Nutrition and Mental Wellness: how food affects the brain

Rebecca Howard
MS-2 | Rutgers Robert Wood Johnson Medical School
Outline

1. **Gut-brain axis**
2. **Fiber**
 - Inflammation and the brain
3. **Neurotransmitters**
 - Tryptophan
 - Tyrosine
4. **Micronutrients for brain functioning**
 - Omega-3 and -6
 - Vitamins B9 and B12
5. **Macronutrients for brain functioning**
 - Carbohydrates
 - Mediterranean diet
6. **Nutrition at the grocery store**
 - Food swaps
 - Frozen food
A nutritional approach to mental health

Composition, structure, and function of brain depend on availability of nutrients such as fats, amino acids, vitamins and minerals

○ Food intake & quality impacts brain function → diet is a modifiable variable to target mental health, mood & cognitive performance

○ Gut hormones, neurotransmitters, microbiota are all affected by diet composition

(Dickson et al 2019)
Definitions

Fatty acids - a chain of carbons and hydrogens that make up what is referred to as ‘fat’ or ‘oil’ → can be saturated (animal fats) or unsaturated (plant fats)

Amino acids - the building block of proteins → the human body needs 20 in order to survive and make the proteins it uses to function (9 of these are essential and cannot be synthesized by the body)

Neurotransmitter - a chemical substance released between neurons (the cells in your nervous system) → act as signaling molecules to convey messages between cells

Microbiome - the collection of bacteria, viruses & fungi that live within and on the human body → varies between individuals but major groups are conserved

Cytokines - proteins used in cell signaling, particularly within the immune system → adipokines are cytokines secreted by adipose tissue (fat cells)

Oxidative stress - an imbalance between reactive oxygen species produced by the body and the amount that are being detoxified → toxic by-products from a variety of biological mechanisms that then need to be neutralized
<table>
<thead>
<tr>
<th>Mental Disorder</th>
<th>Proposed Cause</th>
<th>Treatment</th>
<th>References</th>
<th>Type of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Depression</td>
<td>Serotonin deficiency</td>
<td>Tryptophan</td>
<td>[16]</td>
<td>Human pilot clinical trial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[32]</td>
<td>Double-blind, placebo controlled</td>
</tr>
<tr>
<td></td>
<td>Dopamine/Noradrenaline deficiency</td>
<td>Tyrosine</td>
<td>[30]</td>
<td>Double-blind, placebo controlled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[36]</td>
<td>Randomized within or between subjects</td>
</tr>
<tr>
<td>GABA deficiency</td>
<td>GABA</td>
<td></td>
<td>[29]</td>
<td>Clinical trial</td>
</tr>
<tr>
<td>Omega-3 deficiency</td>
<td>Omega-3s</td>
<td></td>
<td>[39]</td>
<td>Clinical trial</td>
</tr>
<tr>
<td>Folate/Vitamin B deficiency</td>
<td>Folate/Vitamin B</td>
<td></td>
<td>[9]</td>
<td>Randomized controlled trial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[13]</td>
<td>Clinical trial</td>
</tr>
<tr>
<td>Magnesium deficiency</td>
<td>Magnesium</td>
<td></td>
<td>[14]</td>
<td>Cases studies</td>
</tr>
<tr>
<td>SAM deficiency</td>
<td>SAM</td>
<td></td>
<td>[37]</td>
<td>Double-blind, placebo controlled</td>
</tr>
<tr>
<td>Bipolar Disorder</td>
<td>Excess acetylcholine receptors</td>
<td>Lithium citrate & taurine</td>
<td>[50]</td>
<td>Clinical trial</td>
</tr>
<tr>
<td>Excess vanadium</td>
<td>Vitamin C</td>
<td></td>
<td>[45]</td>
<td>Double-blind, placebo controlled</td>
</tr>
<tr>
<td>Vitamin B/Folate deficiency</td>
<td>Vitamin B/Folate</td>
<td></td>
<td>[47]</td>
<td>Human pilot clinical trial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[71]</td>
<td>Clinical trial</td>
</tr>
<tr>
<td>L-Tryptophan deficiency</td>
<td>L-Tryptophan</td>
<td></td>
<td>[72]</td>
<td>Clinical trial</td>
</tr>
<tr>
<td>Choline deficiency</td>
<td>Lecithin</td>
<td></td>
<td>[73]</td>
<td>Double-blind, placebo controlled</td>
</tr>
<tr>
<td>Omega-3 deficiency</td>
<td>Omega-3s</td>
<td></td>
<td>[21]</td>
<td>Double-blind, placebo controlled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[48]</td>
<td>Clinical trial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[74]</td>
<td>Clinical trial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[76]</td>
<td>Double-blind, placebo controlled</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>Impaired serotonin synthesis</td>
<td>Tryptophan</td>
<td>[53]</td>
<td>Open-baseline controlled trial</td>
</tr>
<tr>
<td>Glycine deficiency</td>
<td>Glycine</td>
<td></td>
<td>[54]</td>
<td>Double-blind, placebo controlled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[55]</td>
<td>Human pilot open-label trial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[56]</td>
<td>Clinical trial</td>
</tr>
<tr>
<td>Omega-3 deficiencies</td>
<td>Omega-3s</td>
<td></td>
<td>[69]</td>
<td>Double-blind, placebo controlled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[60]</td>
<td>Randomized, placebo controlled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[65]</td>
<td>Open-label clinical trial</td>
</tr>
<tr>
<td>Obsessive Compulsive Disorder</td>
<td>St. John's wort deficiency</td>
<td>St John's wort</td>
<td>[69]</td>
<td>Randomized, double-blind trial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[70]</td>
<td>Double-blind, placebo controlled</td>
</tr>
</tbody>
</table>

