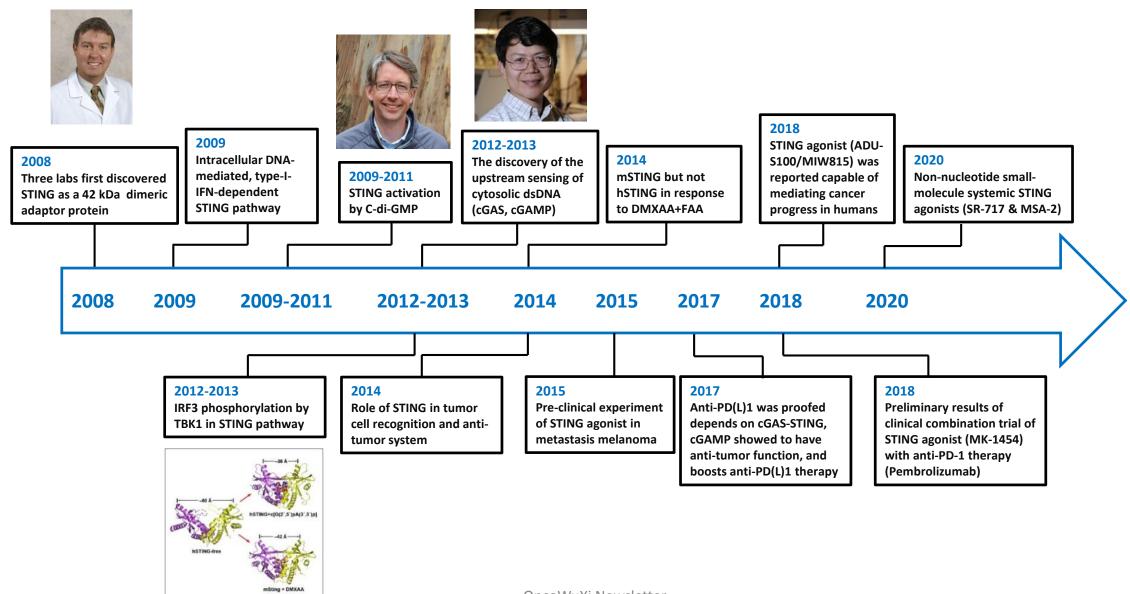
WuXi AppTec STING Pathway Related Service

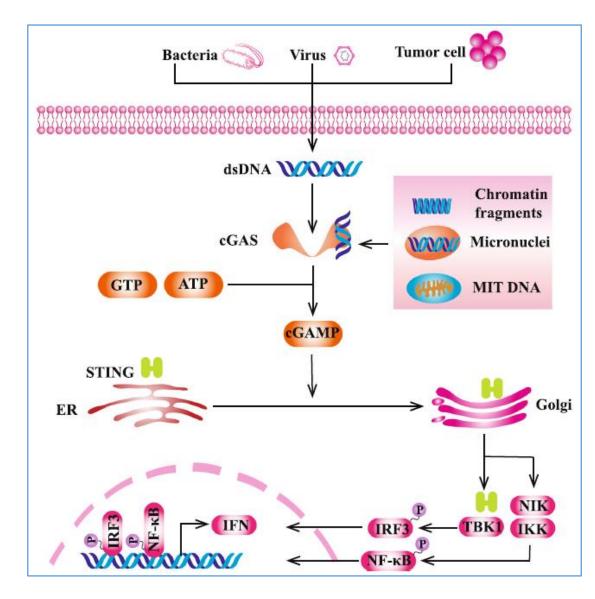
WuXi AppTec Research Service Division, Oncology & Immunology Unit

