

Sea-Intelligence

www.Sea-Intelligence.com

Sea-Intelligence Sunday Spotlight

May 9, 2021 – Issue 513

Executive Summary

Americas: Main driver of global growth

The new demand data for March shows underlying structural growth in line with longer term structural growth, but the highly lopsided growth pattern continues.

Correction: No Brexit impact on UK deep-sea calls

While the number of UK deep-sea port calls has decreased considerably from 2019-Q1 to 2021-Q1, a similar decline is seen across non-UK ports, so the decline cannot be ascribed to Brexit.

US goods consumption still increasing

The shift in US consumer spending away from services and over to goods is continuing in March 2021, providing added support for the import container demand boom.

Content

Editorial: Covid-stricken vessels

Page 2

Americas: Main driver of global growth

Page 3

Correction: No Brexit impact on UK deep-sea calls

Page 7

US goods consumption still increasing

Page 13

Carrier Service Changes

Page 17

Carrier Rate Announcements

Page 20

Sea-Intelligence products

Page 24

Monthly Schedule Reliability report

- 34 trade lanes
- 66 carriers
- 300+ services
- 116 pages
- PDF + Excel data

2,000 Eur/year

info@sea-intelligence.com

Weekly Trade Capacity Outlook report

- 19 trade lanes
- 12 week outlook
- 3 years of history
- Trade/Alliance data
- PDF report

2,200 Eur/year

info@sea-intelligence.com

Weekly Indicators

2 – 9 May 2021

Port of New York / New Jersey
March 2021
Container volumes

789,776 TEU
+40.8% Y/Y

Port of Vancouver
March 2021
Container volumes

332,257 TEU
+39.8% Y/Y

Port of Barcelona
March 2021
Container volumes

311,937 TEU
+41.7% Y/Y

Port of Sydney
March 2021
Container volumes

227,069 TEU
+24.1% Y/Y

ISSN 2245-9677

Editorial: Covid-stricken vessels

In a normal market there are always vessels which are temporarily unavailable for active use in the market. Some of this is due to mishaps such as engine failures, collisions, allisions, or vessels being detained/arrested due to financial disputes. Some of such deployment disruption is planned, when vessels need to go to dock for inspections, upgrades, maintenance, or repair.

Also, in normal market conditions, there is sufficient buffer capacity – a different word for overcapacity – to cater for a portion of the fleet effectively being out of operational use, at all times.

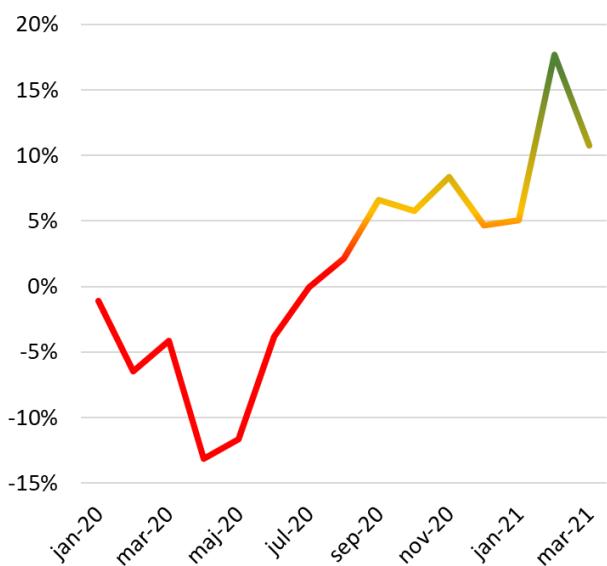
But these are not normal times, as the current market suffers from a severe shortage of vessels, as evidenced by charter rates not only reaching record levels not seen since the early 2000's, but also in the fact that charter durations are extending, despite the high price levels.

And into this mix we now have a new element also removing vessel capacity from the equation: Vessels where crew have tested positive for Covid, which causes the vessel in question to be quarantined.

The question is: How much is global capacity reduced on account of crew infected with Covid? There is no solid comprehensive database available for this, but it is possible to make a rough estimate.

Hapag-Lloyd appears to inform quite consistently when a vessel on one of their services is affected. Over the past month they have reported 4 such incidents. Hapag Lloyd operate a fleet of 258 vessels, which would imply 1.6% of vessels are impacted. However, some of the vessels are actually not operated by Hapag-Lloyd, as the carrier is also engaged in THE Alliance, as well as in regional Vessel Sharing Agreements. The exact number of vessels involved is not easy to assess, but as a – too high – estimate, Hapag-Lloyd plus their alliance partners ONE, HMM and Yang Ming combined operate 644 vessels, indicating 0.6% of vessels being hit. Clearly, Hapag-Lloyd is not in a VSA on all regional trades with these alliance partners, and hence this serves as a lower limit for the assessment.

If Hapag-Lloyd in this way is representative for the industry, it implies 0.6%-1.6% of vessels could be impacted. It furthermore appears that the usual quarantine impact is around 2 weeks – roughly half a month. This in turn means that Covid infection of crews over the past month has caused the removal of 0.3%-0.8% of global carrying capacity.

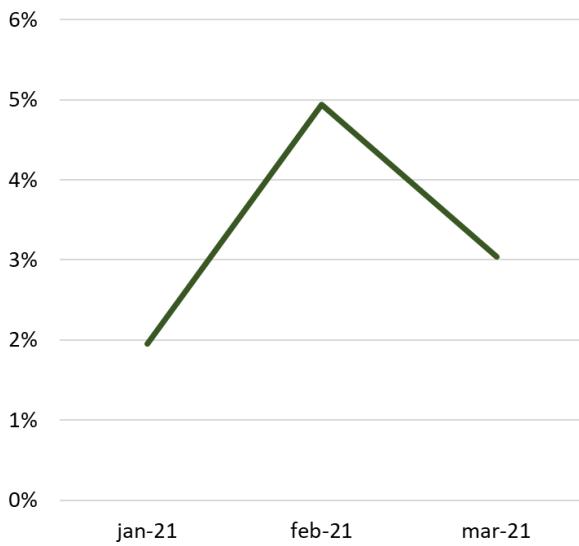

Americas: Main driver of global growth

The new demand data for March shows underlying structural growth in line with longer term structural growth, but the highly lopsided growth pattern continues.

This week saw Container Trade Statistics (CTS) publish container demand data for March 2021 and we have, as usual, taken a closer look at what the data implies for the current status of the market.

Figure A1 shows the year-on-year growth in the global container volumes, which is the usual way of measuring the growth. As can be seen, 2021 shows a sharp spike in growth rates for February and March.

Fig.A1: Global demand growth 2020-2021 (year-on-year)


However, as we have pointed out on previous occasions, the normal year-on-year comparison has a flaw in 2021, since

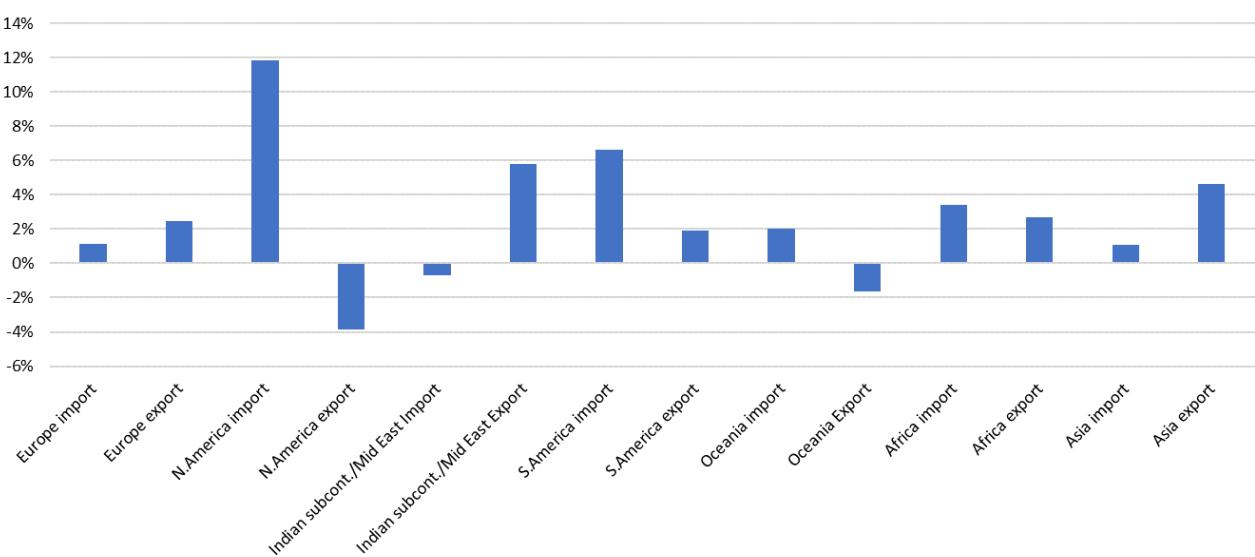
we are now comparing with the months impacted by the first waves of the pandemic in 2020. In February 2020 manufacturing in China was largely closed and only re-opened during March. And once we get to April and May, the import markets throughout the world shut down temporarily.

