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Inference on Winners

We study inference on the best-performing treatment in an experiment

Data-driven choice of target parameter leads to bias and undercoverage for
conventional estimators and confidence sets, respectively
Previously noted by many others, e.g. Lee and Shen (2018)

To illustrate, consider a stylized example



Setup

Consider a researcher who runs a randomized trial and estimates average
outcomes under two treatments, θ ∈ Θ = {θ1, θ2}(

X (θ1)
X (θ2)

)
∼ N

((
µ(θ1)
µ(θ2)

)
, I2

)
,

where µ(θ) is population average outcome under θ

Which treatment to recommend? Natural to maximize observed outcomes:

θ̂ = arg max
θ

X (θ)

Along with recommendation, want assessment of effectiveness: estimates and

confidence sets for µ
(
θ̂
)



Winner’s Curse

θ̂ = θ1 ⇒ X (θ1) ≥ X (θ2)

Distribution of X (θ1) conditional on θ̂ = θ1 is truncated below, and

Pr
{
X (θ1) > µ(θ1)|θ̂ = θ1

}
>

1

2

Since same true for θ2, holds unconditionally as well

P
{
X (θ̂) > µ(θ̂)

}
>

1

2

Hence, X (θ̂) is upwards median biased as an estimator of µ(θ̂). Confidence set[
X (θ̂)− 1.96,X (θ̂) + 1.96

]
may undercover



Simulation Designs

Consider cases with |Θ| = 2, 10, 50 treatments

Still assume identity covariance matrix

Consider µ(θ1) ≥ µ(θ2) = ... = µ(θ−1)

First treatment (weakly) most effective

Examine performance of conventional estimator

µ̂ = X (θ̂)

and conventional (“naive”) confidence set[
X (θ̂)− 1.96,X (θ̂) + 1.96

]



Winner’s Curse
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Winner’s Curse
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Stylized Example: Conditional Inference

Two possible goals for corrected inference

First: Conditional Inference

Want procedures to be valid conditional on θ̂
Requires validity conditional on the recommendation made

For confidence sets, conditional coverage

Prµ
{
µ(θ̂) ∈ CS |θ̂ = θ̃

}
≥ 1− α for all θ̃ ∈ Θ, µ

For estimators, conditional median unbiasedness

Prµ
{
µ̂ > µ(θ̂)|θ̂ = θ̃

}
=

1

2
for all θ̃ ∈ Θ, µ



Unconditional Inference

Second: Unconditional Inference

Require validity only on average across values of θ̂
Valid on average, but not conditional on recommendation

For confidence sets, unconditional coverage

Prµ
{
µ(θ̂) ∈ CS

}
≥ 1− α for all µ

For estimators, unconditional median unbiasedness

Prµ
{
µ̂ > µ(θ̂)

}
=

1

2
for all µ

Less demanding than conditional inference

Any valid conditional procedure is also valid unconditionally
Class of unconditional procedures is larger. May allow (unconditional) performance
improvements



Conditional vs. Unconditional

Why would we want to impose conditional validity?

Suppose θ1 is a new treatment, and θ2 is control

Baseline is the control

If impose only unconditional validity, and Pr
{
θ̂ = θ1

}
is small, may have

Pr
{
µ(θ̂) ∈ CS |θ̂ = θ1

}
� 1− α

so confidence set is too optimistic when recommend new treatment

If implement, results may lie below CS with high probability

Conditional vs. unconditional validity: does this bother us?

Yes: want coverage conditional on recommendation
⇒ impose conditional validity
No: only care about performance on average across cases where do and don’t
recommend the new treatment
⇒ impose unconditional validity



Conditional Inference Results

Consider inference on µ(θ̂) conditional on θ̂ = θ1
Conditional distribution of X multivariate truncated normal

Exponential family ⇒ optimal median-unbiased estimator µ̂ 1
2
, equal tailed

confidence set CSET
“Equal tailed” in sense that equally likely to over- and under-estimate µ(θ̂)



Unconditional Inference Results

Two options:

1 Conditional confidence set CSET
2 Projection confidence set (existing approach)

CSP = [X (θ̂)− c1−α,X (θ̂) + c1−α],

for c1−α the (1− α) quantile of max{|Z1|, |Z2|}, Z ∼ N(0, I2)

Forms a rectangular joint confidence for (µ(θ1), µ(θ2)) and projects to obtain
confidence set for µ(θ̂)

Neither confidence set fully satisfactory:

Conditional confidence sets performs well when µ(θ1)� µ(θ2) or the reverse,
poorly when µ(θ1) ≈ µ(θ2)

CSP performs reasonably well when µ(θ1) ≈ µ(θ2), but unnecessarily wide when
µ(θ1)� µ(θ2)



Unconditional Inference Results

If we require conditional coverage, conditional procedures optimal so little scope
for improvement

If we only care about unconditional coverage, propose Hybrid confidence set
CSH

ET , and corresponding estimator

Combine conditioning and projection (details in paper)
Allows substantial (unconditional) performance improvements



Coverage
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Median Length
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Wrapping Up

Takeaways:

Inference on the best-performing treatment invalidates conventional inference

We develop optimal inference procedures that are valid conditional on treatment
selected

If satisfied with unconditional validity, we propose Hybrid inference procedures
with better performance

In the paper we:

Extend our results to more general settings (general correlation structures,
asymptotic results)

Show how similar ideas dominate sample-splitting

Illustrate with applications



The End

Thanks very much!
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