

The Differential Impact of Residential Segregation on Gestational Hypertension Development Among Minority Women

Mary D. Schiff¹, Anthony Fabio¹, Tiffany L. Gary-Webb¹, Dara D. Mendez¹

¹Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh

Background

- Residential Segregation:** "extent to which individuals of different groups occupy or experience different social environments"¹
 - Spatial manifestation of **entrenched racial and economic inequalities**²
 - Fundamental cause of health disparities** in the United States
- Higher levels of segregation by race/ethnicity and socioeconomic position have been associated **adverse pregnancy outcomes, poorer cardiometabolic health, and incident CVD development**³⁻⁹
- Sizeable racial/ethnic **disparities persist** in cardiometabolic disturbance across the female life course, yet it **remains unclear** whether racial or economic segregation may differentially impact gestational hypertension (gHTN) risk among an ethnically-diverse cohort of pregnant women

Objectives

- To create neighborhood-level measures of residential segregation using sociodemographic Census data and local spatial statistics
- To quantify the impact of racial and economic segregation on gHTN development among a diverse cohort of child-bearing women from the greater Philadelphia area using birth record data (2003-2009)
- To determine whether this association differs by maternal race/ethnicity

Methods

- Racial and economic segregation:** derived using the local Getis-Ord (Gi^*) spatial statistic¹⁰ based on racial composition and poverty data obtained from the 2000 US Census at the census tract-level
 - Gi^* produces a spatially-weighted z-score for each census tract reflecting the degree of clustering of racially/economically similar neighborhoods in an area relative to the surrounding Philadelphia region
 - Categorized as *low* ($Gi^* < 0$), *moderate* ($Gi^* 0-1.96$), or *high* ($Gi^* > 1.96$), and assigned to each woman by her census tract of residence
- Gestational hypertension:** diagnosis of pregnancy-induced hypertension or preeclampsia obtained from birth records
- Obtained risk ratios and risk differences (per 1000 women) for the relationships between each form of residential segregation and gHTN
 - Hierarchical generalized linear mixed effect models, stratified by maternal race/ethnicity, and adjusted for confounding factors

Results

Figure 1(a-d). Residential (a) Economic and (b-d) Racial Segregation Levels in the Greater Philadelphia Region (2003-2009).

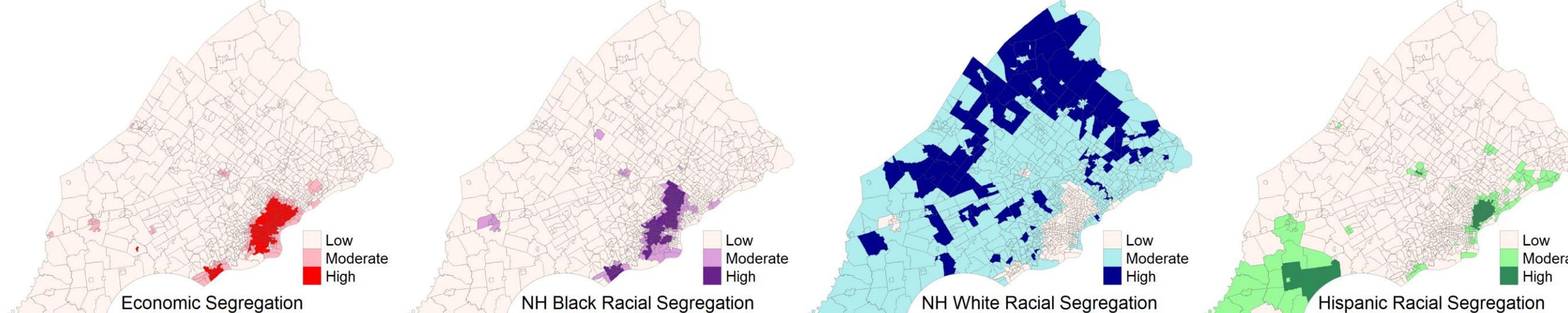


Figure 2. Study flowchart.

