

Inference on Winners

Isaiah Andrews¹ Toru Kitagawa² Adam McCloskey³

¹Harvard University

²Brown University

³University of Colorado

October 26, 2022

Inference on Winners

- We study inference on the best-performing treatment in an experiment
 - Data-driven choice of target parameter leads to bias and undercoverage for conventional estimators and confidence sets, respectively
 - Previously noted by many others, e.g. Lee and Shen (2018)
- To illustrate, consider a stylized example

Setup

- Consider a researcher who runs a randomized trial and estimates average outcomes under two treatments, $\theta \in \Theta = \{\theta_1, \theta_2\}$

$$\begin{pmatrix} X(\theta_1) \\ X(\theta_2) \end{pmatrix} \sim N \left(\begin{pmatrix} \mu(\theta_1) \\ \mu(\theta_2) \end{pmatrix}, I_2 \right),$$

where $\mu(\theta)$ is population average outcome under θ

- Which treatment to recommend? Natural to maximize observed outcomes:

$$\hat{\theta} = \arg \max_{\theta} X(\theta)$$

- Along with recommendation, want assessment of effectiveness: estimates and confidence sets for $\mu(\hat{\theta})$

Winner's Curse

- $\hat{\theta} = \theta_1 \Rightarrow X(\theta_1) \geq X(\theta_2)$
- Distribution of $X(\theta_1)$ conditional on $\hat{\theta} = \theta_1$ is truncated below, and

$$Pr \left\{ X(\theta_1) > \mu(\theta_1) | \hat{\theta} = \theta_1 \right\} > \frac{1}{2}$$

- Since same true for θ_2 , holds unconditionally as well

$$P \left\{ X(\hat{\theta}) > \mu(\hat{\theta}) \right\} > \frac{1}{2}$$

- Hence, $X(\hat{\theta})$ is upwards median biased as an estimator of $\mu(\hat{\theta})$. Confidence set

$$[X(\hat{\theta}) - 1.96, X(\hat{\theta}) + 1.96]$$

may undercover

Simulation Designs

- Consider cases with $|\Theta| = 2, 10, 50$ treatments
 - Still assume identity covariance matrix
- Consider $\mu(\theta_1) \geq \mu(\theta_2) = \dots = \mu(\theta_{-1})$
 - First treatment (weakly) most effective
- Examine performance of conventional estimator