Hence, in order to get a better view at the “genuine” underlying structural demand growth, it is much more relevant to look at the growth rate compared to the same month 2 years ago, and from that calculating the average annual growth rate. This way, the situation related to demand growth in 2021 is now seen in the light of more underlying structural growth – eliminating the one-off impact of the pandemic drops in 2020, while still retaining the same-month comparison, eliminating most seasonality effects.

If we use this methodology, the structural global demand growth for the world’s container demand is shown in figure A2.

Fig.A2: Global demand growth 2021 vs
2019
Annual average growth

Seen as a whole, Q1 2021 has shown a global annual average growth of 3.2%, which is quite well in line with the expected long-term underlying structural growth in global container shipping – this is because the structural link between container demand volume and underlying economic growth has essentially been at parity, for the past decade.


In figure A2 it should of course be noted that January and February are impacted by the usual shifting nature of Chinese New Year, which fell on February 12th in 2021 and on February 5th in 2019.

But whereas this level of global demand growth is well within what can be termed quite normal growth in the industry, the image of normality does not hold up, when taken to a deeper level of granularity.

Figure A3 shows the annual average growth for the individual regions which the CTS data is split into for, the combined data for 2021-Q1 versus 2019-Q1.

In figure A3 we can see how there is a very high level of growth in North America, where the underlying structural growth has been almost 12% on average, for two years in a row.

Fig.A3: Average annual demand growth Q1 2021 versus Q1 2019

This is followed by exports from the Indian Subcontinent and Middle East, as well as imports into South America – both around a 6% annualized structural growth.

Conversely, we see outright structural declines related to North American exports in particular, but also to a lesser degree for imports into the Indian Subcontinent and Middle East, as well as out of Oceania.

Main driving regions of global growth

If we look at global growth in general as being driven from the import side, we can look at the import growth seen in each region, measured in TEU, and compare this to the total growth globally, also measured in TEU. This allows us to measure how big a share of the global growth is driven by each region.

As could be seen in figure A3, the Americas – North and South combined – were also the regions with the largest structural import growth.

We have therefore calculated how big a share of the global growth each month is accounted for by North and South America combined.

In terms of methodology, there is a problematic issue, as 2021 versus 2020

data can be skewed as previously outlined – however doing a 2-year prior comparison for 2020 might also not be appropriate. We have therefore done both as shown in figures A4 and A5. Herein we show both the share these two regions account for in terms of global growth, but also the share they account for in terms of global volume.

Fig.A4: N. and S. America share of global growth
Based on Year-on-Year growth

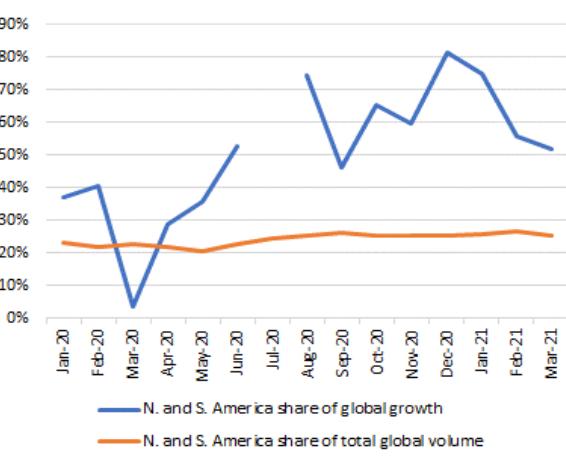
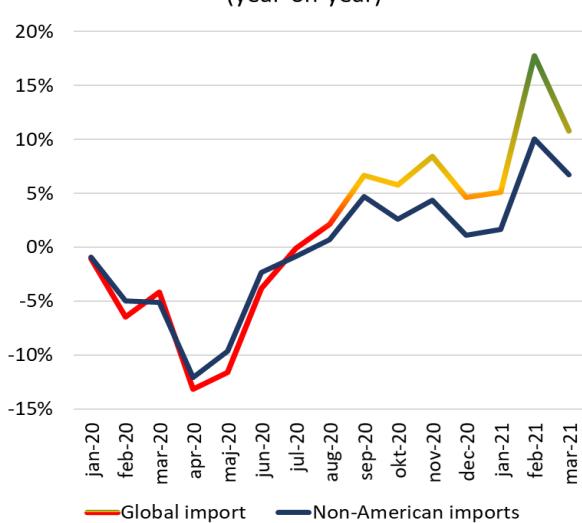



Fig.A5: N. and S. America share of global growth
Based on average yearly growth comparing to 2 years prior

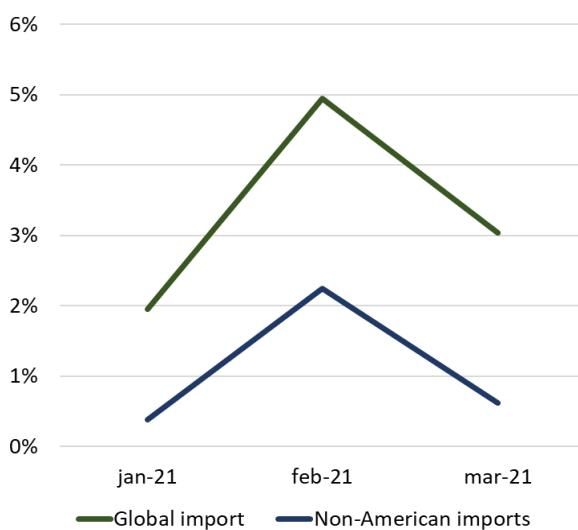

The clear pattern emerging in figures A4 and A5 is that the share they account for in terms of growth significantly exceed their share of global volume.

It should be noted that the year-on-year datapoint for July 2020 has been omitted from the dataset. This is because global demand declined slightly, while the American imports grew, making the "share" calculation meaningless.

The most important point to take away from figures A4 and A5 is that it is evident, that what the industry currently "feels" as a demand boom, is to a large degree a phenomenon driven by the Americas. Without the American boom, demand would be quite a bit more subdued.

Figure A6 shows both the global year-on-year demand growth since January 2020, as well as the demand growth when we only measure import volumes for the non-American regions.

Fig.A6: Global demand growth 2020-2021 (year-on-year)



Similarly, figure A7 shows the difference between global and non-American

market growth in 2021, when we use the annual average growth against 2019.

Fig.A7: Global demand growth 2021 vs 2019

Annual average growth

In figure A6 we can see how the demand recovery in Q4 2020 almost stalls entirely when we do not include the Americas as well as how the year-on-year boom in 2021 is significantly lower than looking at the full global volume.

From figure A7 we can furthermore see that the underlying structural growth for non-American regions cannot genuinely be said to grow very much over the past two years with March 2021 seeing annual average growth of less than 1% for two years running.

Going forward this also means that the strength of the current boom is heavily dependent on upholding the boom in the Americas – or we need to hope for a stronger recovery in the other markets.

Correction: No Brexit impact on UK deep-sea calls

While the number of UK deep-sea port calls has decreased considerably from 2019-Q1 to 2021-Q1, a similar decline is seen across non-UK ports, so the decline cannot be ascribed to Brexit.

CORRECTION: *When this analysis was first published on May 9th, 2021, it was titled "Brexit: Sharp decline in UK deep-sea port calls" and it incorrectly ascribed the decline in UK deep-sea port calls to Brexit. While the figures originally presented were correct, in reality, all of the major ports in North Europe have seen significant declines in the number of deep-sea port calls from 2019-Q1 to 2021-Q1, a distinction we had not included in the original analysis, and one that completely invalidates Brexit as an explanation for the decline in deep-sea port calls. We sincerely apologise for this rather fundamental oversight, and we have updated the analysis accordingly.*

On January 1st, 2021, the transition period for UK's exit from the EU formally ended. During the hotly debated Brexit campaigns, it was at times argued that Brexit would lead to a maritime "isolation" of the UK, as shipping lines would limit their direct deep-sea calls into the UK, opting instead to route their large deep-sea vessels into major transhipment ports in the EU, under fears that new UK customs and documentation

requirements would tie up their deep-sea mega-vessels. The argument was that the carriers – for fear of being "bogged down in Brexit" – would effectively drop off the UK-bound deep-sea cargo in Antwerp or Rotterdam, and then it would trickle into the UK through transhipment and Ro/Ro-services, leaving the deep-sea vessels unaffected.