(Lakhan and Vieira 2008)
Gut-brain axis

Gut microbiome → key mediating pathway for inflammation, oxidative stress, neuroplasticity (ability of the brain to change over time)

- Largest **immune** and **endocrine** organ → 70-80% immune cells lie in gut and major source of serotonin and dopamine
- Diet is a **modifiable risk factor** for mental illness
 - Dietary patterns can affect mental illness via pathways independent of weight status

Leaky gut - changes in intestinal permeability (through high fat diet for example) cause bacterial toxins to activate immune cells in the intestinal wall

→ elevated **systemic inflammation**
→ inflammatory cytokines activate the hypothalamic-pituitary-adrenal axis (HPA) which mediates stress response
Dopamine pathways
Functions
• Reward (motivation)
• Pleasure, euphoria
• Motor function (fine tuning)
• Compulsion
• Perseveration

Serotonin pathways
Functions
• Mood
• Memory processing
• Sleep
• Cognition
Fiber

The component of food that isn’t broken down by your body

- **Soluble fiber** - dissolves in water, affects cholesterol and glucose absorption
- **Insoluble fiber** - doesn’t dissolve in water, helps with movement of food

Plays role in **inflammation** → affects **microbiome** composition

- Microbes (bacteria) in gut ferment fiber to make short-chain fatty acids (SCFAs) → positive impact on immune functioning
- Markers of inflammation ↓ with high fiber diet
 - C-reactive protein (CRP)
 - Cytokines i.e. IL-6
- Anti-inflammatory adipokine ↑ with higher dietary fiber
- **Refined wheat → whole-grain wheat** = lowered inflammation
 - Whole grain foods rich in phytochemicals (protect against oxidative stress)

SOLUBLE

- Oats
- Brown rice
- Nuts
- Wheat berries

INSOLUBLE

- Seeds
- Rye
- Beans
- Apples
- Berries
- Fruits & veggies

(helloglow.co)
Inflammation and the brain

Depression frequently comorbid with inflammatory conditions

Inflammation acts as a mediator
- Studies show parallel increases in inflammatory markers (CRP and IL-6) and depression
 - *Cytokines* induce depressive-like behaviours
- Lower concentrations of *adiponectin* also shown with increasing severity of depression
- Meta-analyses also showed schizophrenia and PTSD are both accompanied by activation of inflammatory pathways and cytokines

- **Short-chain fatty acids (SCFA)** change intestinal pH which changes the composition of the microbiome
 - Dietary fiber alters the SCFA and bacterial toxin production
- Inflammatory cytokines can increase reuptake and decrease synthesis of neurotransmitters (serotonin and dopamine)

(Oddy et al 2020)
Potential mechanism for this relationship

Figure 1 Simplified overview of pathways from dietary fiber intake to inflammation and depression. Abbreviations and symbols: BDNF, brain-derived neurotrophic factor; GABA, γ-aminobutyric acid; GPCR, G-protein–coupled receptor; HDAC, histone deacetylase; HPA, hypothalamic-pituitary-adrenal; SCFA, short-chain fatty acids; †, increased; ‡, decreased.
Protein-neurotransmitter pathway

Most common nutritional deficiencies found in people with mental illness are omega-3 fatty acids, B vitamins, minerals, and **amino acid precursors to neurotransmitters** (Lakhan and Vieira, 2008)

![Diagram]

- Tryptophan \rightarrow serotonin
- Phenylalanine \rightarrow tyrosine \rightarrow dopamine, norepinephrine
Tryptophan → 5-HTP → Serotonin

Proteins

N-acetyl-serotonin

Kynurenine → Niacin

5-HIAA

Melatonin

Salmon, chicken, eggs, bananas, peanuts, seeds, oatmeal, cheese
Phenylalanine $\xrightarrow{L} \text{Tyrosine} \xrightarrow{\text{TH}} \text{3,4-dihydroxyphenylalanine (DOPA)} \xrightarrow{\text{DDC}} \text{Dopamine} \xrightarrow{\text{N} \beta \text{AS}} \text{Norepinephrine} \xrightarrow{\text{D} \beta \text{H}} N-\beta\text{-alanyl dopamine}
Omni-6

