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I. Confluence of aesthetics and pragmatism

Figure 1 displays the enigmatic note from Hashimoto sensei, forwarded to
me after the 19 seminar in SC. It is a brief review of the Golden Ratio. An
attached memo says that it "refers to the proportions of the yumi.” In the
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Figure 1: Hashimoto sensei’s note

fifth century BC, the Greek sculptor and mathematician Phidias proposed the
division of a line segment into two with ”"the most beautiful proportions.” By
retracing a path of feeling and intuition to that definite number, the Golden
Ratio, we witness the arising of a mathematical form from pure aesthetics.
Next, we see what it has to do with Kyudo. Let a and b denote lengths of
the two segments, with a the greater, a > b. The division of a line into two



defines not two, but three lengths, with the descending order,

a+b (the total length) (1)
a (the greater)
b (the lesser)

Comparison is often done by pairs, of which there are three:

a+b and a (2)
a and b
a+b and b

The first two comparisons are the ”closest” to each other, comparing one
length to the next smaller. The intuitive sense of "most beautiful propor-
tions” might arise like this: ”We have two perspectives, of comparing the
total to the greater, and the greater to the lesser. Let’s impose symmetry
as a certain equivalence between the two perspectives: The total stands in
relation to the greater, the same as the greater to the lesser.” The numerical
comparison of two lengths is their ratio, so the quantitative expression is
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a
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Defining = as the ratio ¢, this equation is equivalent to
1
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whose positive solution is the Golden Ratio
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~ 1.61803... (5)

Phidias originally applied the Golden Ratio to set proportions in human
figure sculptures of the Parthenon temple. Once released into world culture,
the Golden ratio strongly insinuates itself in artistic and architectural works
over the two and a half millennia since Phidias. (Google ”Golden Ratio” and
you can see for yourself.)

Now, Kyudo! Let’s examine the proportion between yumi lengths above
and below the top of the grip. Denote these lengths a and b respectively. The



Table 1: Proportions of lengths above and below grip

a(cm) | b(em) | “ 7
144.0 88.7 | 1.616 | 1.623
144.0 88.7 | 1.618 | 1.618
144.0 88.5 | 1.619 | 1.627
143.8 89.0 | 1.619 | 1.616
142.7 90.2 | 1.631 | 1.582

first two columns of table 1 record measurements of a and b of five Yonsun
yumi by the respected yumishi Don Symanski . The third and fourth columns
are computed values of proportions “T“’ and ¢.

The proportions in the last two columns are close to the Golden ratio. To
obtain more refined ”consensus” values, we calculate geometric means. For
instance, the geometric mean of the values for “TH’ in the third column is

{(1.616)(1.618)(1.619)(1.619)(1.631)}5 ~ 1.621. (6)

The geometric mean (instead of the usual arithmetic mean) is most appropri-
ate for comparing proportions. This is because the geometric mean of ratios
is the ratio of geometric means. (The arithmetic mean of ratios is generally
not equal to the ratio of arithmetic means.) Similarly, the geometric mean
of the values for ¢ in the fourth column is 1.613.

I don’t know that yumishi intentionally impose grip placement according
to the Golden Ratio. Nevertheless, it is very nearly realized for the five yumi.
Here is another example in Kyudo, very much in the original spirit of Phidias:
On page 132 of the Kyudo Kyohan, there is an idealized line drawing of Kai.
Superimposed upon it, there is the central vertical axis of the Kyudoka, and
the three horizontal lines of shoulders, hips and feet, as in the Sanjumonji
(three crosses). In the figure, the elevation of the shoulder line above the
feet is 76.5 mm, and the elevation of the hip line, 47.5 mm. The ratio of
elevations is 1.611.