2021.01


Outline

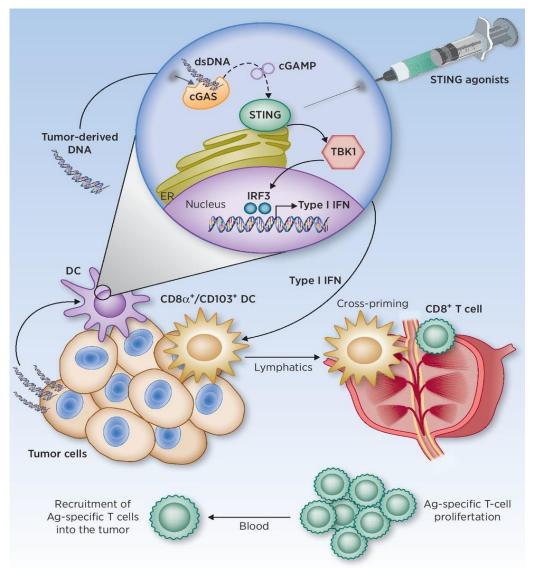
- STING Background
- In vitro STING pathway related functional assays
- *In vivo* anti-tumor efficacy study of STING agonist in CT26/4T1 syngeneic models
- In vivo anti-tumor efficacy study of STING agonist in B16F10 syngeneic model
- Cytokine analysis of B16F10 syngeneic model post STING-1 treatment
- Immunoprofiling of B16F10 syngeneic model post STING-1 treatment

Background: The STING-cGAMP-cGAS chronicle



Background: The STING signaling pathway

多明康德 Wuxi Add Tec


- Stimulator of interferon genes (STING), cytosolic DNA sensor anchored in endoplasmic reticulum (ER), is highly expressed in several APCs, such as macrophages and DCs, as well as plasmacytoid DCs, MDSCs, T-cells, and various endothelial or epithelial subtypes
- The STING pathway is predominantly activated by cyclic dinucleotides (CDNs), a product derived from the intracellular enzyme, cyclic GMP-AMP synthase (cGAS), upon invasion by pathogens and exposure to self-DNA, which leads to the production of type I interferons and pro-inflammatory cytokines
- ✓ STING could recruit and activate TANK-binding kinase 1 (TBK1) which further phosphorylates interferon regulatory transcription factor 3 (IRF3) and upregulates the expression of type I IFN
- STING could also activate NF-κB pathway by binding to IκB kinase (IKK) and NF-κB-inducing kinase (NIK), which further collaborates with TBK1-IRF3 pathway to induce the expression of type I IFN
- Type I IFN has multiple immune-stimulatory functions promoting the maturation, migration, and activation of multiple immune cells such as DCs, T cells, and NK cells

Background: STING pathway and cancer therapy

多 明 康 德 WuXi AppTec

- DNA leakage not only activates STING pathway in tumor cell, but also promotes STING activation in DCs by DNA uptake or cGAMP transfer
- Activation of cGAS-STING signaling pathway can be deliberately stimulated by the use of direct STING agonists, when compounds are therapeutically administrated into the tumor microenvironment
- *In-vivo* studies using gene-targeted mice demonstrated a crucial role of STING-dependent type I IFNs production, and its signaling on basic leucine zipper transcription factor ATF-3 (BATF3) lineage of DCs for spontaneous antitumor T-cell responses *in vivo* and recruitment of effector T cells into the tumor microenvironment
- Two major hypotheses have been prompted for the DC activation by cancer cells: tumor-derived DNA activates the DCs, or tumor derived cGAMP directly activates the STING pathway via protein STING, thereby leading to the production of type I IFNs
- The type I IFN signaling pathway contributes to:
- ✓ CD8 α + DC survival and antigen retention
- \checkmark Up-regulation of CCR7, MIP-3β, and Th-1 chemokines to reinforce the lymph node-homing
- ✓ Significant enhancement of tumor antigen specific T cell responses through the activation of STAT1 OncoWuXi Newsletter

