

DIVISION OF
CAPITAL ASSET
MANAGEMENT &
MAINTENANCE

GROUND SOURCE HEAT PUMP AT RCC

04 | 04 | 2017

WHAT IS A GROUND SOURCE HEAT PUMP SYSTEM?

- A geothermal exchange system that uses the earth's natural, relatively constant thermal temperature to "condition" water used to heat, cool and provide hot water for a facility.
- A geothermal system consists of three parts:
 - A ground heat exchanger (a series of pipes buried in the ground that transfers the warmth from the earth into the building.)
 - A heat pump (connects the ground portion to the inside of the building), and
 - A delivery system (the ductwork or hydronic system that transfers the conditioned air or water throughout the building.)

HOW DOES GEOTHERMAL WORK? TYPICAL WELL BORE

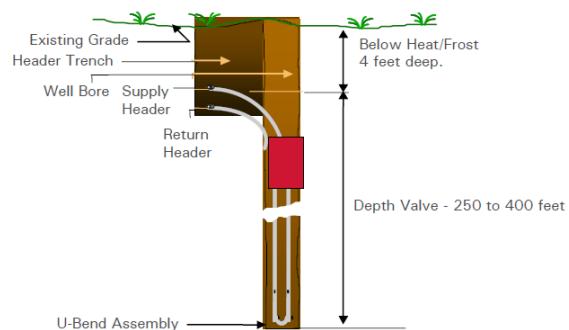


Image from Arizona Geology Magazine

GSHP ADVANTAGES AND DISADVANTAGES FOR HVAC SYSTEMS

ADVANTAGES

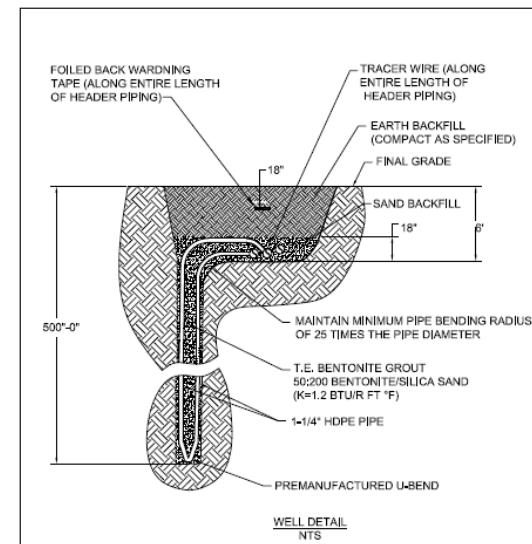
- No outside equipment to conceal / place
- Mechanical rooms can be smaller (no chillers, smaller boilers)
- Less simultaneous heating and cooling
- Typically more efficient , ≈ 33% for RCC
- Lowered cost when paired with an existing water source heat pump system

DISADVANTAGES

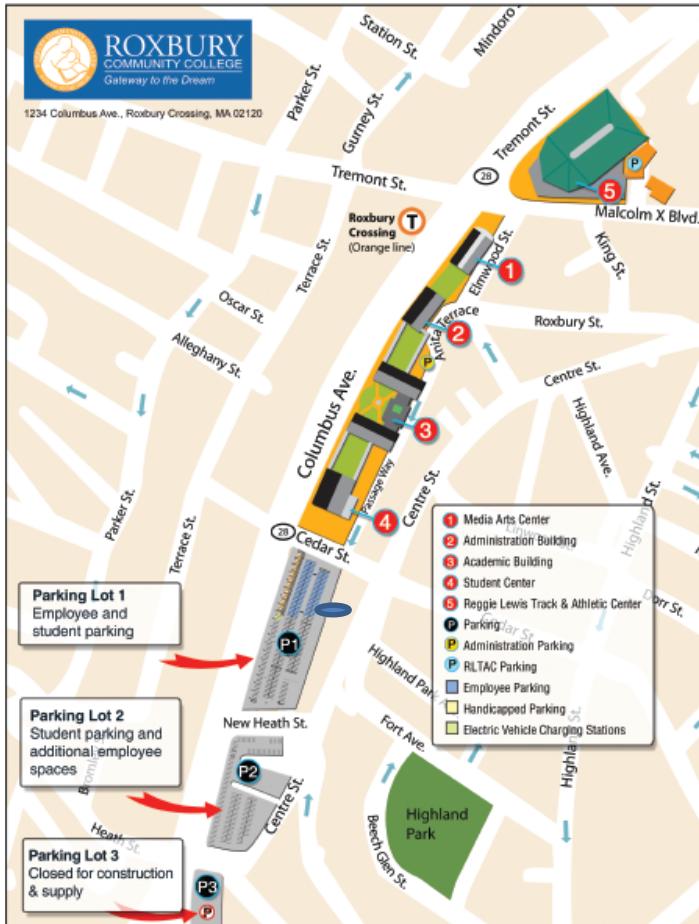
- May be more expensive installation
- Need area for ground field
- Lots of equipment to maintain (instead of a few large pieces of equipment)
- Typically no economizer ‘free’ cooling