Here, we will see that pragmatic features of yumi design related to the
segmented character of bamboo strongly inform the proportions of lengths
above and below the grip. These design features were chosen long ago and
maintained by tradition over the centuries. They are very reliably present in



all the five yumi’s I've measured for this discourse. Figure 2 is a photograph
of the first yumi in its braced configuration. There are six exposed belly
nodes marked by black dots, and seven exposed back nodes marked by white
dots. Certain observations turn out to be crucial: (i) The top of the grip is
located at the fourth belly node from the top. It is labeled ”grip” in figure
2. (ii) Each belly node is close to the halfway point between adjacent back
nodes. (iii) The upper tip of yumi is just short of where the next back node
would be. (iv) The lower tip of the yumi extends just beyond where the next
belly node would be. On some of the five yumi, the belly bamboo continues
under the lower strike plate, and the tell-tale of the ”buried” belly node is
a disturbance in the bamboo grain when you look from the side. There is
typically another ”buried” belly node underneath the upper strike plate.

Figure 2: Nodes (back-white dots, belly-black dots)



Let’s see what the observations (i)-(iv) have to say about proportions of
lengths above and below the grip: By inspection of figure 2, we see that there
are (slightly less than) four and one half inter-nodal intervals from the top
of the grip to the upper tip, and (slightly more than) three below. Here,
"inter-node intervals” refers to the intervals between nodes on the same side,
belly or back. As a first approximation, assume that the spacings between
bamboo nodes are uniform. With uniform node spacing, the approximation
to the proportion between the lengths above and below the grip is

a 4.5

-~ 1.
‘x5 (7

which is about 7.4% below the measured values in table 1. This shortfall
reflects the increase of inter-nodal spacings as we ascend the bamboo stalk. We
achieve the geometric mean value 1.613 of ¢ if the average inter-nodal spacing
above the grip is larger than the spacing below by the factor % ~ 1.08.
The exercise just completed raises raises a possibility: The closeness of
the yumi proportions “T*b and 7 to the Golden Ratio emerges naturally from
features of yumi design related to to segmented character of bamboo and the

increase of inter-node spacings as you ascend the bamboo stalk.

II. Curve proportions

Imagine facing the yumi so you gaze along its back. In figure 2, your
vantage point is somewhere well left of the grip. From this perspective, the
top and bottom curves are concave. This appears to be a "natural” choice
consistent with most archery traditions everywhere and throughout the ages.
The curve containing the grip is concave as well, as if yumishi wanted to
impart some extra Ikasu (”life”) about the grip. The mathematics of curves
dictates that concave and convex curves must alternate, so there must be at
least one convex curve above the grip, and at least one other below. This
makes five curves in all.

In mathematics, the contact between a concave curve and an adjacent
convex curve is called an inflection point. The placing of inflection points is
subtle and delicate: Small modifications of the yumi shape can drastically
alter their positions. How are geometric proportions of all five curves in
relation to each other determined? Is there an underlying aesthetics similar
in spirit to Phidias’ division of a line segment according to the Golden ratio?

The pragmatic side of the story begins with the unbraced shape of the
yumi as initially created by the yumishi in the layup of the multiple lamina-



Figure 3: Shibata XXI presents the traditional ropes and splints layup of
yumi.

tions (belly bamboo, back bamboo, and one or more core laminations). In
traditional yumi art, the layup of the laminations is secured by ropes and
splints. Figure 3 is a screen shot from a yumi making video by Shibata XXI.
You can see the splints placed on the convex surface, belly or back, for each
curve. What determines the intervals allotted to each of the five stacks of
splints? I haven’t had access to a yumishi who tells me what he does (so
far), but by examining actual unbraced yumi, we can see the results quite
independently of what may be said. Inspection of the five yumi suggests that
the inflection points are close to alternating back and belly nodes. Figure
4 is a photograph of the first yumi, this time in its unbraced configuration.
The nodes close to the inflection points are singled out by horizontal lines.
Using these nodes as markers for inflection points of the unbraced yumi dur-
ing layup does look like common sense. In any case, the marking of unbraced
inflection points by nodes is very consistently upheld by the five yumi. Just
as grip placement is strongly conditioned by the positions of back and belly
nodes in traditional yumi design, so are the relative lengths of the five un-
braced curves. By further inspection of figure 4, we surmise the number of
internode intervals allotted to each curve, starting from the top. These are
recorded in the second column of table 2. Under the naive assumption of
uniform inter-nodal spacing, we can deduce the length of each curve as a
fraction of total yumi length. These are listed in the second column of table
3.

