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Abstract and Introduction
Abstract

Purpose of review Asthma exhibits significant heterogeneity in occurrence and severity over the
lifespan. Our goal is to discuss recent evidence regarding determinants of the natural history of
asthma during childhood, and review the rationale behind and status of major efforts to alter its
course.

Recent findings Variations in microbial exposures are associated with risk of allergic disease, and the
use of bacterial lysates may be a promising preventive strategy. Exposure to air pollution appears to
be particularly damaging in prenatal and early life, and interventions to reduce pollution are feasible
and result in clinical benefit. E­cigarette use may have a role in harm reduction for conventional
cigarette smokers with asthma, but has undefined short­term and long­term effects that must be
clarified. Vitamin D insufficiency over the first several years of life is associated with risk of asthma,
and vitamin D supplementation reduces the risk of severe exacerbations.

Summary The identification of risk factors for asthma occurrence, persistence and severity will
continue to guide efforts to alter the natural history of the disease. We have reviewed several
promising strategies that are currently under investigation. Vitamin D supplementation and air pollution
reduction have been shown to be effective strategies and warrant increased investigation and
implementation.

Introduction

Asthma is a developmental disease: the majority of cases are diagnosed by age 6,[1] and lung
function abnormalities may be present in early infancy.[2–4] However, diagnosis in early childhood may
be difficult as preschool wheeze has a variety of causes including bronchiolitis.[5,6] Almost 50% of
children report wheeze before age 6, but 40% of these children experience resolution of wheeze
between the ages of 3 and 6.[7]

The existence of distinct trajectories of childhood wheeze, and of asthma more generally, represents a
challenge to the elucidation of the natural history of the disease. Several phenotypes of preschool
wheeze have been identified and indices have been developed to predict the development of
subsequent asthma by midchildhood.[8,9] Children with preschool wheeze in the Tucson Children's
Respiratory Study cohort were categorized in three groups: early transient wheezers with symptoms
by age 3 and resolution by age 6, persistent wheezers with symptoms by age 3 that persisted at age 6
and late­onset wheezers with symptom onset between ages 3 and 6.[7] Approaches employing
machine learning computational techniques to distinguish asthma phenotypes have largely
corroborated the existence of groups defined by early life wheeze (transient or prolonged), late­onset
wheeze and persistent wheeze (controlled or troublesome).[10,11] This work has led to the
identification of major risk factors for persistent wheeze, including atopy, relatively high asthma
morbidity in early life and maternal history of asthma.[5,6,10]

Although childhood wheeze may resolve by adulthood,[12,13] lung function abnormalities frequently
persist later in life.[14–16] A recent study[17] demonstrated distinct trajectories of lung function in nearly
700 children with mild­to­moderate asthma followed to an average age of 26 with annual lung function
assessments. Four patterns were identified based on forced expiratory volume in 1 second (FEV1)
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measurements with approximately equal numbers of individuals in each group: normal lung
development, normal lung growth with an early decline in lung function, reduced lung growth with no
early decline in lung function and reduced lung growth with an early decline in lung function. Risk
factors for abnormal longitudinal patterns include maternal smoking, reduced lung function at
enrollment, increased airway hyperresponsiveness, vitamin D insufficiency and male sex.

Although additional research is needed to further characterize asthma subtypes and determinants of
their courses over the lifespan, there have been advances in strategies to alter the natural history of
asthma. In this review, we discuss medical management in early childhood, prevention of smoke and
air pollution exposure, modification of microbial exposures and vitamin D supplementation. Other
relevant topics reviewed elsewhere in this issue include allergy and viral respiratory infection
prevention (reviewed by Daniel Jackson) and prenatal exposures (reviewed by Tina Hartert).

Medical Management in Early Childhood
Among medical treatments for control of recurrent preschool wheeze, which are reviewed in this issue
by Avraham Beigelman, inhaled corticosteroid use has accrued the most evidence of effectiveness,
[18–21] with less evidence supporting the use of leukotriene inhibitors.[22] A recent multicenter
randomized crossover trial demonstrated heterogeneity in response to treatment: 74% of 230 children
aged 12–59 months who require a daily controller medication had a differential response to treatment
with daily inhaled corticosteroids, intermittent inhaled corticosteroids and leukotriene receptor
antagonists. Of those with differential response to treatment, daily inhaled corticosteroids had the
highest probability of producing the best response.[23]

As the prevalence of and morbidity from asthma and wheeze are high during early childhood,
interventions during this period may be expected to impact lung function and asthma control later in
life. Unfortunately, randomized placebo­controlled trials have not found that inhaled corticosteroid
treatment during the preschool years alters the natural history of asthma or persistent wheeze,[24–26]
though no trials have investigated the consistent and long­term use of daily controller therapy.[5] Anti­
immunoglobulin E therapy with omalizumab is currently under investigation as a treatment to prevent
asthma in high­risk preschool children (NCT02570984).

