

Balancing Fire Mitigation and Wildlife Habitat: Managing Dead Vegetation and Snags in Rural Forests

Managing fire risk and wildlife habitat in rural forests requires a careful balance between removing dead vegetation to reduce fire hazards and preserving snags for wildlife. Dead vegetation acts as fuel for wildfires, so its removal helps lower fire intensity, protects communities, and improves forest health by managing pests and diseases. Conversely, snags provide essential habitat for wildlife, support biodiversity, and contribute to ecosystem functions, necessitating a strategic approach to both fire safety and wildlife preservation.

The Santa Clara County FireSafe Council partners with environmental service companies to ensure biological surveys are conducted for our projects. Additionally, Project Manager Irene Armstrong successfully completed the International Society of Arboriculture Western Chapter's Tree Care for Birds and Wildlife course in June 2023.

The Art of Larry Eifert

Importance of Removing Dead Vegetation for Fire Mitigation

Reducing Fire Fuel:

- **Fire Intensity:** Dead vegetation, including snags and fallen trees, fuels wildfires. Removing it helps reduce fire intensity and spread, making fires easier to control and minimizing damage.
- **Fire Behavior:** Lowering combustible material decreases the chance of ground fires escalating to crown fires.

Protecting Communities:

- **Fire Safety:** Removing dead vegetation near homes and infrastructure shields communities from potential wildfires, particularly in rural areas.
- **Emergency Response:** Reduced fuel loads enhance firefighters' ability to manage and suppress fires effectively.

Improving Forest Health:

- **Disease and Pests:** Dead vegetation can harbor pests and diseases that spread to healthy trees. Removing it helps maintain forest health and reduces infestation risks.

Importance of Preserving Snags and Dead Vegetation for Wildlife

Habitat for Wildlife:

- **Nesting and Foraging:** Snags offer crucial habitat for wildlife, including birds, mammals, and insects, providing nesting sites and shelter.
- **Biodiversity:** Dead trees support a range of species, contributing to forest biodiversity. Removing them can negatively impact wildlife populations.

Ecosystem Functions:

- **Nutrient Cycling:** Decaying snags contribute organic matter to the forest floor, enhancing soil fertility and supporting plant growth.
- **Habitat Complexity:** Snags and downed wood add structural diversity to forests, which is vital for a resilient ecosystem.

Balancing Fire Mitigation with Wildlife Preservation

Strategic Removal:

- **Targeted Approach:** Focus on high-risk areas, like those near homes or infrastructure, and target only the most dangerous materials while preserving key habitat features.
- **Selective Cutting:** Remove smaller, less critical dead material and retain snags that pose less immediate fire hazard but are important for wildlife.

Buffer Zones:

- **Defensible Space:** Create defensible space around structures while maintaining habitat further from buildings.
- **Firebreaks:** Establish managed zones to control fire spread while preserving snags and dead wood in less vulnerable areas.

Monitoring and Maintenance:

- **Ongoing Assessment:** Regularly assess snags and dead vegetation to manage them effectively and make informed removal decisions.
- **Adaptive Management:** Adjust fire mitigation strategies based on changing conditions, such as weather patterns and forest health.

In summary, managing fire risk in rural forests requires balancing the removal of hazardous dead vegetation with the preservation of snags for wildlife. By adopting targeted, strategic approaches and ongoing monitoring, it is possible to mitigate fire risks while supporting forest health and wildlife habitats.

Tree Care for Birds and Other Wildlife Program

The [Tree Care for Birds and Other Wildlife Program](#), affiliated with the Western Chapter of the International Society of Arboriculture, collaborates with tree and wildlife experts to promote best practices for minimizing tree care impacts on birds and wildlife and enhancing sustainable forest values. Supported by CalFire and The Britton Fund, the program includes participants from California, Arizona, Nevada, and Hawaii. It establishes Best Management Practices (BMPs) for protecting wildlife year-round and improving habitat, advocating for proper training for tree care professionals and encouraging clients to adopt these practices.

The document provides guidelines for reducing wildlife impacts and managing habitats during tree maintenance, offering a framework and regional examples for minimizing disturbances. Key points include:

- **Purpose:** Guiding tree care professionals in managing habitats while adhering to regulations.
 - **BMPs:** Recommendations to support compliance with existing laws.
- **Challenges:** Addressing direct and indirect impacts of tree care activities on wildlife.
- **Training:** Various levels of training for tree care workers, from basic to specialized knowledge.

- **Project Preparation:** Assessing breeding seasons and habitat value to minimize disturbances.

The document aims to offer a broad starting point for developing wildlife-friendly tree care practices.

References:

- Agee, J. K. (1993). *Fire Ecology of Pacific Northwest Forests*. Island Press.
- Barton, A. D., Keane, R. E., & Hessburg, P. F. (2017). *Restoration of Forests in Fire-Prone Landscapes: Evaluating Methods and Strategies*. Springer.
- Brown, J. K., & Davis, K. P. (1985). *Forest Fire Control and Use*. McGraw-Hill.
- Cohen, J. D. (2000). *Preventing Disaster: Home Ignition and Wildland Fire*. USDA Forest Service.
- Fried, J. S., & Weber, M. (2004). *Balancing the Risks of Wildfire and Fire Management*. Journal of Forestry, 102(5), 28-35.
- Graham, R. T., & McCaffrey, S. (2004). *The Role of Forest Fuels in Wildfire Management*. USDA Forest Service.
- Hanson, B. D., & Ciesla, W. M. (1997). *Forest Pest Management in the Western United States*. University of Colorado Press.
- Harmon, M. E., & Sexton, J. (1986). *Detritus and Nutrient Cycling in Forests*. Ecological Monographs, 56(3), 321-338.
- Hutto, R. L. (1995). *The Role of Snags in Bird Communities*. In: *Snags and Other Deadwood* (pp. 44-60). Springer.
- Keane, R. E., & Long, J. N. (2008). *Managing Fire in Forests: A Guide for Practitioners*. Cambridge University Press.
- Lindenmayer, D. B., & Franklin, J. F. (2002). *Conserving Forest Biodiversity: A Comprehensive Multiscaled Approach*. Island Press.
- Lindenmayer, D. B., & Fischer, J. (2012). *Applied Forest Ecology: A Guide to Practical Solutions*. Cambridge University Press.
- McComb, W. C., & Lindenmayer, D. B. (1999). *Forest Habitat Management for Wildlife: Principles and Practice*. Springer.
- Peters, R. L., & Darling, L. (2013). *Adaptive Management and Fire Mitigation*. Springer.
- Raphael, M. G., & White, M. (1984). *The Role of Dead Trees in Forest Ecosystems*. In: *Dead Wood in Ecosystems* (pp. 112-130). University of California Press.
- Rundel, P. W., & Lauenroth, W. K. (2005). *Managing Wildland Fire: Environmental and Ecological Considerations*. Oxford University Press.