Let’s now concentrate on the deviations from these oversimplified propor-
tions. For each of the five yumi, we can measure the lengths of the five curves,
based upon the nominal inflection points as marked by belly or back nodes.
For each curve we calculate the geometric mean of its measured fractional
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Figure 4: Inflection points and curve proportions of unbraced yumi

length. These are listed in the third column of table 3.

The "naive” curve proportions are not far from what is actually mea-
sured. This speaks for the robustness of traditional yumi design. Materials
and yumishi vary, but the proportions which emerge are quite stable. The
departures from naive values have their story as well: The progressive in-
crease of observed fractional lengths as we ascend the three middle curves is
a symptom of the inter-nodal spacings increasing as we ascend the bamboo
stalk. The geometric means of fractional curve lengths from the third column
of table 3 are posted in figure 4 for easy visual reference.

In contemplating the aesthetics of a yumi’s shape, we have in mind braced



Table 2: Inter-nodal spacings in each curve

Curve | Inter-node spacings
1 (slightly less than) 2
3/2
3/2
3/2
(slightly more than) 1

O =~ W N

Table 3: Fractional lengths of the curves

Curves | naive | geometric mean
1 267 .269
2 200 211
3 200 202
4 200 A87
) 134 130

yumi as we actually experience them in practice. The proportions between
depths as well as lengths of curves must enter the discussion since both con-
tribute to the yumi’s shape. Bracing changes curve proportions: The curves
which are convex when seen from the back become longer and deeper, the
concave, shorter and shallower. There is a definite relationship between the
unbraced and braced curves, but this is another discussion entirely.

Here, we look at braced curve proportions as they are, and what aesthetics
might underlie them. From a certain mathematical averaging of measured
curve proportions of many yumi, we can discern the shape representing a
”consensus” among them. Ideally, we’d like access to a large ensemble of
yumi by many yumishi, so the resulting shape would be a ”broad consenus.”
Here, our consensus is more modest, deriving from the five Symanski Yonsun-
nobi. The consensus shape is a source of insight for aesthetic exploration.
The ”preservation of proportions” in the sense of Phidias has natural gener-
alizations which set proportions of all five curves in relation to each other.
The ”consensus” shape definitely points to one of these proposals for har-



monious curve proportions. The resulting yumi shape can be constructed
mathematically. In summary: There is an emergent shape uniquely specified
as a mathematical form which comes close indeed to a classic example of a
"well proportioned yumi.”

The actual work begins. How do we measure curve proportions in existing
yumi? Since the back bamboo extends from tip to tip uninterrupted by strike
plates and nocks, one edge of the back bamboo idealized as a plane curve is
our proxy for the. yumi’s shape. The top panel of figure 5 is the photograph
of the first yumi, braced and reoriented horizontally. The black dot marks
the belly node where the top of the grip would be. The hollow circles mark
the ends of the yumi and inflection points in between. Notice that these
circles straddle an edge of the back bamboo. The segments between these
points are the five curves. The line segment connecting the endpoints of any
given curve is called its chord. In the top panel of figure 5, we’ve drawn the
the chord of the most prominent curve, second from the top. This curve is
convex when seen from the back, and lies above its chord. The elevation h
of a curve is the displacement of the curve’s midpoint relative to its chord,
reckoned positive for convex curves, negative for concave. Some practical
details: The length of a curve is measured by a cloth tape measure hugging
the back of the yumi between endpoints. The chord between endpoints is
realized physically by a connecting thread. We measure the distance from
the midpoint of the thread to the back of the yumi. This is the magnitude
of the curve’s elevation.

