

SAT MATH CHALLENGE

A swimming pool is initially filled to a depth of 96 inches. After 2 weeks, the depth has decreased to $92\frac{1}{2}$ inches. Assuming that the depth decreased at a constant rate, after how many *days* would the water depth have reached $93\frac{3}{4}$ inches?

- A: 3**
- B: 7**
- C: 9**
- D: 6**

Question 1 Explanation:

Correct Answer: C: 9

Since the answer is asking for the number of days, we will treat 2 weeks as 14 days. In 14 days, the water level dropped from 96 to $92\frac{1}{2}$ inches. That is a change of $3\frac{1}{2}$ inches in 14 days; this would be the same as 7 inches in 28 days (doubling the numerator and denominator), which can be reduced to 1 inch in 4 days; or $\frac{1}{4}$ inch for each day.

We are asked how many days it would take at the rate of $\frac{1}{4}$ inch per day for the depth to go from 96 to $93\frac{3}{4}$ inches, a change of $2\frac{1}{4}$ inches. We can think of $2\frac{1}{4}$ inches as 1 inch (4 days) + 1 inch (4 days) + $\frac{1}{4}$ inch (1 day), a total of 9 days.

The above approach is one such “no-calculator” approach to solving the following:

$$\frac{3\frac{1}{2} \text{ inches}}{14 \text{ days}} = \frac{2\frac{1}{4} \text{ inches}}{x \text{ days}}$$