

California buckeye (*Aesculus californica*)

Inset: Trees of Stanford

Summary:

California buckeye is endemic to California and you can typically find it amongst oak woodlands. The cover value of California buckeye is poor from late spring through late winter due to early leaf fall. California buckeye flowers from April to September.

California buckeye grows on dry slopes, in canyons, and along waterways. California buckeye is valuable as a soil binder on stream or river banks and on steep slopes. The tree averages around 23 feet tall and 2-to 6-inch-long leaves. The leaves of a California buckeye are deciduous and palmately compound. This means the leaflets form and radiate from a single point of attachment or leaf structure is "palm-like" and shaped like the palm and fingers of your hand. Flowers are 4 to 8 inches long. The pear-shaped, light brown fruit contains one to six glossy brown seeds 0.8 to 1.2 inches in diameter.

California buckeye is toxic to all livestock and wildlife. The bark, leaves, stems, fruits, and seeds all contain glycosidal compounds which cause haemolytic action on red blood cells and depress the central nervous system when ingested.

California buckeye reproduces by seed and on average produces 100 seeds per year. Seed dispersal mainly by gravity or water. The dispersal of seed by animals is rare, probably due to its toxicity!

Fire effects:

Some plant adaptations of the California buckeye is that this tree sprouts from the root crown after top-kill by fire. Seeds are not likely to survive fire because they are highly susceptible to heat. California buckeye, recover rapidly following a fire, sending out new shoots during the first growing season due to drawing up resources from fully developed root systems. Early leaf fall results in accumulation of dry litter around the plant early in the fire season and requires management of leaf litter to mitigate risk.

References:

Holmer, L.; Nitare, L.; Stenlid, J. 1994. Population structure and decay pattern of *Phellinus tremulae* in *Populus tremula* as determined by somatic incompatibility. Canadian Journal of Botany. 72: 1391-1396. [24510]

Munz, Philip A. 1973. A California flora and supplement. Berkeley, CA: University of California Press. 1905 p. [6155]

Mooney, H. A.; Hayes, R. I. 1973. Carbohydrate storage cycles in two Californian Mediterranean-climate trees. Flora. 162: 295-304. [10525]

Rudolf, Paul O. 1974. *Aesculus L.* buckeye, horsechestnut. In: Schopmeyer, C. S., technical coordinator. Seeds of woody plants in the United States. Agric. Handb. 450. Washington, DC: U.S. Department of Agriculture, Forest Service: 195-200. [7475]

Goldner, Bernard H. 1984. Riparian restoration efforts associated with structurally modified flood control channels. In: Warner, Richard E.; Hendrix, Kathleen M., eds. California riparian systems: Ecology, conservation, and productive management: Proceedings of the conference; 1981 September 17-19; Davis, CA. Berkeley, CA: University of California Press: 445-451. [5852]

Katibah, Edwin F.; Nedeff, Nicole E.; Dummer, Kevin J. 1984. Summary of riparian vegetation aerial and linear extent measurements from the Central Valley Riparian Mapping Project. In: Warner, Richard E.; Hendrix, Kathleen M., eds. California riparian systems: Ecology, conservation, and productive management: Proceedings of the conference; 1981 September 17-19; Davis, CA. Berkeley, CA: University of California Press: 46-50. [5824]