To gain an initial sense of curve proportions in existing yumi, we measure
curve lengths and elevations of the five Symanski Yonsun-nobi in their braced
configurations. The tsuru of each yumi is adjusted to produce the standard
15¢m brace height (Ha) before measurements are taken. Having measured
curve lengths and elevations of all five yumi, we seek the ”consensus” of
curve proportions. The proportions between lengths of different curves is
straightforward: We convert measured lengths into fractions of total yumi
length, and for each curve we compute the geometric mean of its fractional
length. For Yonsun-nobi with its 233cm length, the corresponding sequence
of physcial lengths from top to bottom is

58.7cm, 61.5e¢m, 35.9cm, 44.7cm, 31.2cm. (8)

Similarly,, we compute the sequence of geometric mean curve elevations for
Yonsun-nobi,
—3.2cm, 3.9cm, Ocm, 1.9cm, —1.0cm. (9)
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Elevation measurements are reproducible to within a millimeter, so the nonzero
values are reported with two significant figures. Is the middle curve really
flat with zero elevation? In practice, we find that it is very shallow in rela-
tion to the others. The second yumi has the deepest middle curve with an
elevation of around —4mm, the first and third yumi, —2mm, —3mm, and for
the last two yumi, flat to within a millimeter. The geometric mean of any
data set containing zero vanishes. In summary, the depth of the middle curve
is poorly resolved by direct measurement . We don’t gain any sense of its
proportion to the other curves save to say: "It is very much smaller.” There
is an indirect resolution of the middle curve. It involves the mathematical
construction of the yumi shape from knowledge of its curve proportions.

Given a curve’s length and elevation, its spline is a simple approximation
to the whole curve shape modulo its position and orientation in the plane.
The spline interpolates the endpoints and midpoint of the curve, and its
curvature vanishes at the endpoints (as it must at inflection points). For
instance, a sinusoidal spline is a half period of a sine wave between two
adjacent inflection points. Given the lengths and elevations of all five curves
(10 dimensions in all), we can construct their splines and join them end to end
smoothly to produce an approximation to the shape of the yumi. The spline
construction is easily carried out by computer and this is what we use to
actually see the yumi shapes that emerge from proposed curve proportions.
The green curve in the second panel of figure 5 is the approximate shape of the
first yumi based on sinusoidal splines. Notice that the spline approximation
hugs the the back of the yumi like it is supposed to, except for a small but
discernible bulge in the second curve from the top. This particular yumi has
a weak spot (which I knew about).

Figure 5: Spline approximation to the shape of a yumi

We construct the sinusoidal spline approximation to the ”consensus”
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shape based upon the geometric means of curve lengths and elevations in
(8), (9). This is the blue curve in figure 6. The horizontal line segment
connects the top and bottom ends of this curve. At the top of the grip,
the elevation of the blue curve relative to this ”plumb line” is 16.4cm. Too
high: For each of the five yumi, extend a plumb line from one tip of the
back bamboo to the other. At the grip, measure the elevation of the back
bamboo relative to it. The average for the five yumi is 14.2¢m. The blue
shape is too high because its middle curve is flat. The red curve is the shape
resulting from the same lengths and elevations as in (8), (9), except that the
elevation of the middle curve is —2.4mm. That’s all you need to drop the
elevation at the grip to 14.2cm. In figure 7, the blue curves are the shapes
of the five yumi: Photographs are imported into a graphics program and the
blue curves are obtained by tracing along the back bamboo. The red curve
from figure 6 is inserted among them. Three yumi follow the consensus shape
well. One outlier is weak above the grip, the other strong.
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Figure 6: Refinement of the consensus shape
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Figure 7: The blue curves are the shapes of the five individual yumi. The
red curve is their ”consensus,” based on geometric means of curve lengths
and elevations