With Brexit now having been in full effect for more than a full quarter, this might seem to be a good time to assess whether such fears were indeed justified or not.

Methodology

Optimally, to do such an analysis, we would want to look at the TEU imports into the UK, and determine the share coming in through direct services versus the share coming in through transhipment services and compare this development pre- and post-Brexit. Unfortunately, there are – to our knowledge – no reliable sources that break down UK TEU imports into direct and transhipped services, so we need to find a reasonable proxy.

While none of the major UK ports publish their own port handling statistics (something that is rather common in other regions, e.g. all major North American ports do this), the UK Government does publish port handling statistics, but the deepest level of detail for TEU data is annual port-level data split by “deep-sea”, “EU”, and “Non-EU” foreign traffic, and inwards/outwards direction. While this could be somewhat instructive, with the latest data being for the full-year of 2019, and as the “deep-sea” data is not split on whether it is transhipped in an EU port, it would not help answer our question.

Other TEU sources, like Container Trade Statistics, would be able to tell us the overall volumes going into the UK ports, but again would be missing the crucial element of whether the cargo was transhipped in an EU port or not.

With TEU level data sources exhausted, we need to move up one layer in data granularity, and instead look at vessel movement data. At first, it might seem reasonable to simply look at the total number of port calls made in the UK pre- and post-Brexit, but this would likely give us the wrong picture. If indeed the UK was to lose deep-sea connectivity as a consequence of Brexit, we would likely see the total number of port calls go up,

as large deep-sea vessels would be replaced by smaller feeder vessels, which – everything else equal – would require more port calls in the UK to handle the same amount of cargo.

Rather, we should focus exclusively on the vessels deployed on deep-sea services calling regions outside Europe and ignore any feeder services connecting with the European mainland.

And this takes us to the last consideration, which we regrettably had neglected to include in the first issue of this analysis: If indeed shipping lines have opted to serve the UK increasingly via transhipment rather than direct service, as a consequence of Brexit, we need to control for whether we see a corresponding decrease in port calls in EU-based transhipment ports, in order to rule out any other influences.

Only if we find that UK ports have lost significantly more deep-sea port calls than their EU counterparts, would it support the notion that Brexit has had a negative impact on UK deep-sea connectivity, and the converse is also true, wherein an increase in UK deep-sea port calls could still signal a relative loss of UK deep-sea connectivity, if such an increase is significantly lower than any

comparable increase in deep-sea port calls in the EU-based transhipment ports.

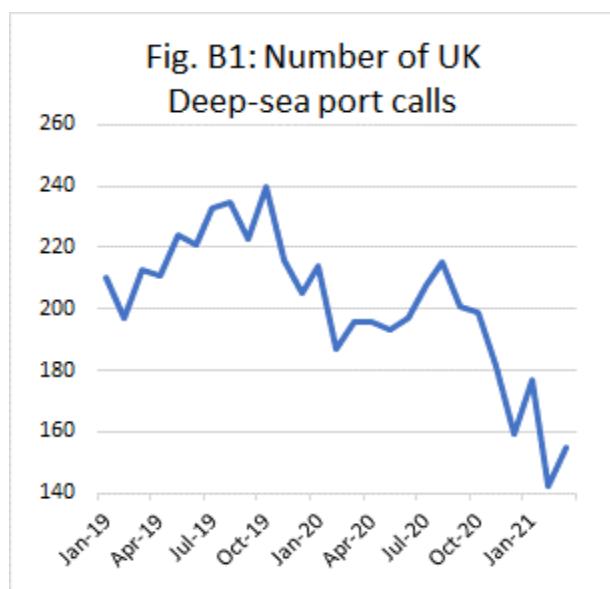
The data for this analysis is sourced from Sea-Intelligence's industry-leading *Global Liner Performance (GLP)* database, where each month we benchmark the schedule reliability of more than 60 named carriers across 34 different trade lanes, based on more than 12,000 monthly vessel arrivals. In this analysis however, we will not focus on schedule reliability, but instead on the number of distinct number of deep-sea port calls made in ports in the UK, pre- and post-Brexit.

We will compare the period immediately post-Brexit (2021-Q1), with the last "normal" Q1 (2019-Q1). While a Y/Y comparison is normally better, 2020-Q1 was heavily disrupted by the onset of the global Coronavirus pandemic.

We have elected to only include actual port calls that have been scheduled at least 14 days in advance, as recorded in our GLP database, in order to avoid counting scheduled calls that ended up being omitted, as well as to avoid counting unplanned, last-minute inducement calls due to pandemic disruptions, and also to not count the impact of any extra-loaders that have not been deployed on a named liner service,

as these could potentially be driven by the need for empty equipment evacuation rather than laden volumes. That said, including inducement calls and extra-loaders does not impact the conclusion in any material way.

From January 1st, 2019 to March 31st, 2021, a total of 28,070 North Europe port calls were made on deep-sea services, spread across 32 North Europe ports. Of these, we have excluded any port receiving less than 50 deep-sea calls across the entire 2019 to 2021-Q1 period. This removes a total of 308 deep-sea port calls from the sample, and also removes the following nine ports, which have only seen sporadic deep-sea port calls over the period: Akureyri, Amsterdam, Baltiysk, Gdynia, Husavik, Isafjordur, Kaliningrad, Klaipeda, and Saudarkrokur. Setting the cut-off at anywhere between 32 and 116 port calls would remove the same 308 deep-sea port calls and nine ports from the sample, and thus not in any way alter the analysis.


Next, we have removed an additional six North Europe ports – and the 1,030 deep-sea port calls made in these ports over the period – from the sample, as these ports are geographically too distant to be considered competitors for UK-bound cargo: Aarhus, Gdansk,

Gothenburg, Montoir-de-Bretagne, Reykjavik, and St Petersburg.

This leaves us with a total of 26,866 deep-sea port calls made across 17 North Europe ports, of which seven are UK ports (London Gateway, Southampton, Felixstowe, Liverpool, Tilbury, Dover, and Portsmouth) and 10 are EU ports (Antwerp, Bremerhaven, Cork, Dunkirk, Hamburg, Le Havre, Rotterdam, Vlissingen, Wilhelmshaven, Zeebrugge).

These 17 ports have on average seen 230 weekly deep-sea port calls across the entire 27-month period from January 2019 to March 2021, ranging from approximately 1.5 deep-sea port calls per week (Cork, Dover, and Portsmouth) to approximately 45 weekly deep-sea port calls (Antwerp and Rotterdam).

Deep-sea port calls in UK ports

To start off, we will take a look at the trend in the number of deep-sea port calls made in the UK since January 2019. Figure B1 shows this trend.

On January 31st, 2020, the UK formally withdrew from the EU, and thus started the transition period, which formally ended on January 1st, 2021. In 2019, the number of port calls in the UK were on an upwards trend, increasing from a little under 200 at the start of 2019, to a peak of 240 in October 2019. It has since decreased considerably, with carriers only calling the UK 145 and 160 times in February and March 2021. Overall, the UK ports saw a -24% decrease in the number of deep-sea port call between 2019-Q1 and 2021-Q1.

Port Name	Deep-Sea Port Calls		
	2019-Q1	2021-Q1	Change
London Gateway	235	196	-17%
Southampton	128	104	-19%
Felixstowe	117	68	-42%
Liverpool	57	36	-37%
Tilbury	39	36	-8%
Dover	22	21	-5%
Portsmouth	22	13	-41%
Total UK Ports	620	474	-24%

Table B2 breaks down the loss in deep-sea ports call across the UK ports, as we can see that all seven UK ports saw a decrease, ranging from -5% in Dover (although just a single port call difference) to -42% in Felixstowe.

Immediately, Figure B1 and Table B2 do seem to support the notion that there could have been a Brexit impact on the number of UK deep-sea port calls, but alas, this needs to be compared against the development in the comparable EU ports.