Prevention of Smoke Exposure in the Electronic­cigarette Era
There is abundant evidence that smoke exposure worsens[27–31] and smoking cessation
improves[32,33] asthma control and lung function. Electronic cigarettes, or e­cigarettes, are battery­
powered nicotine delivery systems that are thought to reduce toxic and carcinogenic exposures
compared with combustible conventional cigarettes.[34–36]

E­cigarette use has become widespread in the United States. In 2014, 12.6% of adults had ever used
an e­cigarette, and 3.7% were current users.[37] The majority of adult users of e­cigarettes were
current or former users of conventional cigarettes, suggesting that e­cigarettes do not promote
widespread initiation of smoking or relapse in those with remote smoking histories.[37] However, e­
cigarette use is also frequent in adolescents, with 44.9% of students in grades 9–12 reporting having
ever used an electronic vapor product,[38] and 5.3% of middle school and 16.0% of high school
students reporting current e­cigarette use in 2015.[39] In Florida, e­cigarette use among high school
students in 2012 was actually more frequent among students who reported having asthma than
among those without asthma.[40] Although these numbers may decrease with the ban on sale of e­
cigarettes to those under age 18 implemented in 2016 in the United States, they raise concern that e­
cigarettes may promote initiation of smoking among adolescents and young adults, including those
with asthma.

On the contrary, though evidence is mixed regarding the effectiveness of e­cigarette use for smoking
cessation,[36,41,42] it may be useful for harm reduction in smokers with asthma. A prospective study of
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18 individuals with mild­to­moderate asthma who switched from conventional to e­cigarette use found
significant improvements over 2 years of follow­up in respiratory symptoms, lung function, airway
hyperresponsiveness and tobacco consumption with no significant change in asthma exacerbation
rate.[43,44] Despite this encouraging research, toxicity varies significantly between e­cigarette
products[45,46] and long­term effects of e­cigarette use remain unknown.[34–36] Until these effects are
clarified, other safer methods of smoking cessation should be used before e­cigarettes in patients with
asthma.

Prevention of Early Life Exposure to Air Pollution
Exposure to air pollutants, such as nitrogen dioxide, ozone and particulate matter, is a major risk factor
for abnormal lung development and function[47–51] and has been linked to increased asthma
prevalence and reduced asthma control.[52–60] Recent evidence highlights the impact of air pollution
exposure in prenatal and early life on lung function later in life. Schultz et al.[61] reported on
longitudinal exposure to nitric oxide and particulate matter with an aerodynamic diameter of less than
10 μm in 2278 individuals followed from birth.[62] There was a negative association between air
pollution exposure in the first year of life and FEV1 at age 16, and later air pollution exposures
appeared to have additional negative effects. Another study[63] utilizing administrative databases of
medical visits over a 10­year period in a Canadian population­based cohort of over 65 000 individuals
found that prenatal nitrogen dioxide exposure was associated with asthma that persisted past age 6,
but not with 'transient asthma' that resolved by age 6.

Interventions to reduce air pollution are feasible and result in demonstrable benefit. Between 1994 and
2011, aggressive pollution reduction strategies were implemented in southern California. Over this
period, three separate large cohorts of children were followed between the ages of 11 and 15 including
annual lung function measurements.[64] Improvements in 4­year growth of FEV1 and forced vital
capacity were associated with declining levels of nitrogen dioxide and particulate matter with
aerodynamic diameters less than 2.5 μm and less than 10 μm. This association held in children both
with and without asthma, and the proportion of children with FEV1 values of less than 80% of the
predicted value at age 15 declined significantly from 7.9% to 6.3% to 3.6% across the three cohorts.
This important study builds on prior research showing reduced asthma morbidity in association with
decreased traffic during the Olympic Games in both Atlanta in 1996 and Beijing in 2008.[65–67]