Some reflections on the consensus shape informs the exploration of aes-
thetics: Unlike an unbraced yumi, the sequence of curve lengths (8) is not
monotone increasing as we ascend the yumi from bottom to top. The bot-
tom concave curve remains shorter than the convex curve above it. This
is expected since bracing expands convex curves at the expense of the con-
cave. The expansion of the convex curve above the grip is so large that it
is now longer than the top concave curve. Qualitatively, the braced yumi
has a kind of "mirror symmetry” of curve length proportions about the grip.
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The length of the concave middle curve of an unbraced yumi is intermediate
between the convex curves above and below. In figure 4, we see that is is
quite deep. Bracing the yumi, it becomes shorter than its neighbor curves,
but the most conspicuous feature is its relative shallowness. As we’ve seen,
the elevation of the shape at the grip relative to the ”plumb line” between
its tips is very sensitive to the small depth of the middle curve. With these
insights, where do we go from here?

We present two schemes of ” preserving proportions” in the sense of Phidias
which set the proportions of all five curves in relation to each other. In one
proposal, the lengths of curves progressively increase by the same proportion
R as we ascend from bottom to top. The sequence of fractional lengths is

1 R R? R R*
T Ty T Ty Ty T S:1+R+R2+R3+R4 (10)

There is a natural connection of R to the Golden Ratio: We assume that the
top of the grip divides the whole yumi and the middle curve according to
the Golden Ratio. The fractional length of the middle curve is %2, and the
fractional lengths of segments above and below the grip are

R ¢ B R?
EREX TS -
and e
3752' (12)

In (11), we used % = é, in accord with equation (1) with z = ¢. Hence,
the fractional lengths of yumi above and below the grip are

R R* R*
SN LS |
a s¢+ . + p (13)
1 R R?
b = —+—+—. (14)

By requiring that the proportion of a and b is the Golden Ratio ¢, we have
the equation

%+R3+R4:¢(1+R+§—22). (15)
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Cancelling the common term B from both sides leaves a reduced equation,
each side of which has the common factor 1 + R. All that is left is

R = ¢, (16)

so that R is the cube root of the Golden Ratio ¢. The second column of
table 4 lists the fractional curve lengths based on R = gb% ~ 1.17398. We
call this sequence of length proportions ”progressive.”

Table 4: The "progressive” and ”"mirror symmetry” sequences of length pro-
portions

Curve | progressive | mirror symmetry | consensus
1 .269 213 243
2 .229 272 271
3 195 213 163
4 .166 168 195
) 141 132 124

A second proposal retains the progressive increase of lengths from the
bottom curve to the second curve from the top, but the top curve is shorter
than the curve below in the same proportion as the bottom curve in relation
to the curve above. This quantifies the ”mirror symmetry” suggested by the
consensus shape. The sequence of fractional lengths (10) is modified to

1 2 3 2
—,E,R—,R—,i,s::1+R+RQ+R3+R2. (17)

Here, the proportion of the top curve to the curve beneath it is }12 , the same
as the proportion of the bottom curve to the curve above it. As before, the
top of the grip divides the whole yumi and the middle curve according to the
Golden Ratio. The expression for a in (13) modifies to

R* R} R?

= = 18

and the expression for b in (14) is unchanged. Equation (15) modifies to
2

¢+R3+R2=¢<1+R+Rﬁ). (19)