Background: The current industrial pipelines on STING agonists

Clinical stage

preclinical stage

Drug discovery stage

Cited from Evaluated Pharma database

Drug	Company	Cancer Type	Phase	Trial Start Date	Status (Estimated Completion)	Pertinent Findings of Trial	NCT Code
ADU-S100 (i.t.) +/- ipilimumab (i.v.)	Aduro Biotech; Novartis	Advanced/metastatic solid tumours; lymphomas	I	04/16	Terminated 12/19	Undisclosed	NCT02675439
ADU-S100 (i.t.) + PDR001(i.v.) (spartalizumab)	Novartis	Solid tumours; lymphomas	Ib	09/17	Terminated 12/19	Data cut-off: 5th April 2019 - 12/53 SD, 4/53 PR, 1/53 CR - Responders: median reduction of 73% in 1° lesion diameter - 78% TRAEs, 12.2% of TRAEs = grade3/4 - No DLTs - MTD not determined - T1/2 = 10–23 min	NCT03172936
ADU-CL-20 (i.t.) + anti-PD-1 (i.v.)	Aduro Biotech	Metastatic/recurrent HNSCC	II	08/19	Ongoing (2022)	Undisclosed	NCT03937141
MK-1454 (i.t.) +/- pembrolizumab (i.v.)	Merck & Co	Advanced/metastatic solid tumours; lymphomas	I	02/17	Ongoing (2021)	 Data cut-off: 31st July 2018 TRAEs 83% monotherapy, 82% combination 7% in combination discontinued due to TRAEs MTD not yet determined Combination 6/25 (24%) → PR (3 HNSCC, 1 TNBC, 2 anaplastic thyroid carcinoma) Combination: median reduction of 83% in 1° lesion diameter T1/2 = 1.5 h 	NCT03010176

J. Clin. Med. 2020, 9, 3323

OncoWuXi Newsletter

Background: The STING agonists in clinical trials (10 trials)

Drug	Company	Cancer Type	Phase	Trial Start Date	Status (Estimated Completion)	Pertinent Findings of Trial	NCT Code
MK-2118 (i.t.; s.c.) +/- pembrolizumab (i.v.)	Merck & Co	Advanced/metastatic solid tumours; lymphomas	I	09/17	Ongoing (2022)	Undisclosed	NCT03249792
BMS-986301 (i.t.) +/- nivolumab (i.v.), ipilimumab (i.v.)	Bristol-Myers Squibb	Advanced solid tumours	I	03/19	Ongoing (2023)	Undisclosed	NCT03956680
GSK3745417 (i.v.; s.c.) +/- pembrolizumab (i.v.)	GSK	Advanced solid tumours	I	03/19	Ongoing (2024)	Undisclosed	NCT03843359
SB-11285 (i.v.) + nivolumab (i.v.)	Spring Bank Pharmaceuticals	Advanced solid tumours	Ia/Ib	09/19	Ongoing (2022)	Undisclosed	NCT04096638
IMSA-101 (i.t.) +/- ICI (i.v.)	ImmuneSensor Therapeutics	Advanced solid tumours	I/IIa	09/19	Ongoing (2023)	Undisclosed	NCT04020185
E7766 (i.t.)	Eisai Inc.	Advanced solid tumours; lymphomas	Ia/Ib	03/20	Ongoing (2022)	Undisclosed	NCT04144140

J. Clin. Med. 2020, 9, 3323

Background: The limitations and challenges of the STING agonists based therapies

- The metabolic instability and poor permeability of CDNs
 - 2 I.T. delivery concern: limits the use & not cover the host's entire tumor antigen spectrum
 - Safety: inflammation, cytokine storm, normal B cell and tissue toxicity, autoimmunity
 - STING activation induce T cell stress and death & tolerogenic immune response
- SNPs in STING with implications for the selection of appropriate STING agonists

Background: The current strategies to overcome the limitations of the first generation of STING agonists (CDNs)