Deep-sea port calls in North Europe

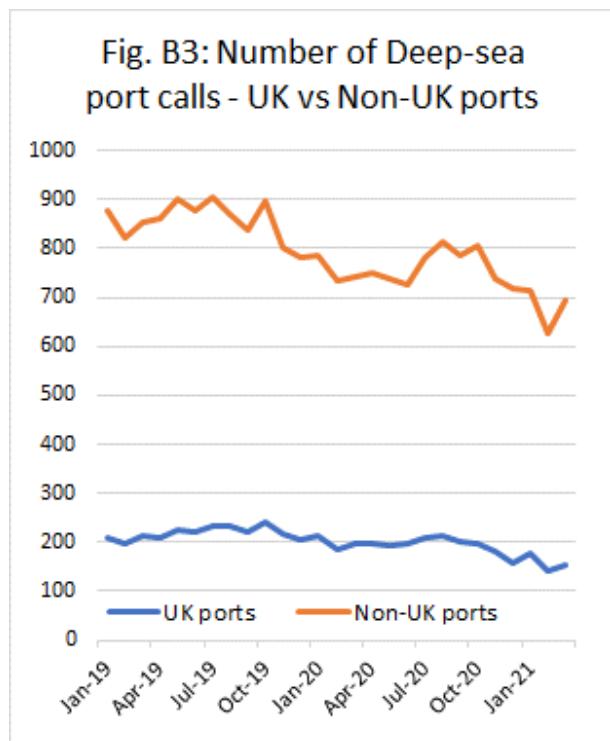


Figure B3 shows development in total deep-sea port calls across the 7 UK ports, as shown in figure B1, as well the development across the 10 non-UK ports. The first thing to note, is that the sheer number of port calls in the non-UK ports, at close to four times the number of port calls in the UK ports, means that most of the variability from figure B1 has been lost, when compared against the non-UK

ports, although the downwards trend of the UK ports is still visible. Secondly, it is clear that the non-UK ports have also experienced a strong decline in the number of deep-sea port calls over the analysed period, putting into serious question the notion first derived from figure B1 and table B2.

In order to better compare the developments, figure B4 takes the data from B3 and indexes it, with the average number of monthly deep-sea port calls in 2019-Q1 set as index 100.

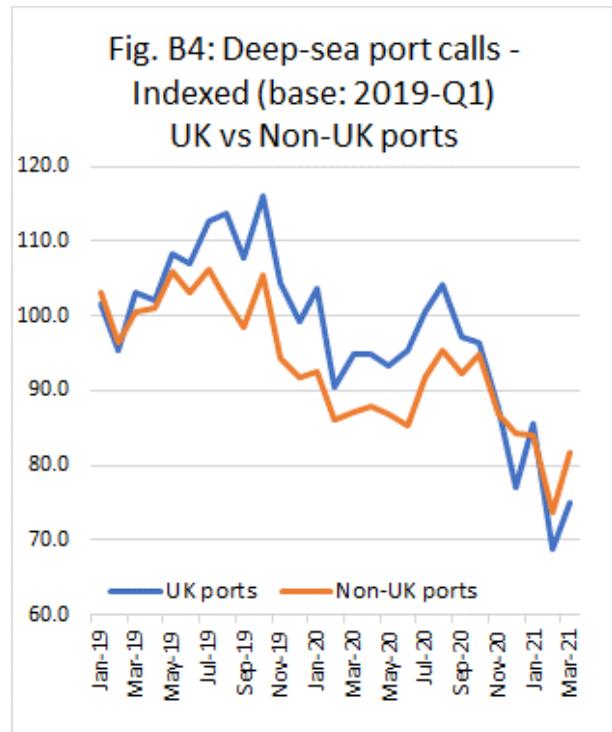


Figure B4 shows that the relative development in number of deep-sea port calls is almost identical across UK and non-UK ports, clearly showing that there has been no impact from Brexit, at least

in terms of the relative number of deep-sea port calls. Table B5 expands on this and breaks down the 2021-Q1 over 2019-Q1 developments in the number of deep-sea calls across the non-UK ports.

Port Name	Deep-Sea Port Calls		
	2019-Q1	2021-Q1	Change
Antwerp	628	540	-14%
Rotterdam	630	492	-22%
Hamburg	418	332	-21%
Le Havre	373	268	-28%
Bremerhaven	303	208	-31%
Dunkirk	72	55	-24%
Vlissingen	54	60	11%
Wilhelmshaven	49	25	-49%
Zeebrugge	13	35	169%
Cork	13	24	85%
Total Non-UK Ports	2553	2039	-20%

We see from table B5, that outside some outlier developments in the smallest ports of Cork and Zeebrugge, the relative developments generally mirror those of the UK ports, with most of the major ports experiencing a drop in deep-sea port calls of -14% to -31%, compared to the -8% to -42% seen for the largest UK ports. The overall 2019-Q1 to 2021-Q1 decline of -20% is quite close to the -24% seen for the UK ports, with the difference not being statistically significant.

Conclusion

While it is clear that the UK ports have seen a significant -24% drop in the

number of deep-sea port calls from 2019-Q1 to 2021-Q1, this on its own cannot be attributed to Brexit, as comparable North European non-UK ports in the EU have seen a similar decline of -20% in the number of deep-sea port calls. Moreover, the overall relative monthly developments in number of deep-sea port calls across UK and comparable non-UK ports have been remarkably similar.

This of course does not mean that there cannot have been a shift in direct versus transhipped cargo to the UK – we simply do not have the data to determine this – but it does mean that any such shift has not been large enough to warrant large scale – relative – shifting of deep-sea port calls from UK to non-UK ports.

This does though leave us with one unresolved question: What has been the underlying cause of this significant decline in deep-sea port calls, across both UK and Non-UK ports?

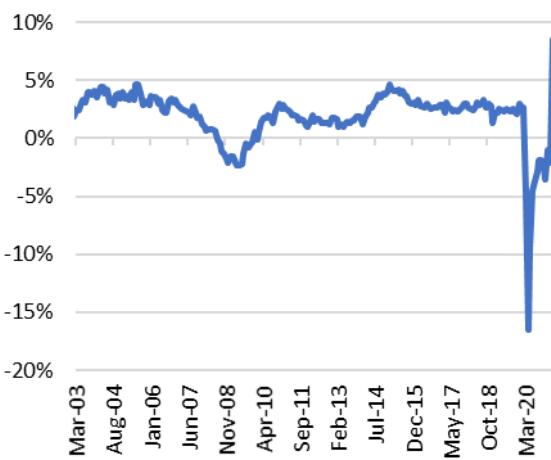
This is a question we will return to in next week's issue of the *Sunday Spotlight*.

US goods consumption still increasing

The shift in US consumer spending away from services and over to goods is continuing in March 2021, providing added support for the import container demand boom.

As shown in the first article of the Sunday Spotlight this week, the import into the Americas is presently of paramount importance in the global container demand boom. Hence, the behaviour of the US consumer, which is a key driver, is an important determinant in assessing the continuing strength of the boom.

As we have shown on previous occasions in the Sunday Spotlight, the pandemic in 2020 led to an unprecedented shift in US consumer behaviour, as spending on services declined sharply and the funds from this were partially redirected into spending on goods.


The data underlying the following analysis is from the US Bureau of Economic Analysis (BEA) and includes the latest numbers from March 2021, which were published just a week ago.

For those with a particular interest in the details, the specific data used is what the BEA labels as "Table 2.3.6U. Real Personal Consumption Expenditures by Major Type of Product and by Major Function" which means that the data has

been adjusted for effects of both inflation and normal seasonality. This should therefore provide a solid baseline for looking at the changes happening, as a direct consequence of the pandemic ripples.