DCAMM'S GSHP SYSTEMS (Partial List)

Project Name	System Type	Wells / Depth / Building Load	Building Type	DCAMM Process / Background	Completion Date	Heating/ Cooling Load
MA Maritime Academy (Bourne)	Closed loop (CL)	<ul style="list-style-type: none"> o 48, 400 foot wells o 6 well field circuits o Provides full heating/cooling load 	New Library (approx. 15,000 sq. feet)	<ul style="list-style-type: none"> o New construction project (Gensler) o Retained GSHP experienced firm to oversee construction 	August, 2011	
North Shore Community College (Danvers)	Closed Loop (CL)	<ul style="list-style-type: none"> o 60, 4-500 foot deep wells o 5 well field circuits 	Allied Health Building (58,700 sq. feet)	<ul style="list-style-type: none"> o GSHP was one component of a Zero Net Energy Building project o Required Legal Office mediation 	September, 2011	
Greenfield Community College (Greenfield)	Standing Column well (SCW)	<ul style="list-style-type: none"> o 6, 1,500 foot wells o GSHP supplements existing water-cooled chiller plant 	<ul style="list-style-type: none"> o Core Building (96,000 sq. feet) 	<ul style="list-style-type: none"> o New construction project o US DOE grant o Two design phases 	March, 2011	150 tons
Springfield Tech CC (Springfield)	Standing Column well (SCW)	<ul style="list-style-type: none"> o 2, 1,000 foot wells o Has steam back-up for winter load 	<ul style="list-style-type: none"> o Building #11 (20,000 sq. feet) 	<ul style="list-style-type: none"> o Gut renovation of historic building o GSHP chosen by designer and facility 	July, 2011	
Middlesex Community College (Bedford)	Closed Loop (CL)	<ul style="list-style-type: none"> o 7, 500 foot wells o Provides full heating/cooling most of year. o Existing gas boilers kept for winter load back-up 	<ul style="list-style-type: none"> o Trustee's House, office space (9,800 sq. feet) 	<ul style="list-style-type: none"> o Replace existing gas-fired HVAC with GSHP. o Feasibility study and performance specification o Two designs 	October, 2012	17.5 tons



PARAMETERS OF THE RCC INSTALLATION


- 115 Well, closed loop system (A **closed loop system** consists of underground continuous piping loops that are filled with an anti-freeze-like liquid that helps transfer the ground temperature, \approx 50-54 degrees, to the geothermal heat pump.)
- Well depth – 500 feet
- Buildings Served (4) – Media Center, Administration, Academic, and Student Center
- Heating/Cooling Load – Estimated 400 tons
- Estimated yearly savings - \$136,000

Under Construction – Oct. 2016

SITE MAP / PROJECT PROGRESS

Parking Lot #1 Today with 1MW PV Canopy & 115 - Well GSHP Field

QUESTIONS

FOR ADDITIONAL INFORMATION PLEASE CONTACT:

Edward “Tony” Ransom, RA, CCM, LEED AP, CBO Lvl 1
DCAMM

Deputy Director
Energy & Sustainability
edward.ransom@state.ma.us

Harold Meyer
Ameresco
Business Development Manager
hmeyer@ameresco.com