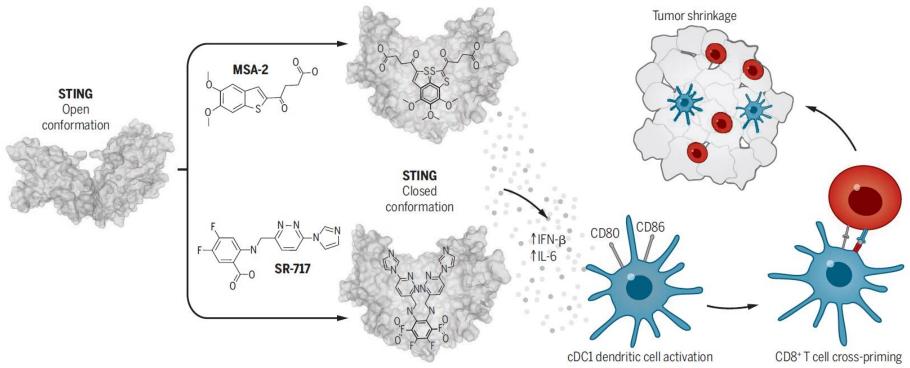
New delivery modalities

- Cancer vaccines: STINGVAX, CT26, SCCFV □, Panc02 (Aduro Biotech)
- Nanostructures: SB11285 (Spring Bank, iTeos therapeutics)
- ADC: CRD5500 conjugated with Trastuzumab (Curadev); SB11285 (Spring Bank)

STING agonists formulated for systemic administration

- Comp3: i.v. (GSK)
- CRD5500: i.v. or s.c. (Curadev licensed to Takeda)
- **SR-717**: i.p. (The Scripps Research Institute)
- MSA-2: p.o. (LifeMine Therapeutics)

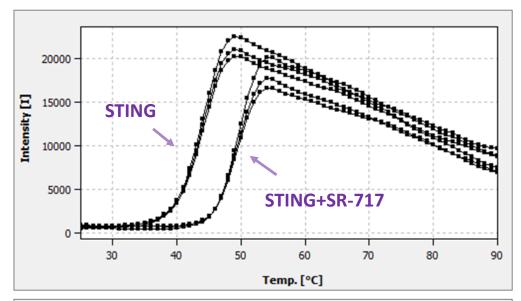
The STING pathway enhancer


• Mavupharma (MAVU-104): a first-in-class, orally active, small molecule inhibitor of ENPP1, a phosphodiesterase that negatively regulates the STING pathway (AbbVie)

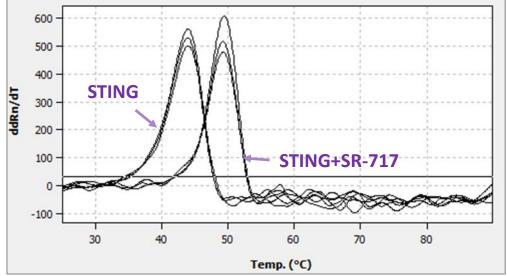
Injection of viruses or bacteria to produce endogenous c-di-A/GMP

- IT Injection of engineered E. coli specifically engulfed by APCs, SYNB 1891 (Synlogic)
- IT Injection of adenovirus (Venn Therapeutics)

- Direct mimetic of the natural STING ligand cGAMP that stabilize STING in its closed conformation
- cGAS–STING pathway-targeted cell-based screening led to the identification of SR-717
- A phenotypic cell- based screen that detects stimulation
- of IFN-β secretion led to the identification of MSA-2

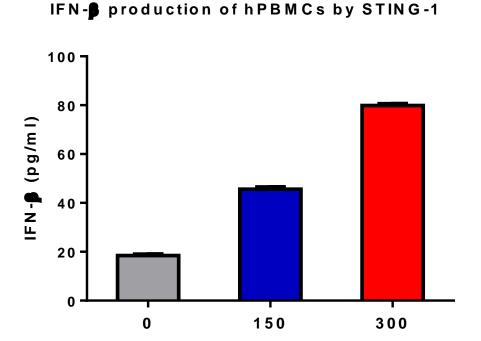

Science, 2020, 369, 993–9 Science, 2020, 369, eaba6098

Several important considerations


- Greater toxicity: engaging APCs outside the TME may release high amounts of IFN-β and other inflammatory cytokines
- The effect of systemic STING agonists on specific immune cell sub-populations
- The dose and schedule of systemic administration
- Tumor types and patients that have the potential to respond to these agents