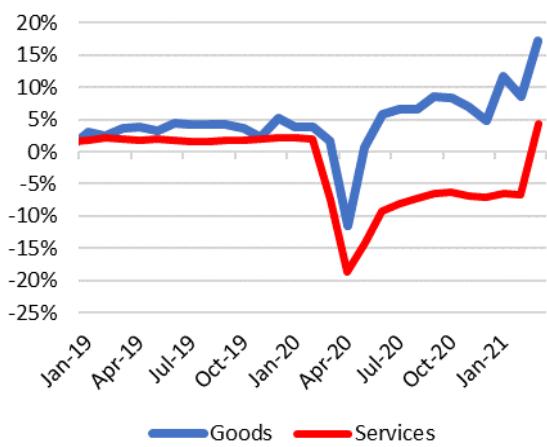
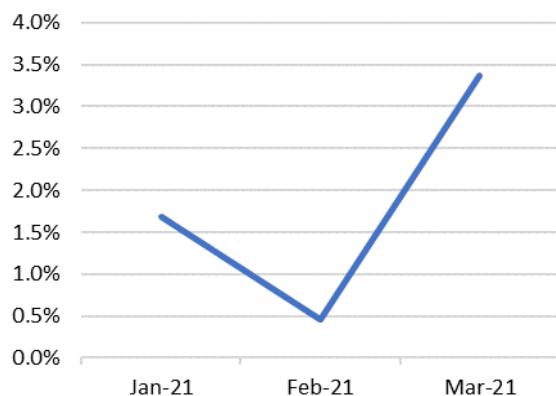

As a starting point, Figure C1 shows the growth in total personal consumption in the US from 2003 until March 2021. It can be clearly seen how the negative impact on consumer consumption during the pandemic in 2020 was much sharper and deeper than during the financial crisis in 2008-09, but also that the rebound now is similarly much larger.

Fig.C1: Total personal consumption growth (Year-on-Year)

But despite clearly showing a rebound, figure C1 is misleading because it includes all consumption. Figure C2 looks at the data one level deeper in terms of granularity and separates spending on goods from spending on services. It then shows the growth for each of these separately. To focus more clearly on the pandemic impact, the data is now shown only for the period 2019-2021.

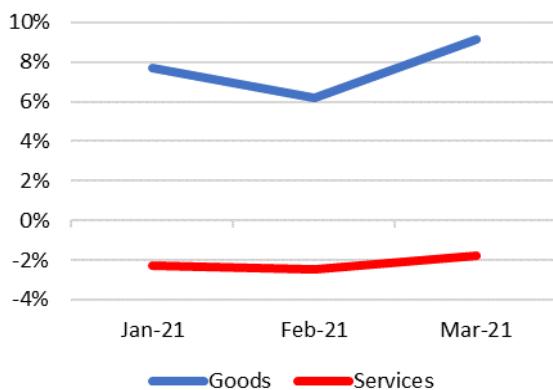
Fig.C2: Personal consumption growth (Year-on-Year)


We now see more clearly how the spending on services suffered not only a much deeper downturn than goods, but also a downturn having a much more extended duration.

In essence, growth in goods consumption only saw a decline for a single month in 2020 as a result of the pandemic, whereupon positive growth rates resumed. This is quite different for consumption on services where growth

rates were negative for 12 consecutive months, until finally the year-on-year growth rate became positive in March 2021.

But even this development depicted in figure C2 is to some degree misleading. It is misleading because as we are getting further into 2021, the year-on-year comparison is versus the sharp downwards impact of the pandemic in 2020 and therefore the growth rates are more reflective of the pandemic impact within 2020, than it is reflective of the structural development in 2021.


Fig.C3: Total personal consumption growth
Average annual growth 2021 vs 2019

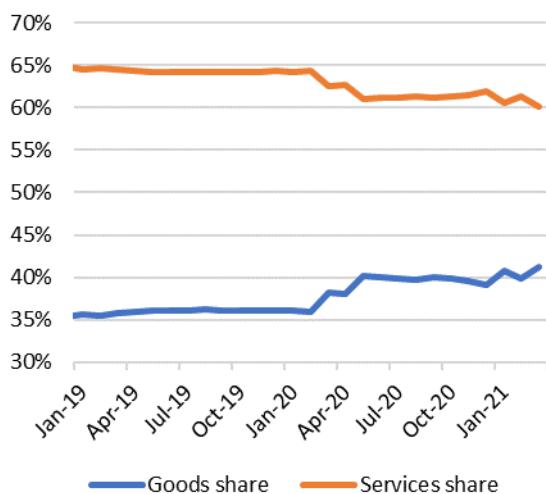
We have therefore re-calculated the growth in personal consumption for 2021 versus the same months in 2019 and from this calculated the average annual growth rate – the same methodology as also applied for container demand growth in the first article in the Sunday Spotlight this week.

The result of this is shown in figures C3 and C4.

Fig.C4: Personal consumption growth
Average annual growth 2021 vs 2019

From figure C3 we see that the total consumption growth reached slightly more than 3% per year on average as we got through March 2021 – fairly well in line with the growth rate we saw in the 5 years prior to the pandemic impact. In other words, the data shows that the structural underlying growth in spending leading to where we are in March 2021, is neither particularly strong nor particularly weak.

In figure C4, however, we see that the components of the growth are very much out of alignment with the past norm.


In this perspective, the current situation related to goods consumption is equivalent to a spending which has grown 9% annually over the past two

years. This is very high, as the 5 years leading up to the pandemic saw growth rates typically in the 3.5-4% range.

Conversely, it can also be seen that from this perspective, spending on services remains in negative territory. The only reason service consumption reverted to positive growth year-on-year in March 2021, is because of the exceedingly large drop seen in March 2020. Consumption of services is still below March 2019. And looking further back, spending on services in March 2021 is also lower than spending seen in March 2018, as well as March 2017.

This has given rise to significant change in the balance in consumption between goods and services. Figure C5 shows the proportion of money spent by the consumers on goods versus services, as it has developed recently.

Fig.C5: Shift in share of goods versus services

From figure C5 we can see the step-change which took place in the immediate aftermath of the pandemic in 2020, whereafter we saw a new balance for the 2nd half of 2020, between spending on goods versus services.

Coming into 2021, we are now seeing yet another shift in favour of spending

on goods versus services. And this is where we most clearly see the “engine” driving the continuing boom in container volumes into North America – despite roll-out programs of vaccinations, the US consumer continues to favour spending on goods versus spending on services.

Carrier Service Changes

Maersk/MSC will revise the port rotation of North America East Coast-South Africa service

Effective May 2021, Maersk and MSC will revise the port rotation of the AMEX-service, which connects North America to South Africa, by adding a port call at Philadelphia. The service will be operated by Maersk (AMEX) and MSC (AMEX), while Hamburg Süd (USAF) will be slot charterers. There will be nine vessels deployed on the service, with an average vessel capacity of 2,500 TEU. Please note: **Underlined** ports indicate newly added port calls, while **~~strikethrough~~** denote a dropped port call.

The revised port rotation of the service will be as follows (*10 port calls*):

Port Elizabeth – Durban – Cape Town – New York – **Philadelphia** – Norfolk – Baltimore – Charleston – Freeport – Port Elizabeth

The first vessel with the revised rotation will be "MSC Jeanne", which is due to depart from Port Elizabeth on May 22nd.

Maersk/Hamburg Süd to temporarily revise the port rotation of North America East Coast-Oceania service

Effective May 2021, Maersk and Hamburg Süd will revise the port rotation of the OC1/AANZ-service, which connects Oceania to Central America/Caribbean and North America East Coast, by alternately omitting the port calls at Port Chalmers and Napier. The service will be operated by Maersk (OC1) and Hamburg Süd (AANZ), while Hapag-Lloyd (ANP) and MSC (Oceania Express Loop 2) will be slot charterers. However, Hapag-Lloyd will not be on board the service for the port calls at Timaru and Cristobal. There will be twelve vessels deployed on the service, with an average vessel capacity of 3,000 TEU.

The revised port rotation of the service will be as follows (*15 port calls*):

Sydney – Melbourne – Timaru – Port Chalmers (**fortnightly**) – Napier (**fortnightly**) – Tauranga – Manzanillo (Panama) – Cristobal – Cartagena (Colombia) – Philadelphia – Charleston – Cartagena (Colombia) – Balboa – Tauranga – Sydney.

The first vessel omitting Port Chalmers will be "Spirit of Sydney", which departed from Sydney on May 4th.

The first vessel omitting Napier will be "Oluf Maersk", which departed from Sydney on May 2nd.

The last vessel omitting Port Chalmers will be "Olga Maersk", which is due to depart from Sydney on August 4th.

The last vessel omitting Napier will be "Spirit of Melbourne", which is due to depart from Sydney on August 11th.

CMA CGM to launch seasonal Mediterranean-West Africa service

Effective June 2021, CMA CGM will launch their seasonal fortnightly BIJAGOS-service to connect Mediterranean to West Africa. The service will be operated by CMA CGM, and the carrier will brand it "BIJAGOS". There will be two vessels deployed on the service, with an average vessel capacity of 1,700 TEU.