2
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This time, we find
R* = ¢, (20)

so R is the square root of the Golden Ratio. The third column of table 4 lists
the fractional curve lengths according to the "mirror symmetry” proposal.
We'll explore yumi shapes whose curve lengths are consistent with the ” mir-
ror symmetry” proportions. Aside from tradition, there is pragmatic sense
as well: Yumishi are quite aware that the stability of a yumi against out of
plane flipping is precarious when the top curve is too long and too deep.
What are the proportions of curve elevations? The ”consensus” elevations
in (8) are a starting point. We see that the top concave curve is shallower than
the convex curve below it by a factor of % ~ .82, and the bottom concave
curve, shallower than the convex curve above it by the factor % ~ .53.
This is qualitatively similar to the "mirror symmetry” proportions of curve
lengths. Under mirror symmetry proportions, the top curve is shorter than
the curve below it by the factor of = ~ .79. The bottom curve is shorter
than the curve above by the same factor. For a first trial, we propose these
same proportions apply to respective curve elevations as well. Next, look
at the proportions between the two convex curves. For the ”consensus” of
Symanski yumi, the upper convex curve is deeper than the lower by the
factor % ~ 2.1. Under "mirror symmetry” proportions, the upper convex
curve is longer than the longer by the factor ¢ ~ 1.61803 (Golden Ratio).
For our proposed shape, we impose the Golden ratio on the proportions of
the respective curve elevations as well. This leaves the very shallow middle
curve. The proposed sequence of curve elevations takes the form
Moy B (21)
Vo ¢ b3

or inserting the explicit numerical approximation to the Golden Ratio,
—.786H, H, —h, .618H, —.486H. (22)

Here, H is the elevation of the upper convex curve, and h, the depth of
the middle cure. Both are determined so that two conditions hold: (i) The
height of the yumi shape at the grip relative to the ”"plumb line” between
the tips is 14.2cm. (ii) The shape never descends below the ”plumb line”
between tips. If the shape is tangent to the plumb line at the upper tip, the
determination of shape is unique. This shape is depicted in the first panel
of figure 8. The photograph below the computer plots depicts a Shibata XX
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yumi after re-conditioning by Don Symanski. The photograph was offered
to me as an example of a well proportioned yumi.

Figure 8: Yumi shape with "mirror symmetry” proportions. The ”plumb
line” between the tips of the shape does not represent the line of the tsuru.
The tsuru would be about 2 cm below it.

ITI. Zanshin

Phidia’s original division of a line segment according to the Golden ratio
is a cairn marking the head the trail we walk. We determine a yumi shape
whose curve proportions are uniquely defined in relation to each other. The
essence of the aesthetics is a ”continuity of proportions.” In the words of
Hashimoto sensei:

"Forms arise and give rise to other forms. Proportions are preserved so
there is a continuity between the generations. Perhaps the ancient yumishi by
freely following their intuitions and historical experiences were transparent
in their hearts to the Nature within them and all around them. Perhaps
the signature of Nature written on their hearts is imprinted in their yumi
(bow).”

As mentioned before, the continuity of proportions is a class of symme-
tries. In a broader sense, symmetries refer to aspects of phenomena which
remain the same under a change of perspective. Is this why we so readily
respond to to them, our hearts recognizing them before our minds catch
up? I've been exposed to meditation and insight traditions by the teacher
Ryushin sensei, pointing to ”"radical impermanence.” What is that? It is
not "things change.” In the words of another meditation teacher, Culadasa:
"There are no ’things’, only process.” Ryushin sensei said: ”The opposite
of duality is not unity, but infinity.” And yet, the sense that there is some
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sort, of ”still point” in all the diversity and movement: Here is a poetic but
true fact from mathematics: Think of an ocean covering the whole world and
there is always some shifting pattern of currents. At all times there is always
somewhere a place with no movement. Symmetries as ”still points”?

Along the way, practicalities insinuated themselves: The relationship of
yumi design to segmented bamboo, nodes as convenient markers of inflection
points along the unbraced yumi during the yumishi’s inital layup process,
and in the braced yumi, the shortness of the top concave curve relative to
the big convex curve below it. Do these practicalities displace an aesthetic
sense "emergent from a ground of feeling prior to words and forms”? Perhaps
it does not have to be one or the other. Perhaps "practicality” and ”heart”
converge to the same place and that will never be explained. Nor need it be.
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