Potential Benefit of Immunostimulant Microbial Exposures
The ecological community inside and outside the body has emerged as a major environmental
exposure of interest in asthma pathogenesis. Culture­independent high­throughput methods have
revolutionized the identification and quantification of genetic material, and knowledge has rapidly
accumulated regarding the microbial composition of human living environments and bodies.[68,69]
These developments occurred concomitantly with the proposal and evolution of the 'hygiene
hypothesis,' which posits that reduced microbial exposure accounts for the rising prevalence of allergic
disease.[70]

The hygiene hypothesis is based on the now well documented finding that risk of allergic disease is
reduced in association with a variety of environmental exposures, among which household size was
the first to be identified.[68–70] Wu et al.[71] recently showed that exposures in early infancy may be
particularly important. In a population­based birth cohort of 136 098 infants, maternal urinary tract
infection and antibiotic use during pregnancy, mode of delivery, infant antibiotic use and having older
siblings at home were associated in a cumulative and dose­dependent manner with increased risk of
childhood asthma; of these, infant antibiotic use was the strongest predictor.

As many of the same exposures that are linked to reduced risk of allergy have come to be recognized
as determinants of human microbial composition, including residence on a farm, cohabitation with a
dog, day care attendance and vaginal birth, the hygiene hypothesis has evolved into a 'microbiota



3/29/2017 www.medscape.com/viewarticle/876429_print

http://www.medscape.com/viewarticle/876429_print 4/13

hypothesis' in which environmental factors reduce allergic disease via modification of the host
microbiome.[68,69,72] Other recognized asthma risk factors may also act via perturbations of the
human microbiome. For example, acute respiratory syncytial virus infection during infancy is
associated with a nasopharyngeal microbiome composition similar to the composition seen in infants
who later develop asthma.[73]

The microbiota hypothesis is supported by a growing body of evidence. The gut microbiome differs
between those with and without asthma,[74–76] and between members of communities with different
degrees of industrialization and prevalence of allergic disease.[68,72,77] Oropharyngeal colonization
and gut microbiome composition as early as age 1 month have been associated with risk of
subsequent atopy and asthma.[78–81] Evidence primarily from animal models demonstrates a role of
the gut microbiome in the development of immune tolerance mechanisms,[82] and exposure to
bacterial species associated with protection from allergic disease in human studies[74,83–85] has been
shown to reduce experimentally induced airway inflammation in mice.

Synthesizing and building on this body of evidence, Stein et al.[86] recently reported on children from
Hutterite and Amish agricultural communities in the United States. These populations have similar
ancestry and agricultural lifestyles, but Hutterites use more industrialized farming practices. Hutterite
children demonstrated higher prevalence of allergic disease, differences in the microbial composition
of dust in participants' homes and differences in innate immune cell frequencies and phenotypes
compared with Amish children. In a mouse model, intranasal dust extracts from Amish, but not
Hutterite, homes significantly inhibited airway hyperreactivity and eosinophilia.

It may soon be possible to predict risk of asthma based on early infancy microbiome data. Fujimura et
al.[87] recently used 16S rRNA sequencing of stool samples provided between ages 1 and 11 months
to categorize 298 birth cohort participants into three distinct microbiota compositional states, each of
which was associated with significantly different risk for multisensitized atopy at age 2 and doctor­
diagnosed asthma at age 4.

The recognition of a connection between early microbial interactions and risk of asthma has led to
attempts to modify gut colonization to prevent asthma. Unfortunately, several randomized trials have
failed to show that prenatal and early life probiotic and prebiotic treatments reduce asthma incidence.[88–94]

Bacterial lysates, immunoregulatory cellular extracts that have been found to reduce allergic airway
inflammation in mouse models, may be an effective alternative.[95–97] The most studied bacterial
lysate is OM­85 BV, which contains extracts derived from eight bacterial species: Staphylococcus
aureus, Streptococcus species, Klebsiella species, Neisseria catarrhalis and Haemophilus influenzae.
Several trials, though generally small and with significant heterogeneity, have demonstrated that
bacterial lysate treatment reduces recurrent respiratory tract infections in adults and children,[98–101]
and OM­85 BV has been used for decades for this indication in Europe.[95] A small clinical trial of 75
children between ages 1 and 6 with recurrent wheeze found a nearly 40% reduction in number of
wheezing attacks and a reduction in duration of wheezing attacks over 1 year of follow­up in those
randomized to OM­85 BV treatment.[102] Nonrandomized clinical data further support a potential
benefit of OM­85 BV in asthma.[103] The effectiveness of OM­85 BV in preventing severe wheezing
lower respiratory tract infection in high­risk infants is currently under study in a multicenter placebo­
controlled randomized clinical trial (NCT02148796).