The port rotation of the service will be as follows (*6 port calls*):

Valencia – Casablanca – Tangier – Dakar – Bissau – Valencia.

The first vessel on the service will be "Joanna", which is due to depart from Valencia on June 3rd.

The last vessel on the service will be "Lion", which is due to depart from Valencia on August 3rd.

Hapag-Lloyd will revise the port rotation of North America East Coast-Central America/Caribbean service

Effective June 2021, Hapag-Lloyd will revise the port rotation of the GCS-service, which connects North America East Coast to Central America/Caribbean, by adding both a South- and a Northbound port call at Santa Marta. The service will be operated by Hapag-Lloyd, and the carrier will brand it "GCS". There will be six vessels deployed on the service, with an average vessel capacity of 2,500 TEU.

The revised port rotation of the service will be as follows (*18 port calls*):

Houston – Altamira – Veracruz – Puerto Barrios – Puerto Cortes – Puerto Limon – Manzanillo (Panama) – Cartagena (Colombia) – Santa Marta – Caucedo – San Juan – Santa Marta – Cartagena (Colombia) – Manzanillo (Panama) – Puerto Limon – Puerto Barrios – Puerto Cortes – Houston.

The revised port rotation will come in effect in June 2021. The first vessel with the revised rotation is to be announced.

COSCO to launch a new North America East Coast-Central America/Caribbean service

Effective June 2021, COSCO will launch a new service to connect North America East Coast to Central America/Caribbean. The service will be operated by COSCO, and the carrier will brand it "GCX". There will be three vessels deployed on the service, with an average vessel capacity of 1,300 TEU.

The port rotation of the service will be as follows (*9 port calls*):

Houston – Freeport – Puerto Cortes – Puerto Barrios – Cartagena (Colombia) – Kingston – Puerto Cortes – Puerto Barrios – Houston.

The first vessel on the service will be "AS Federica", which is due to depart from Houston on June 2nd.

SITC to launch a new Intra-Asia service

Effective late April 2021, SITC have launched a new service to connect China to Philippines. The service will be operated by SITC, and the carrier will brand it "CPX6". There will be three vessels deployed on the service, with an average vessel capacity of 2,700 TEU.

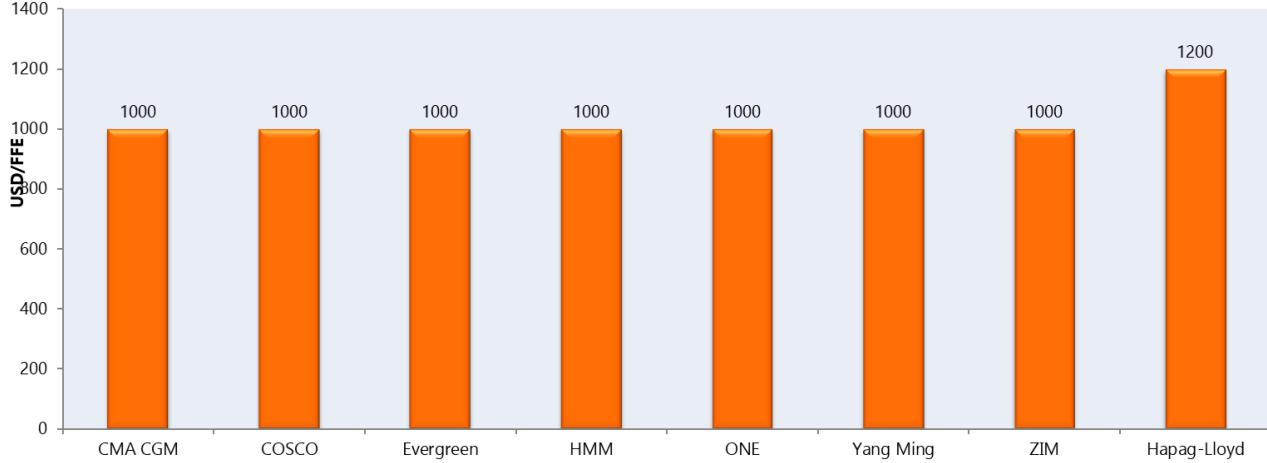
The port rotation of the service will be as follows (*9 port calls*):

Shanghai – Qingdao – Wenzhou – Xiamen – Subic Bay – Manila – Cebu – Cagayan De Oro – Shanghai.

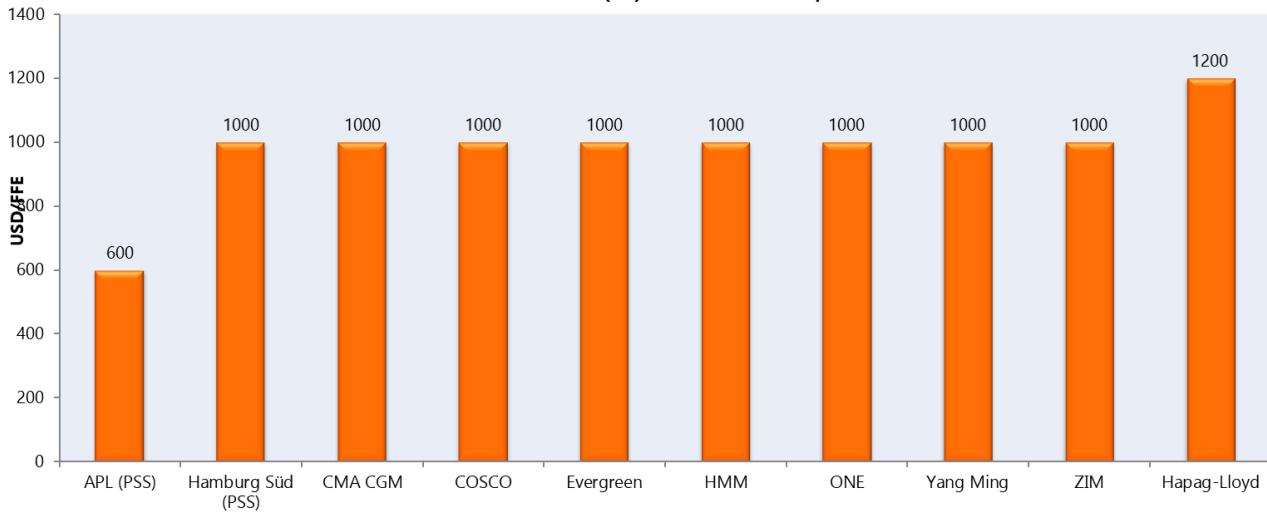
The first vessel on the service is "SITC Port Klang", which departed from Shanghai on April 26th.

CMA CGM to revise the port rotation of Intra-Europe service

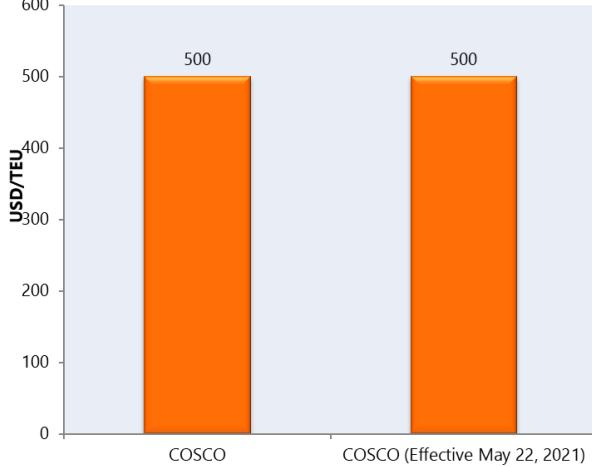
Effective May 2021, CMA CGM will revise the port rotation of the EMED2-service, which connects Libya, Greece and Egypt, by adding port calls at Damietta, Iskenderun and Mersin. Simultaneously to this change, the service will no longer be operated on a weekly basis, but there will be one sailing every ten days instead. The service will be operated by CMA CGM, and the carrier will brand it "EMED2". There will be one vessel deployed on the service, with a vessel capacity of 900 TEU. Please note: **Underlined** ports indicate newly added port calls, while **strikethrough** denote a dropped port call.