Omega-3

Arachidonic acid

Eicosapentaenoic acid

Docosahexaenoic acid

Prostaglandins

Leukotriens

Pro-inflammatory

Lipoxins AT-LXs

E-series Resolvins

Protectin 1

D-series Resolvins

Anti-inflammatory Pro-resolving

(Hirahashi, 2017)
Nutrients for brain functioning - Omega-3

Essential fatty acid → cannot be synthesized by body

- **Brain lipids make up neuronal membranes**
 - Omega-3s make up 33% of grey matter in brain
 - Higher plasma omega-3 level = less death of grey matter with age (particularly in **hippocampus** and **amygdala**)
 - Higher omega-3 = lower cognitive decline, dementia risk, depressive symptom risk in elderly

- **Fatty acid composition in brain is unique**
 - Main poly-unsaturated fatty acid (PUFA) is DHA (from omega-3 fatty acid) → **neuroprotective**
 - Endogenous synthesis of these fatty acids are low; relies on **dietary sources** in plasma (blood)
OMEGA-3 EFFECTS ON THE BRAIN

- Brain structure and mass
- Signal transmission within neurons
- Memory, focus, and attention
- Prevents brain shrinkage
- Lowers risk of dementia
Omega-6/omega-3 ratio

Ideally aiming for 1:1
Average modern diet = 16:1

<table>
<thead>
<tr>
<th>Nut</th>
<th>Omega6:3 ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaxseed</td>
<td>0.26</td>
</tr>
<tr>
<td>Chia seed</td>
<td>0.33</td>
</tr>
<tr>
<td>Walnuts</td>
<td>4.2</td>
</tr>
<tr>
<td>Macadamias</td>
<td>6.3</td>
</tr>
<tr>
<td>Pecans</td>
<td>20.9</td>
</tr>
<tr>
<td>Cashews</td>
<td>48.3</td>
</tr>
<tr>
<td>Pistachios</td>
<td>53.7</td>
</tr>
</tbody>
</table>

Also eggs, soybeans, tuna, cauliflower

(GH Healthwatch)
Nutrients for brain functioning - vitamins

Vitamin B9 - Folate

- Study participants with depression have blood folate levels on average 25% lower than healthy controls
 - Folate deficiency associated with low levels of serotonin metabolite
 - Converts a chemical called homocysteine to **methionine** - important for DNA synthesis and other pathways in brain
- Can lead to poor outcome with antidepressant therapy - 500mcg folic acid shown to enhance effectiveness of medication

(Young, 2007)
Nutrients for brain functioning - vitamins

Vitamin B12

- Studies have shown that participants with vitamin B12 deficiencies are more likely to have depressive symptoms
- Necessary for synthesis of methionine → essential for myelin and neurotransmitters (prevents build-up of homocysteine as well)

- Used to synthesize myelin (coating around neurons)
- Deficiency causes neurological and psychiatric problems
 - Brain shrinkage accelerated, likely due to increasing homocysteine

Randomized controlled trials have shown that 0.8mg folic acid/day or 0.4mg vitamin B12/day decreased depression symptoms (Lakhan and Vieira 2008)
Carbohydrates

Carbohydrates cause a release of insulin → helps tryptophan enter the brain

- Serotonin/tryptophan production triggered by carb rich foods
- **Glycemic Index** → ranking of carbohydrates based on their effect on blood glucose levels
 - Low GI foods more likely to provide moderate + lasting effect on brain chemistry, mood and energy than high GI foods
 - Study with middle aged, healthy women found high GI diet associated with higher levels of CRP (inflammatory marker)

(Rao et al 2008)
Mediterranean Diet

What is the Mediterranean diet?
● Plant-based, high in fruits and vegetables, minimally processed foods
 ○ Olive oil main source of added fat
● Focus on whole-grains, legumes, nuts & seeds
● Moderate amounts of dairy products, low-moderate fish & poultry, low red meat

Beneficial nutrients: monounsaturated fatty acids, high fiber, low omega 6:3 ratio, antioxidants (vitamins C and E), polyphenols

Health benefits related to anti-inflammatory and anti-oxidative properties of the diet
● Lower levels of inflammatory markers
● Higher levels of adiponectin (insulin-sensitizing hormone)
● Protects from oxidative stress

(Scarmeas et al 2015)

Many studies have shown an association between Mediterranean diet and lower levels of cognitive decline
● Systematic review combining 41 studies showed Mediterranean diet induced a protective effect against depression

(Lassale et al 2018)
Mediterranean Diet

- ‘ModiMedDiet’ intervention → based on Mediterranean diet
 - included whole grains, vegetables, fruit, legumes, low-fat unsweetened dairy, raw unsalted nuts, fish, lean red meats, chicken, eggs, olive oil
 - reduce sweets, refined cereals, fried food, fast-food, processed meats, sugary drinks

- Participants had to have experienced a major depressive episode and have a baseline diet rated as being poor quality
- Diet intervention group showed significantly greater improvement in MADRS scores at 3 months (Depression Rating Scale), independent of other factors
- Improvements in depressive symptoms were independent of weight change

(Opie et al 2017)
Food swaps
Food swaps
Frozen food

- Great alternative to fresh produce
- Frozen foods retain same nutrients as they had at the time of freezing
 - Some studies have shown frozen fruits and vegetables with higher levels of certain vitamins and antioxidants than the refrigerated counterpart
- Try to stick to individual food items rather than pre-prepared meals for nutritional and economical benefits
QUESTIONS?