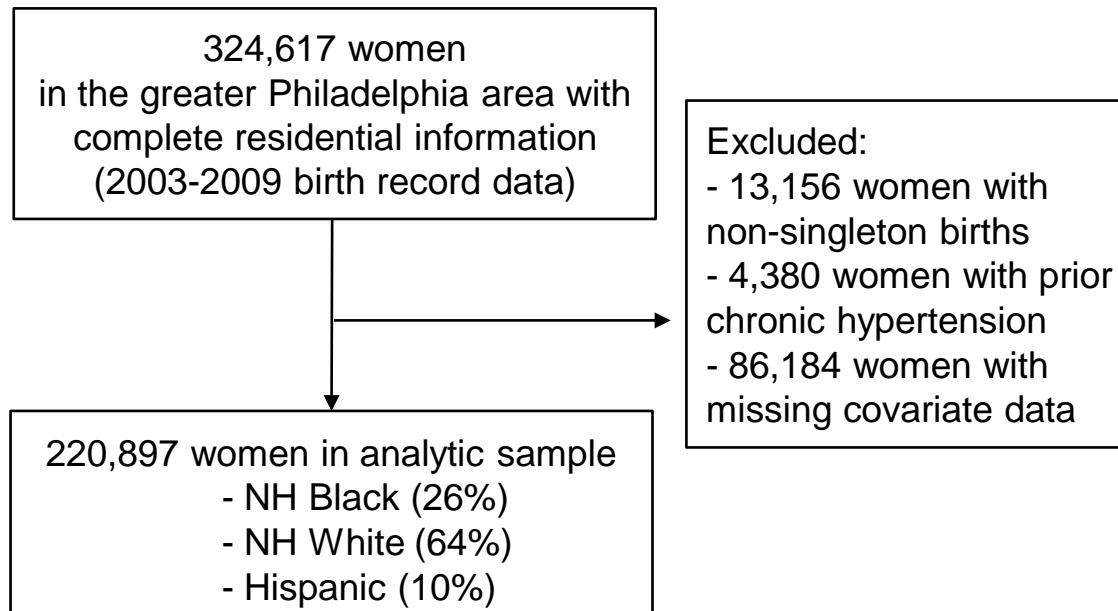
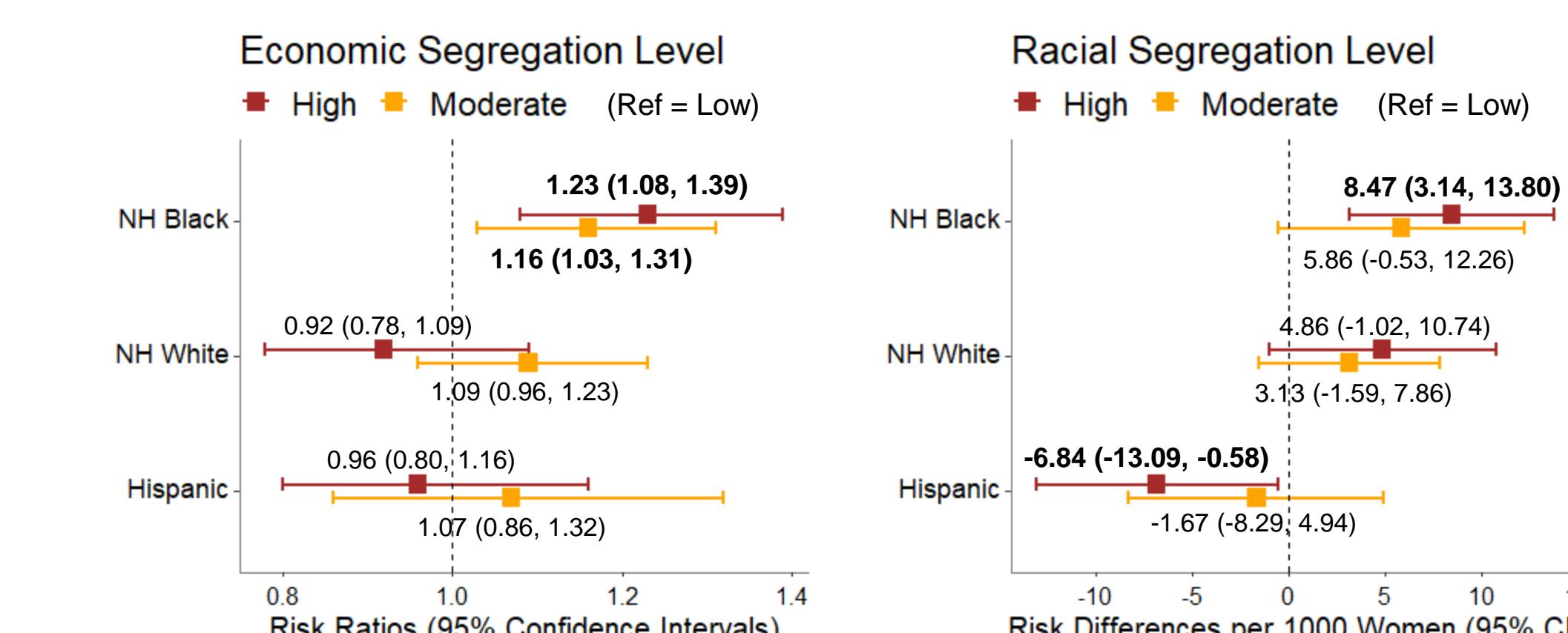