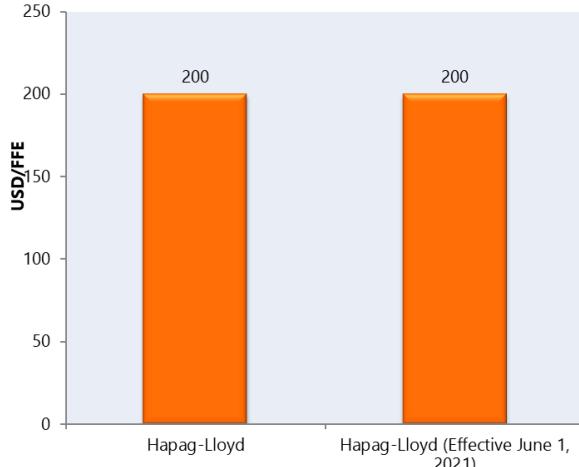

The revised port rotation of the service will be as follows (*8 port calls*):

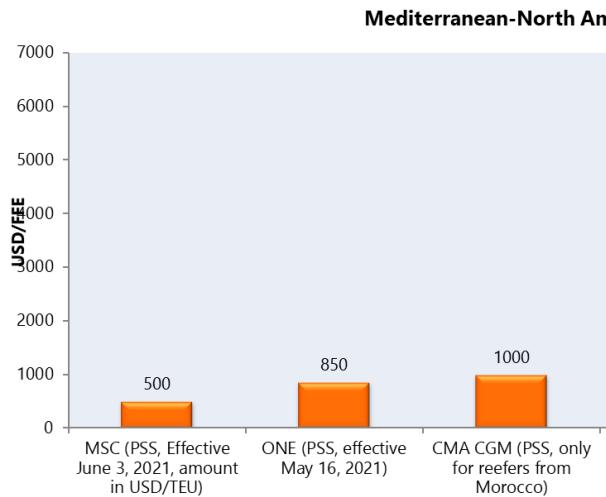
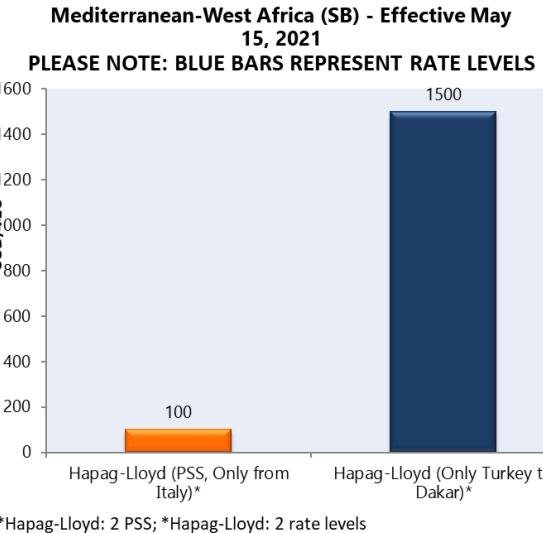
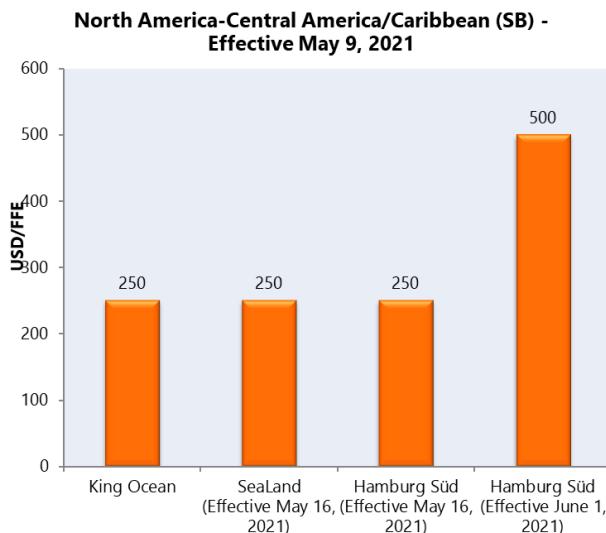
Beirut – Tripoli – Lattakia – Port Said – **Damietta** – **Iskenderun** – **Mersin** – Beirut.


The first vessel with the revised rotation will be "Lotus", which is due to depart from Beirut on May 16th.

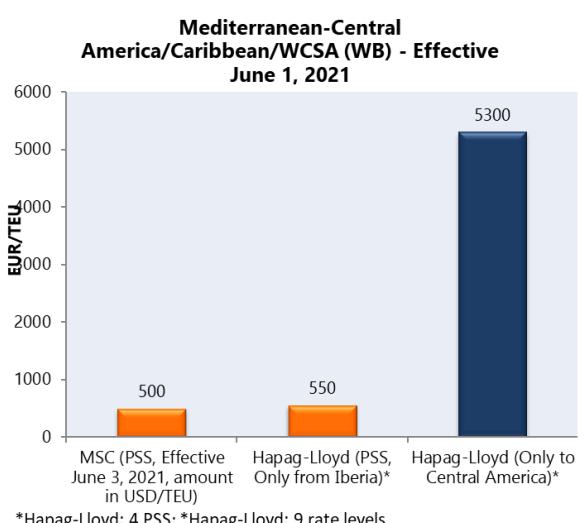
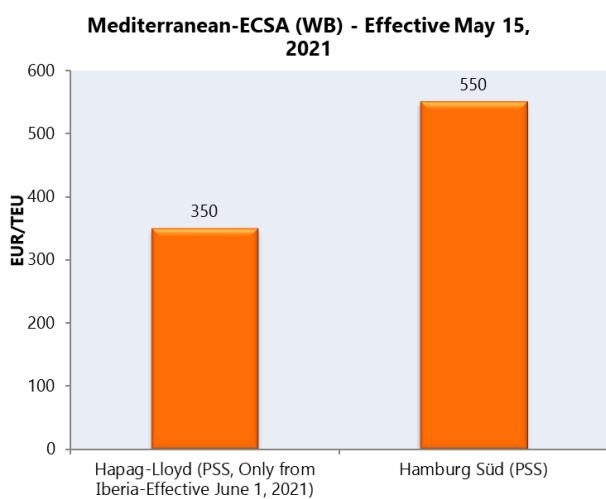
Carrier Rate Announcements


Asia-North America (EB) - Effective May 15, 2021
PLEASE NOTE: ORANGE BARS REPRESENT RATE INCREASES

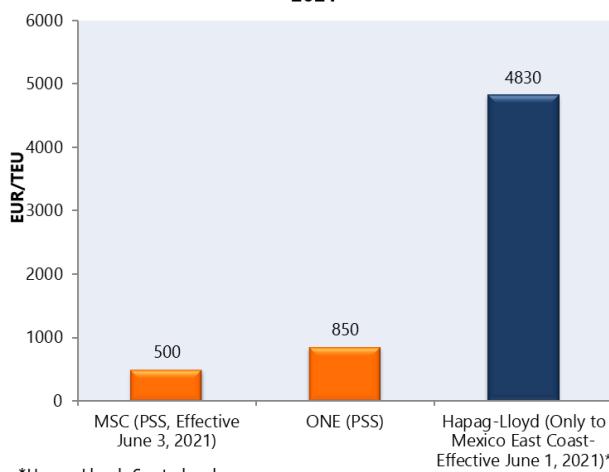

Asia-North America (EB) - Effective June 1, 2021

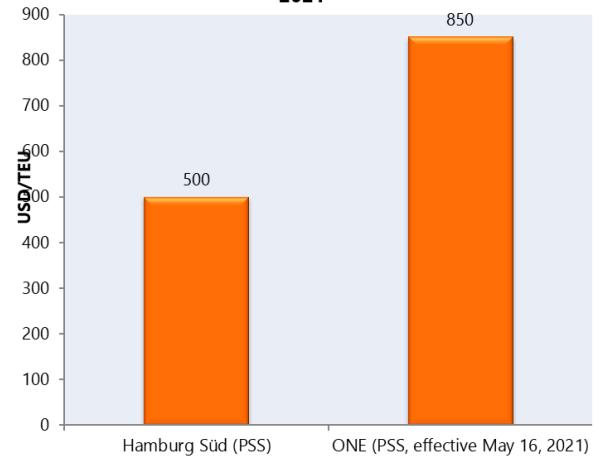
Asia-South Africa (WB) - Effective May 12, 2021