Protein based binding of SR-717 to the recombinant STING-DCL8 protein by Thermal Shift assay

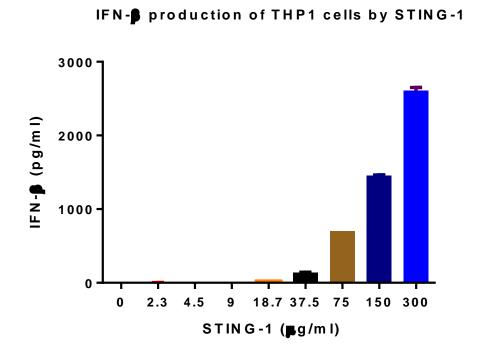
Test	Tm (°C)				
repeats	STING alone	STING + SR-717 (1 mM)			
1	43.9	49.3			
2	43.9	49.4			
3	43.9	49.2			
Mean	43.9	49.3			

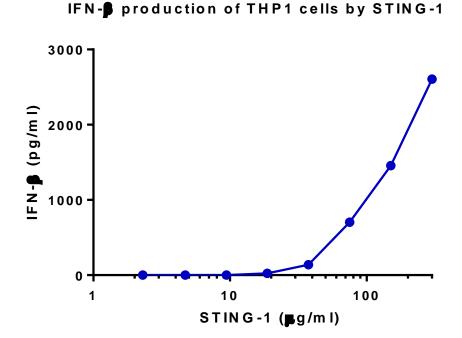

SR-717 showed significant binding to STING-DCL8 protein

13

STING activation by STING agonist (STING-1) in human PBMCs

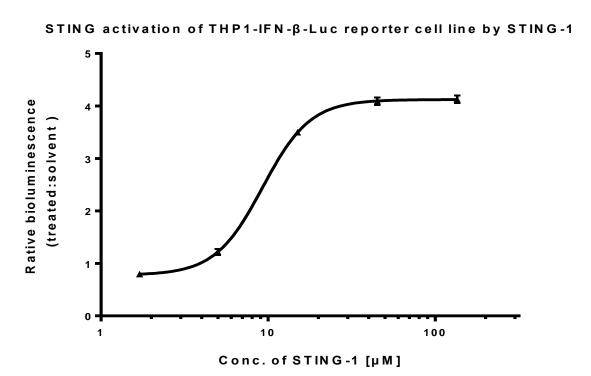
A rapid screening method for potential STING agonists in drug discovery


> STING-1 dose-dependently induced IFN-β production in hPBMCs


STING-1 (M)

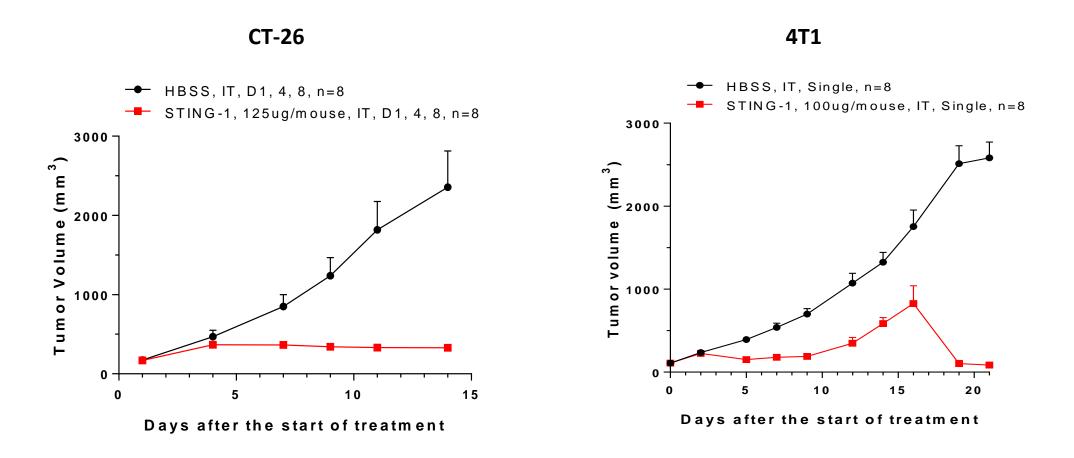
STING activation by STING agonist (STING-1) in THP1 cells