Vitamin D Supplementation
Vitamin D deficiency is common worldwide and several of its myriad physiological consequences are
central to asthma pathogenesis, including effects on lung development and immune function.[104–108]
The role of vitamin D over the first decade of life was recently studied by Hollams et al.[109] in a birth
cohort of children at high risk of asthma that measured 25­hydroxyvitamin D levels at seven visits
between birth and age 10. Although there was no overall longitudinal association between vitamin D
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level and asthma or wheeze, in a subgroup of 80 individuals in whom vitamin D levels were available
from all follow­up visits, the total number of vitamin D­deficient follow­ups per child was positively
associated with asthma and wheeze at age 10. There were inverse relationships between vitamin D
levels and early allergic sensitization, nasopharyngeal colonization with Streptococcus and early
febrile lower respiratory infections – factors associated with asthma in this cohort[110] – suggesting
that an effect of vitamin D deficiency on subsequent asthma may be partly modulated by allergic
sensitization, respiratory tract bacterial colonization and/or infection in infancy.[109] This suggests that
preventing vitamin D deficiency throughout childhood may be important in the prevention of these
disorders.

The efficacy of vitamin D is better established for the management than for the prevention of asthma.
A Cochrane review of placebo­controlled trials, including 435 children and 658 adults, concluded that
vitamin D is likely to reduce the risk of severe asthma exacerbation and healthcare use because of
asthma, though children and those with severe asthma were underrepresented in the included
studies.[111] These findings are in accordance with other systematic reviews.[112,113]

As many processes affected by vitamin D begin before or shortly after birth, there has been
considerable interest in a possible role of prenatal and early life vitamin D supplementation in asthma
prevention.[104] Observational studies, though heterogeneous and inconsistent, and a growing body of
clinical trial data suggest a protective effect of vitamin D supplementation during pregnancy and early
infancy.[114–117] This and other prenatal interventions are reviewed in detail in this issue by Tina
Hartert.

The dose of vitamin D needed for prevention remains undefined. In pregnancy, doses of 2400–4400
UI daily appear safe.[116,117] However, a single­dose recommendation for all patients may not suffice,
and future studies will need to define whether a level­based dosing regimen (i.e. to target a
prespecified level) may be a better strategy. Likewise, in infancy and early childhood, the dose of
vitamin D supplementation or the desired level of 25­hydroxyvitamin D to prevent asthma remains
undefined. The study by Hollams etal.[109] will need to be verified in other cohorts. The current
recommended daily allowance for vitamin D in children is 600 IU daily.[118] However, given the high
prevalence of vitamin D deficiency in many countries, it remains to be seen whether individualized
supplementation to target a specified level in children rather than prescribing a specific intake for all
children will be more effective in preventing the development of asthma.

Conclusion
The determinants of the diverse trajectories of lung function and asthma morbidity that are observed
throughout the lifespan remain to be fully defined. This area of study progresses in parallel with and
enables the recognition of risk factors for asthma and the evaluation of interventions to reduce asthma
risk. We have highlighted active areas of research, including the search for medical treatments that
could be given in the preschool years to prevent persistent wheeze, the undefined role of e­cigarette
use in smokers with asthma and whether microbial exposures can be manipulated to reduce asthma
risk. These lines of investigation will hopefully yield additions to the armamentarium of effective
strategies to modify the natural history of asthma. Evidence is accumulating that reducing air pollution
and avoiding vitamin D deficiency in childhood lead to improved outcomes, and attention should be
paid to these exposures.

Sidebar
Key Points

Efforts are ongoing to describe and predict trajectories of asthma occurrence and severity over
the lifespan.
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A large and growing body of evidence has linked microbial exposures and risk of allergic
disease, and the use of bacterial lysates in asthma prevention is currently under study.

Interventions to reduce air pollution are feasible, result in demonstrable improvement in lung
function development and may have the greatest impact during prenatal and early life.

The health effects of e­cigarette use in those with asthma must be clarified before a role of e­
cigarette use in smokers with asthma can be defined.

Vitamin D plays an important role in immune and pulmonary development, and vitamin D
supplementation reduces asthma exacerbations in adults with mild­to­moderate asthma.
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