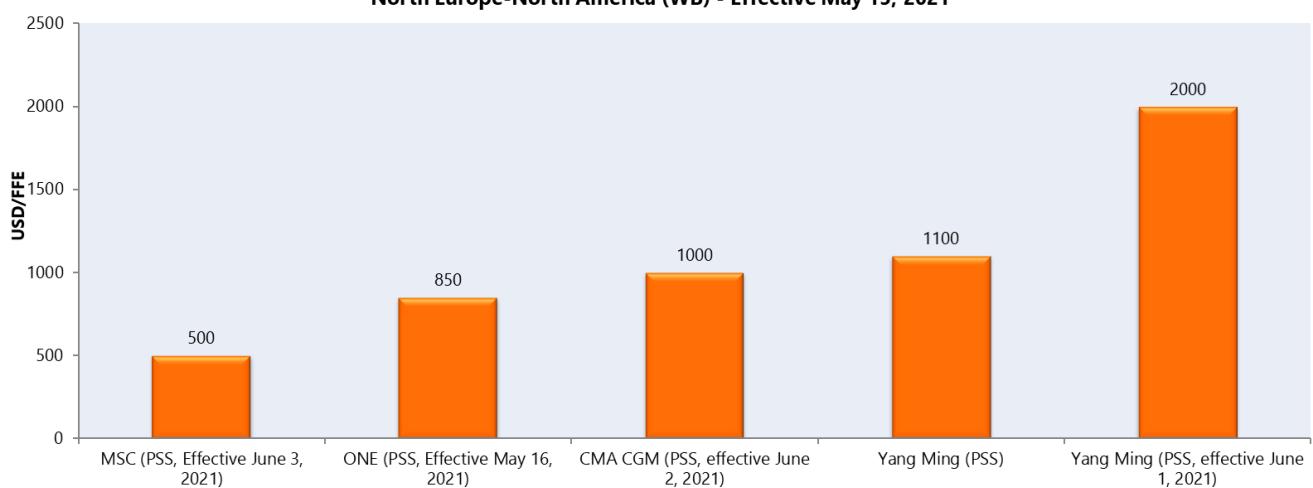
North America-MEA/Red Sea/Arabian Gulf/ISC (WB) - Effective May 15, 2021



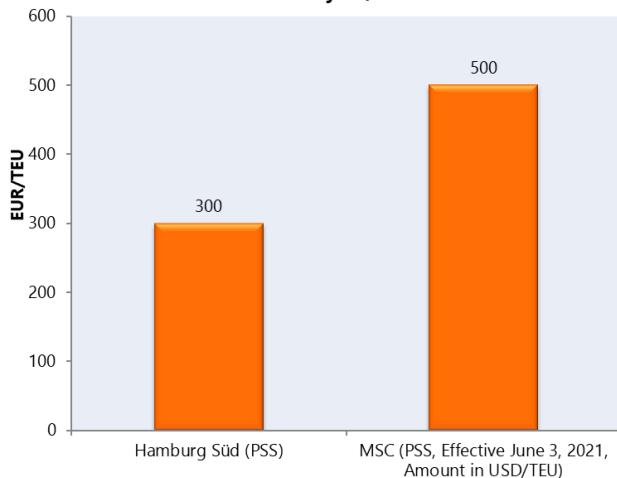
*Hapag-Lloyd: 12 rate levels



Mediterranean-Mexico (WB) - Effective May 16, 2021



*Hapag-Lloyd: 6 rate levels


North Europe-Mexico (WB) - Effective May 15, 2021

North Europe-North America (WB) - Effective May 15, 2021

North Europe-Central America/WCSA (WB) - Effective May 15, 2021

Trade lane	Carrier	Rate increase	Effective date
Asia-Pacific Islands (EB)	ANL	100 USD/TEU	May 10, 2021
North America-Asia (WB)	HMM	200 USD/FFE	May 10, 2021
Mediterranean-Oceania (SB)	CMA CGM	400 USD/TEU*	May 11, 2021
North Europe-Oceania (SB)	CMA CGM	400 USD/TEU*	May 11, 2021
Mediterranean-Asia (WB)	CMA CGM	300 USD/TEU*	May 15, 2021
Asia-WCSA/CAM/CAR (EB)	COSCO	300 USD/RF	May 15, 2021
Asia-ECSA (EB)	COSCO	800 USD/TEU	May 15, 2021
Asia-East Africa (WB)	COSCO	300 USD/TEU	May 15, 2021
Mediterranean-North Europe (NB)	Hapag-Lloyd	100 EUR/TEU	May 15, 2021
Asia-Oceania (SB)	ANL	300 USD/TEU	May 15, 2021
Asia-West Africa (WB)	COSCO	300 USD/TEU	May 16, 2021
Central America/Caribbean-South America (SB)	SeaLand	100 USD/TEU	May 16, 2021
Central America/Caribbean-North America (NB)	SeaLand	250 USD/FFE	May 16, 2021
Africa-Bangladesh (EB)	CMA CGM	800 USD/RF	May 18, 2021
North America-South America (SB)	Hapag-Lloyd	200 USD/FFE	June 1, 2021
South America-North America (NB)	Hapag-Lloyd	200 USD/FFE	June 1, 2021
Oceania-Europe/America (NB)	CMA CGM	400 USD/TEU*	June 1, 2021
		*PSS	
Trade lane	Carrier	Rate level	Effective date
Red Sea-Europe (NB)	CMA CGM	1500 USD/TEU	May 18, 2021
East Africa-Europe (NB)	CMA CGM	1530 USD/TEU	May 23, 2021

Sea-Intelligence Reports & Products

Global Liner Performance Report – New March 2021 Report Available

The Liner Industry's most comprehensive report on Liner Schedule Reliability

- 1.1 million vessel arrivals, across 400+ different ports, and 500+ Loops/Services
- Global schedule reliability based on more than 12,000 distinct vessel arrivals per month
- Schedule reliability for 34 trade lanes, split by 60+ named carriers and broken down across individual loops/services
- Average delay for all vessel arrivals and for late vessels arrivals, across all trade lanes

The monthly report contains 116 detailed pages with tables and graphs, quantifying carrier performance at a detailed level, ranging from global to trade lane to service.

12-month subscription: 2,000 Euro. Single issue: 500 Euro.

Order at: info@sea-intelligence.com - Contact us for specialized reliability analysis based on our database.

Trade Capacity Outlook Report

In-depth weekly report, providing detailed overview of actual capacity offered in the main trade lanes for the coming 12 weeks. The outlook is based on the detailed sailing schedules combined with information of service changes and blanking of sailings. You can pro-actively identify weeks of capacity shortages as well as weeks of excess capacity inflow and plan accordingly.

- 19 Trade lanes covered
- Year-on-year changes as well as week-on-week changes
- Data broken down into named main carriers and alliances

Annual subscription: 2,200 Euro. Order at: info@sea-intelligence.com

How to subscribe to Sea-Intelligence Sunday Spotlight?

Send an email requesting the subscription to info@sea-intelligence.com stating whether you want a quarter or a full year subscription. Your subscription will be available immediately, and you will receive an invoice with bank payment details, or you can pay by credit card (VISA and Mastercard).

Subscription options:

- One quarter: 600 Euro
- One-year subscription: 1,800 Euro – this is a 25% discount, equal to getting 13 weeks for free.

Tailor-Made Analysis and Advisory

Our core belief is that anything in this industry can be analysed – and analysed well. However, the solution to a particularly difficult problem often rests in the ability to think out of the box and develop new analytical viewpoints. Doing this is our key strength.

At Sea-Intelligence we have a combination of extensive practical industry experience, combined with strong academic analytical skills. We have served a wide range of customers looking to gain insights into the container shipping industry including:

- Container carriers
- Freight forwarders
- Financial institutions
- Cargo owners
- Ports
- IT companies
- Equipment manufacturers
- Non-governmental interest organizations

Contact info@sea-intelligence.com to discuss how we may assist you with tailor-made analysis.

Copyright and Disclaimer

Editor:

CEO and Partner, Mr Alan Murphy – am@sea-intelligence.com

Analysts:

Shipping Analyst, Mr Imaad Asad – ja@sea-intelligence.com

Shipping Analyst, Mr Adam Szabo – as@sea-intelligence.com

External analyst, Mr Lars Jensen - lars.jensen@vespucci-maritime.com

Sea-Intelligence ApS

Vermlandsgade 51, 2

2300 Copenhagen S

Denmark

www.Sea-Intelligence.com

Tel: +45 6068 77 44 | E-mail: info@sea-intelligence.com

© Copyright – Sea-Intelligence Sunday Spotlight is for use exclusively by the subscribing company. Any redistribution by any means (including electronically and printed) outside the subscribing company is strictly prohibited. Redistribution is a violation of the terms and conditions of sale, and an infringement of the copyright conditions. We reserve all rights in case infringements are detected.