

Earthquake Technology STEM TRUNK

Students use K'Nex Building Sets to learn about earthquakes and earthquake technologies. They compare models to improve designs for a new building to be more earthquake resistant.

It's time to get shaking!

For more information on this trunk:

Patricia Zriny
pzriny@dupageroe.org

**For more information on STEM trunks,
or to suggest an idea for a trunk:**

Mary Biniewicz
mbiniewicz@dupageroe.org
630.470.6080

DuPage Regional Office of
EDUCATION
Excellence in Education

EARTHQUAKE TECHNOLOGIES CHALLENGE**GRADE LEVEL 3-5****OVERVIEW**

Students use K'Nex Building Sets to learn about earthquakes and earthquake technologies.

They compare models to improve designs for a new building to be more earthquake resistant.

MATERIALS AVAILABLE

Binder with Teacher guides and lessons

K'Nex Building Sets

Earthquake Technologies to test (cross-bracing, mass damper, and building shape materials)

Versa Timers

2 Wobble Shaker Tables

ACTIVITIES

If you want to use the Earthquake Technologies right away go to Tab1 of this binder and read *STEP by STEP: Construct a 4-Story Building*. The complete Hand2Mind Teacher's Guide can be found in the bin along with Student Activity Books.

This guide serves as a quick reference and troubleshooting/FAQs to help you through this STEM activity.

MORE INFORMATION AND ACTIVITIES:

hand2mind <https://www.hand2mind.com/>

<https://www.hand2mind.com/brands/hands-on-standards/hands-on-standards-stem-in-action/hands-on-standards-stem-in-action-earthquake-technologies-challenge>

MORE IDEAS FOR STUDYING EARTHQUAKES:

<https://kids.nationalgeographic.com/explore/science/earthquake/#earthquake-houses.jpg>

<https://geology.com/teacher/earthquake.shtml>

ALIGNMENT TO STANDARDS

Next Generation Science Standards

Earth's Systems

4-ESS2-2 Analyze and interpret data from maps to describe patterns of Earth's features.

Earth and Human Activity

4-ESS3-2 Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

Engineering Design

3-5-ETS1-1 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

3-5-ETS1-2 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

3-5-ETS1-3 Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Practices

Practice 2: Developing and Using Models

Practice 3: Planning and Carrying Out Investigations

Practice 6: Constructing Explanations and Designing Solutions

Practice 7: Engaging in Argument from Evidence

Crosscutting Concepts

Patterns

Cause and effect

Structure and function

Common Core Standards

<http://www.corestandards.org/>

CCSS.MATH.PRACTICE.MP1 Make sense of problems and persevere in solving them.

CCSS.MATH.PRACTICE.MP4 Model with mathematics.

CCSS.MATH.PRACTICE.MP7 Look for and make use of structure.

International Society for Technology in Education Standards

<https://www.iste.org/standards>

ISTE.3d Knowledge Constructor Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

ISTE.4c Innovative Designer Students develop, test and refine prototypes as part of a cyclical design process.

ISTE.5b Computational Thinker Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making.

ISTE. 7d Global Collaborator Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.

ENGINEERING DESIGN PROCESS

Engineering Design Process-define the problem, plan solutions, create and test models, reflect on and redesign the models based on what students learned.

Guide students to understand that an Engineering Design Problem is more like a puzzle to be solved than something that is bad or wrong.

DISCUSSION QUESTIONS

Where/How can earthquakes occur?

Why are models used to represent the natural world?

What is affected in the event of an earthquake?

How did using the Engineering Design Process help you?

How did doing this activity make you feel like an engineer?

ASSESSMENT IDEAS

- 1) Student explain their participation in the planning, building, and testing of a design solution.
- 2) Communication of the design of their model to classmates.
- 3) How they synthesize the information gained from this experience.

REAL WORLD APPLICATIONS/CAREER CONNECTIONS

Vibrations on a Global Scale

Practical Uses of Measurement/Mathematics

Earthquake Safety Technologies

Making Models to study Natural Disasters

Problem Solving

Students' career choices are many and widespread at this point in their lives. Now begins the time to guide the students about what careers entail by planning career development activities. Earthquake/Natural Disaster Careers: Geologist, Seismologist, Structural Engineer, Environmental Planner/Analyst, Computer Models and Simulations on Earthquakes

EARTHQUAKES/NATURAL DISASTER RESOURCES

California Academy of Sciences www.calacademy.org

PBS Learning Media <https://www.pbslearningmedia.org>

USGS (United States Geological Survey)

<https://earthquake.usgs.gov/learn/animations/>

Weather Wiz Kids <http://www.weatherwizkids.com/weather-quake.htm>

HELPFUL TIPS FOR USING EARTHQUAKE TECHNOLOGIES

Each team begins with their own the 4-Story K'Nex Building. (Page 8-9 Student Book)

Make sure students join the correct rods to the correct connectors. (ex: yellow rods to gray connectors)

Instead of 2 or more technologies, give each team 1 technology to test.

(This introduces the idea that one “**variable**” is tested at a time)

If possible, have a sample 4-Story building already made for viewing.

FOR MORE INFORMATION ON THIS TRUNK CONTACT:

Patricia Zriny

pzriny@dupageroe.org

630.408-8054

FOR MORE INFORMATION ON STEM TRUNKS, OR TO SUGGEST AN IDEA FOR A TRUNK CONTACT:

Mary Biniewicz

mbiniewicz@dupageroe.org

630.408-6080a