A rapid screening method for potential STING agonists in drug discovery



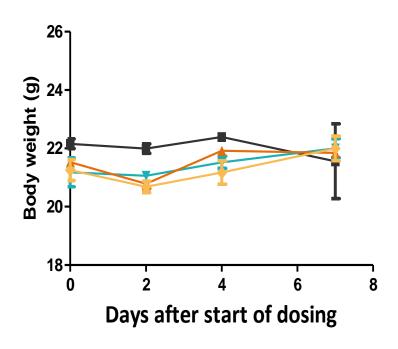
 \triangleright STING-1 dose-dependently induced IFN- β production in THP1 cells

STING activation by STING agonist (STING-1) in THP1-IFN-β-Luc reporter cells


A rapid screening method for potential STING agonists in drug discovery

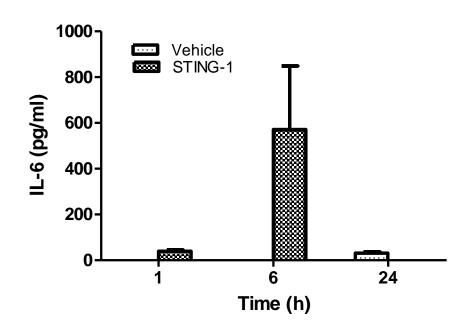
> STING-1 dose-dependently activated THP1-IFN-β-Luc reporter cells

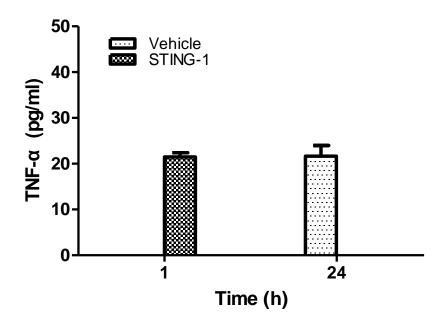
In vivo anti-tumor efficacy study of STING-1 in CT-26 and 4T1 syngeneic models



> STING-1 showed significant anti-tumor efficacy in CT-26 and 4T1 syngeneic models