Table 1. Descriptive statistics by maternal race/ethnicity.

Characteristic	NH Black (n=57,137)	NH White (n=141,075)	Hispanic (n=22,685)
Economic Segregation, %			
Low	22.4	86.0	39.8
Moderate	27.4	8.5	19.6
High	50.2	5.5	40.6
Racial Segregation, %			
Low	21.6	10.3	32.8
Moderate	18.9	75.8	24.8
High	59.5	13.9	42.5
gHTN, %	5.8	3.4	3.1

- NH Black women in moderate and high economic segregation areas had 16% higher risk (RR=1.16, 95% CI: 1.03-1.31) and 23% higher risk (RR=1.23, 95% CI: 1.08-1.39) of gHTN, respectively, compared to NH Black women living in low segregation areas.
- NH Black women in highly racially segregated neighborhoods saw an additional 9 cases of gHTN (per 1000 women) compared to NH Black women living in more racially integrated neighborhoods (RD=8.5, 95% CI: 3.1-13.8).
- Hispanic women living in highly racially segregated neighborhoods experienced 7 fewer cases of gHTN (per 1000 women) compared to those in more racially integrated neighborhoods (RD= -6.8, 95% CI: -13.1, -0.6).

Figure 3. Fully-adjusted modeling results.

Discussion

Higher levels of residential segregation were associated with greater risk of gHTN development among NH Black women in the greater Philadelphia region, after full adjustment.

- Consistent with prior evidence in related literature³⁻⁹
 - NH Black women: ↑ Segregation = ↓ Cardiometabolic health
 - NH White women: ↑ Segregation ≠ / = ↑ Cardiometabolic health
 - Hispanic women: Segregation ≠ / ? Cardiometabolic health
- Specific mechanisms unclear: likely multi-factorial
 - Deprivation of health-promoting neighborhood resources:** healthy food options, safe physical activity spaces
 - Exposure to health-harming neighborhood sources:** poor housing quality, pollution
 - Persistent stress exposure to neighborhood & institutional stressors:** concentrated poverty, discrimination, racism
- Future work must be done to better **delineate the specific pathways** by which residential segregation differentially impacts cardiometabolic health based upon race
 - Incorporate more specific features of the neighborhood food and built environment which are associated with segregation, but may be more amenable to modification and intervention
 - Study length of residence within a given neighborhood on change in cardiometabolic risk progression across female life-course
 - Investigate whether social cohesion confers cardioprotection in reproductive-age women in different populations and settings (e.g. among Hispanic/Latino communities across the US)

References

- Oakes JM & Kaufman JS. *Methods in Social Epidemiology*. 2017.
- Barber S et al. *Social Science & Medicine*. 2018.
- Mayne SL et al. *Am J Hypertens*. 2018.
- Salow AD et al. *Am J Obstet Gynecol*. 2018.
- Do DP et al. *Int Journal of Obesity*. 2019.
- Pool LR et al. *Epidemiology*. 2018.
- Kershaw KN et al. *Circulation*. 2015.
- Mayne SL et al. *J Epidemiol Community Health*. 2019.
- Kershaw KN et al. *JAMA Internal Medicine*. 2017.
- Getis A & Ord JK. *Geographical Analysis*. 1992.

Acknowledgements

Funding: Cardiovascular Epidemiology T-32 Training Grant, University of Pittsburgh (NHLBI T32 HL083825-11)
Disclosures: none