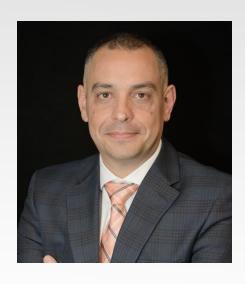


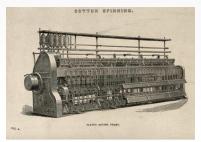
Industry 5.0 for Food & Beverage Processing

Presented by Ben Knowles and Edel Rodriguez



Meet our Team

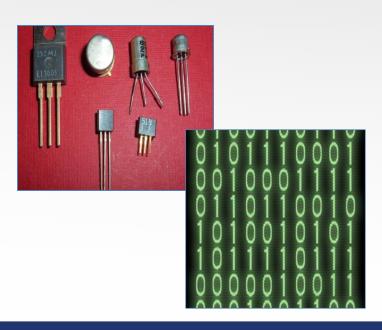
Ben Knowles
VP of Technology


Edel Rodriguez VP of Sales

The First Industrial Revolution (1760-1840)

- Introduced the first widespread adoption of machine technology
- Iron production was significantly improved due to advancements which allowed bigger machines to be created for less money.
- Steam engines were refined so that they could produce more power with less fuel.
- These advancements greatly increased the productivity of the average worker.

The Second Industrial Revolution (1870-1914)



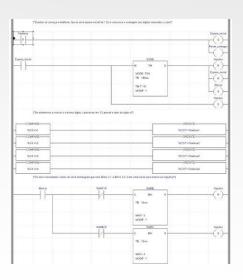
- Introduced the first adoption of widespread systems and networks of technology.
- Saw widespread use of railroad networks to transport people and goods.
- The telegraph was widely adopted, allowing companies to quickly communicate with each other on opposite sides of the country.
- Later saw the adoption of the telephone and electric power as well as widespread adoption of gas, water, and sewage systems

The Third Industrial Revolution

- Known as The Digital Revolution
- Occurred during most of the second half of the 20th Century
- Invention of transistors, the building blocks of the digital world
- Transistors allow massive amounts of data to be computed, and they led to the invention of the first digital computers in the 1940s.
- Even today, transistors serve as the foundation for electronics

PLC (Programmable Logic Controller)

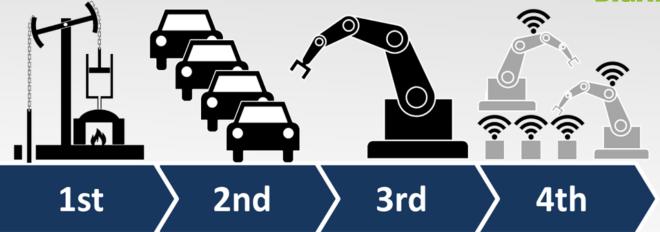
- PLC is just a simple computer designed for engineering and industrial applications
- Most industrial machines today are controlled by these PLCs.
- PLCs receive information from sensors and then send back information to the machine about what it should do in a given scenario.
- Can create an entire complicated system that can react based on any number of situations that happen within a machine.



Limitations of PLCs

- PLC exist in a bubble
- They utilize "ladder logic" which is a totally different paradigm from normal software
- It's also a closed loop system, meaning data does exist within the PLC and its devices, but not accessible to the outside world

The Fourth Industrial Revolution



- Industry 4.0, also known as The Fourth Industrial Revolution, creates new questions about how to adapt PLC technology to modern manufacturing.
- Introduces "Cyber Physical Systems"
- In other words, where software and the Internet meets industrial systems like PLCs (comprising the "Internet of things").
- Can be controversial because this often eliminates jobs, it also leads to greater efficiency, increased performance, and reduced waste.

Mechanization, water power, steam power Mass production, assembly line, electricity

Computer and automation

Cyber Physical Systems

The Internet of Things

- Describing the giant network of different things that interact with other things using the internet.
- Cameras, sensors, speakers, and any other "thing" that's built to send out and/or allows people to interact with each other using devices
- The industrial internet of things: ability for different systems to interact with each other and send and receive data using the internet

Latency and Bandwidth

- Internet latency has natural physical limits
- Bandwidth can get clogged like traffic

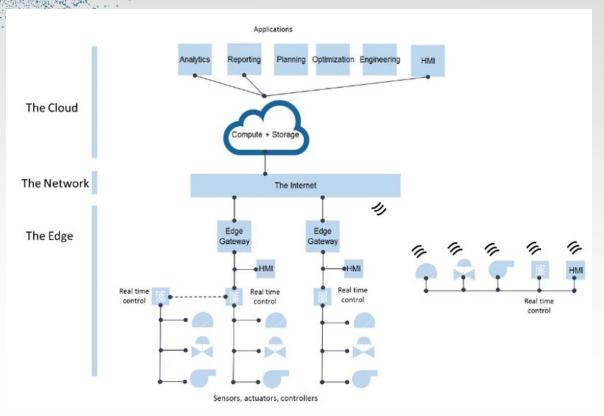
Interoperability

- In order for Industry 4.0 / IIoT to work, you need to have the ability to communicate between systems and a way for software to bridge the gap to the PLC side.
- There have been more open standards in the industrial landscape, like EtherNet/IP, CIP, OPC UA.
- Issues can arise with companies not implementing parts of the standard, or not documenting the proprietary things they've added in order to perpetuate their vendor lock-in.
- It's important to work with a solution provider that understands the landscape and can help build systems that either take advantage of these technologies from the get-go, or allow for a clean path to add IIoT functionality down the road.

Security

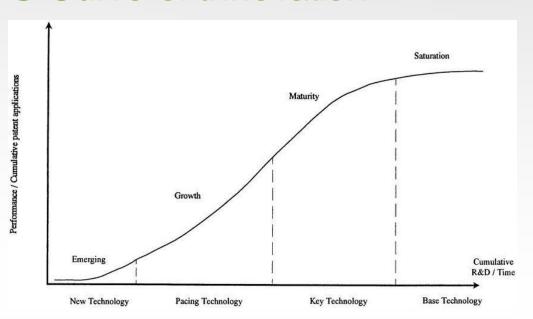
- A lot of nuclear power plants have been sticking to analog systems
- Security in IIoT hasn't been fully figured out.
- Industrial machines can run 24/7 for many years, but IT systems have a much shorter replacement cycle on the order of 5 years and sometimes less.
- Someone needs to support these IT systems, keeping them updated and secured.

Edge Computing



- Means taking a ruggedized server and putting it on a factory or industrial floor close to the equipment that's sending out data.
- Moves the data processing closer to the actual data
- Packages the data first before sending

Virtual Reality



- Prototypes for customers when system is being designed
- Physical troubleshooting of plant problems
- ☐ Simulating HMIs and physics

S-Curve of Innovation

- It's said that technological adoption follows an S-Curve.
- In the beginning, new things come out of research and are still theoretical.
- Then a spark happens, and you have a large upswing in adoption.
- After the mass adoption, things start to taper off and run out of steam, and people begin looking for the next major innovation.

The Future

- Industry 5.0 is on the horizon
- Likely to represent a sort of small reversal from Industry 4.0 where human beings will become more engaged in industrial processes to add a sort of "human touch" again
- Adapting PLCs to new technology will create endless opportunities

Thank You!

QUESTIONS?

