

Invasive Hydrilla on the Move

Three genetically distinct strains of hydrilla can be found in the United States, which include the dioecious and monoecious strains of Clade B, and the recently discovered population of [Clade C hydrilla](#) in the Connecticut River (see image 1a & 1b). The dioecious strain can be found in the southern United States, while the monoecious strain can be found in more temperate regions of the northeast. Monoecious hydrilla was discovered in Connecticut in 1989 in a [pond in Mystic Seaport](#) and has since been found in a number of other waterbodies around the state, including a pond on Mason's Island, City Lake, [Held Pond](#), Coventry Lake, Popes Pond, the Silvermine River and most recently (2023) in Lake Lillinonah and Meckauer Park Pond.

The genetically distinct Clade C hydrilla was discovered in the Connecticut River in 2016. Preliminary surveys in 2018 found that hydrilla had already spread throughout the southern portion of the Connecticut River (from Agawam, MA south to Essex, CT). Surveys conducted from 2019 to 2020 by the [CT Agricultural Experiment Station's Office of Aquatic Invasive Species \(CAES OAIS\) \(formerly the Invasive Aquatic Plant Program\)](#) found nearly 1000 acres of the highly invasive plant. The Connecticut River is used for recreational purposes such as fishing, boating, jet skiing, and paddling, making the spread of this new strain via boat movement a concern. Unfortunately, this year Clade C hydrilla has been documented near boat launches in East Twin Lake (Salisbury, CT), Amos Lake (Preston, CT), Middle Bolton Lake (Vernon, CT), and Lake Pocotopaug (East Hampton, CT). Hydrilla was also intercepted by boat launch monitors at Lake Champlain and Lake George. The boaters attempting to launch at these lakes both reported previously being in the Connecticut River.

Globally, hydrilla is among the most harmful invasive aquatic plants due to its ability to adapt to different environments and outcompete native vegetation. In the Connecticut River, hydrilla creates large, dense mats that reach the surface of the water (see image 2). These mats are encroaching on native eelgrass (*Vallisneria americana*) habitat important to local wildlife (see image 3). Impacts on recreation and the local economy are already being felt. Dense hydrilla mats are choking marinas and coves (see image 4) making it difficult to get boats in and out and making some areas inaccessible.

Educating lake users about [invasive species](#) and following the [clean, drain, dry procedure](#) are very important practices in preventing the further spread of hydrilla and other aquatic invasive species. After utilizing any waterbody, take measures to ensure your boat and gear are clean. **Clean** off visible aquatic plants, organisms, and mud from all equipment before leaving water access. Rinse boat hull and interior with high pressure, hot water when possible. **Drain** motor, bilge, livewell, and other water containing devices before leaving water access. **Dry** everything for at least 5 days or wipe with a towel before reuse. **Think you found hydrilla in your lake?** Take a clear photo, record the GPS coordinates, and send an email to riley.doherty@ct.gov.

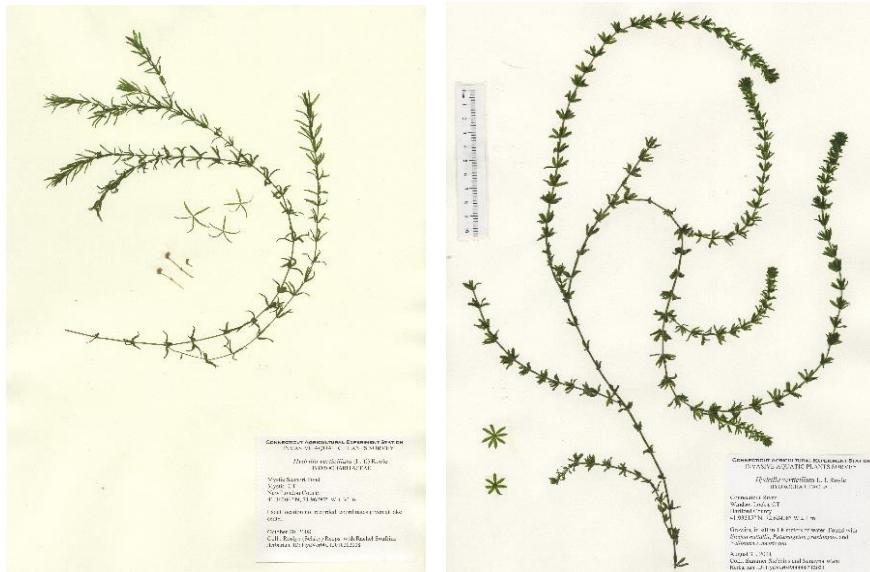


Image 1a and 1b. CAES OAIS [herbarium](#) mounts of monoecious Clade B hydrilla from Mystic Seaport Pond (left) and Clade C hydrilla from the Connecticut River (right). The two strains have visible morphological differences, including a more robust growth habit and the absence of tubers in Clade C

Image 2. Clade C hydrilla patch in Connecticut River.

Image 3. Clade C hydrilla patch encroaching on native eelgrass (*Vallisneria americana*) habitat.

Image 4. Hydrilla patch clogging marina.