In vivo anti-tumor efficacy study of STING-1 in B16F10 syngeneic model




STING-1 showed dose-dependent anti-tumor efficacy in B16F10 syngeneic model

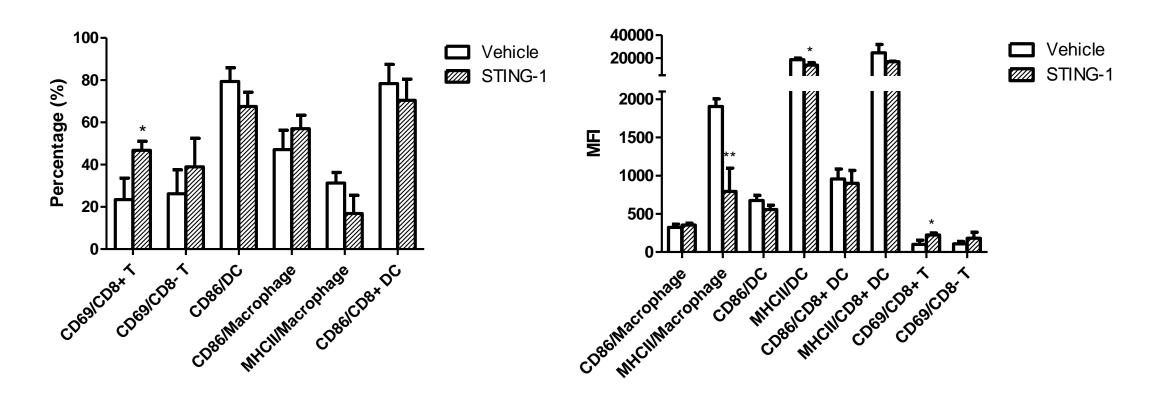
IL-6 and TNF-α release in Plasma

Detection by BD™ CBA Human Th1/Th2 Cytokine Kit II (Catalog No. 551809)

IL-6, TNF-α, IFN-γ, MCP-1, IL-12 and IFN-β levels in Tumor

Immunoprofiling in B16F10 model post STING-1 treatment

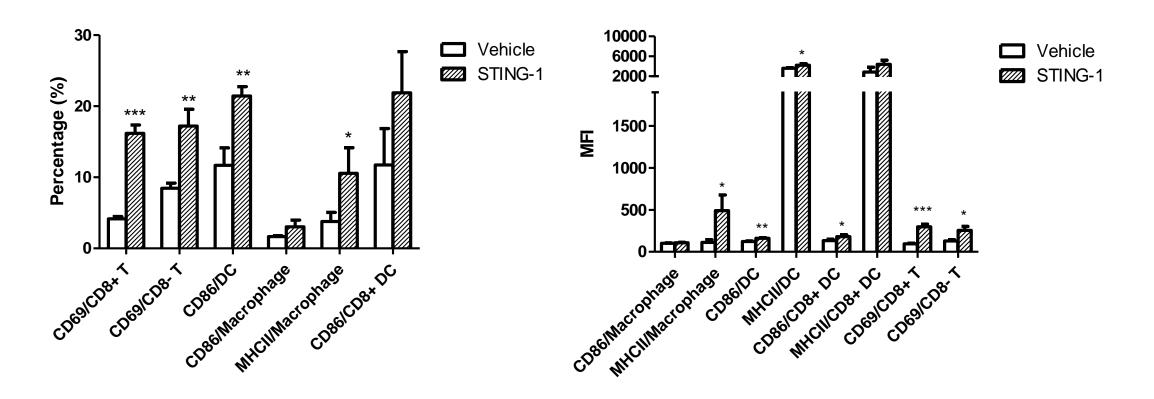
Panel design


Model	Cancer Type	Mouse
B16F10	Melanoma	C57BL/6

Channel	Fluorescein	Panel 1 (Tumor & Spleen)	Panel 2 (Blood)
FITC	FITC	F4/80	-
PE	PE	CD69	-
PerCP	PerCP-Cy5.5	CD11c	CD19
APC	APC	CD8	-
APC-R700	AF700	CD45	CD45
APC-Cy7	APC-Cy7	CD3	CD3
V450	BV421	Live/dead	Live/Dead
V500	BV510	CD86	-
BV605	BV605	MHCII	-

Immunoprofiling in B16F10 model post STING-1 treatment

Activated marker expression in tumor infiltrating immune cells



> STING-1 increased the percentage of activated CD8+ T cells (CD69+) in tumor

Immunoprofiling in B16F10 model post STING-1 treatment

Activated marker expression of immune cells in spleen

> STING-1 increased the percentage of activated CD8⁺ T cells (CD69⁺), DCs (CD86⁺), and macrophage (MHCII⁺) in spleen

OUR COMMITMENT Improving Health. Making a Difference.

For questions and requests, please email to info onco@wuxiapptec.com

https://onco.wuxiapptec.com

Mobile App