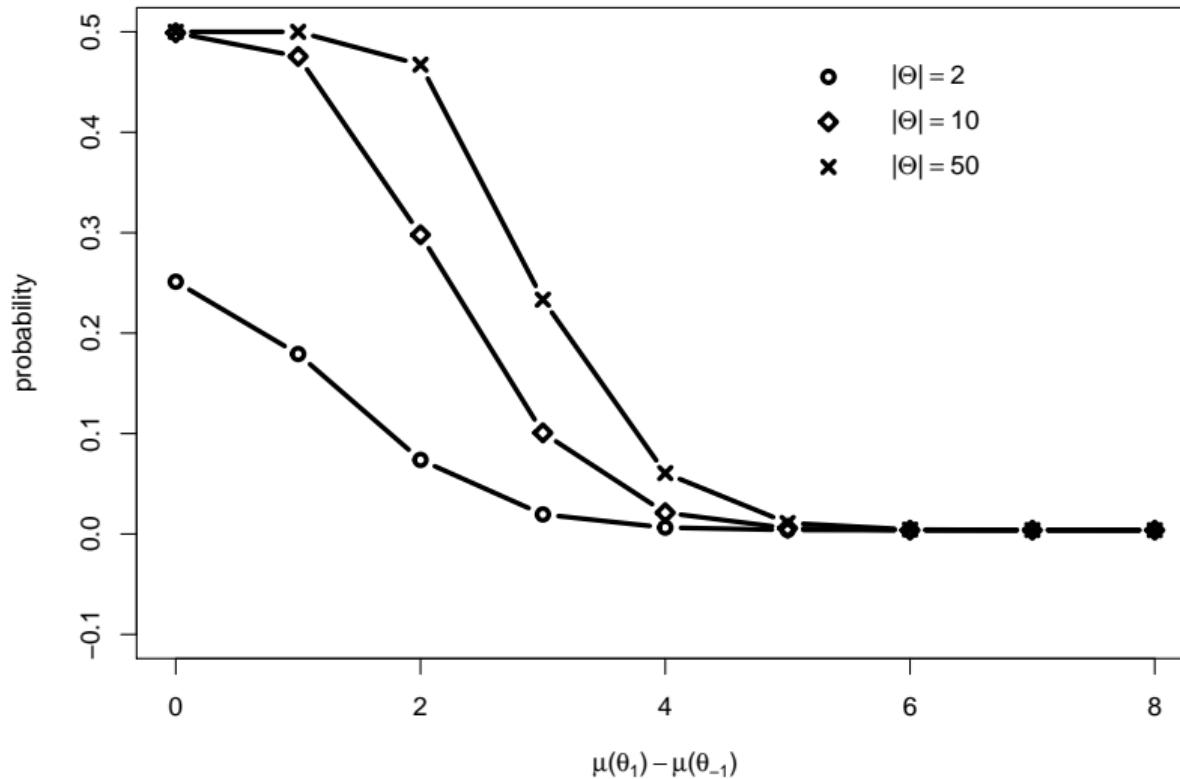
$$\hat{\mu} = X(\hat{\theta})$$

and conventional ("naive") confidence set

$$\left[X(\hat{\theta}) - 1.96, X(\hat{\theta}) + 1.96 \right]$$

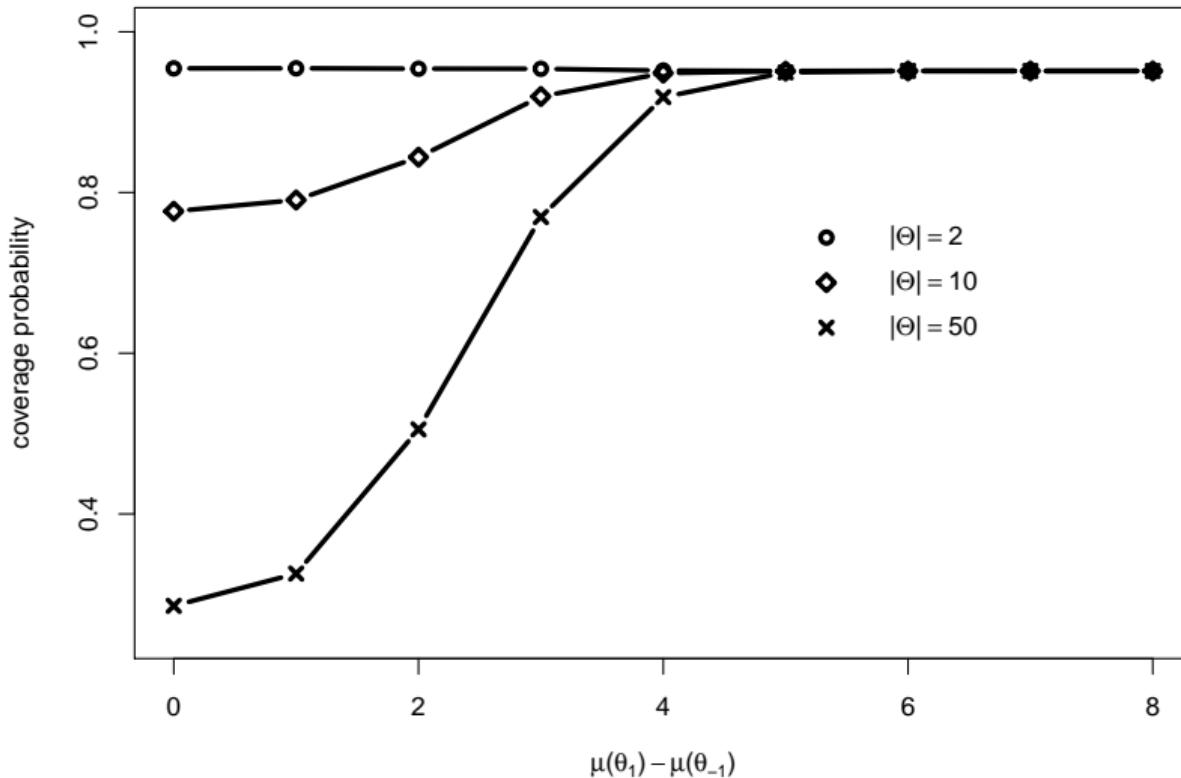
Winner's Curse

Unconditional median bias, $\Pr(\hat{X}(\hat{\theta}) > \hat{\mu}(\hat{\theta})) - 1/2$



Winner's Curse

Unconditional coverage probability of Conventional 95% CIs



Stylized Example: Conditional Inference

Two possible goals for corrected inference

- First: Conditional Inference
 - Want procedures to be valid conditional on $\hat{\theta}$
 - Requires validity conditional on the recommendation made
- For confidence sets, conditional coverage

$$Pr_{\mu} \left\{ \mu(\hat{\theta}) \in CS \mid \hat{\theta} = \tilde{\theta} \right\} \geq 1 - \alpha \text{ for all } \tilde{\theta} \in \Theta, \mu$$

- For estimators, conditional median unbiasedness

$$Pr_{\mu} \left\{ \hat{\mu} > \mu(\hat{\theta}) \mid \hat{\theta} = \tilde{\theta} \right\} = \frac{1}{2} \text{ for all } \tilde{\theta} \in \Theta, \mu$$

Unconditional Inference

- Second: Unconditional Inference
 - Require validity only on average across values of $\hat{\theta}$
 - Valid on average, but not conditional on recommendation
- For confidence sets, unconditional coverage

$$Pr_{\mu} \left\{ \mu(\hat{\theta}) \in CS \right\} \geq 1 - \alpha \text{ for all } \mu$$

- For estimators, unconditional median unbiasedness

$$Pr_{\mu} \left\{ \hat{\mu} > \mu(\hat{\theta}) \right\} = \frac{1}{2} \text{ for all } \mu$$

- Less demanding than conditional inference
 - Any valid conditional procedure is also valid unconditionally
 - Class of unconditional procedures is larger. May allow (unconditional) performance improvements

Conditional vs. Unconditional

Why would we want to impose conditional validity?

- Suppose θ_1 is a new treatment, and θ_2 is control
 - Baseline is the control
- If impose only unconditional validity, and $Pr\{\hat{\theta} = \theta_1\}$ is small, may have

$$Pr\{\mu(\hat{\theta}) \in CS | \hat{\theta} = \theta_1\} \ll 1 - \alpha$$

so confidence set is too optimistic when recommend new treatment

- If implement, results may lie below CS with high probability
- Conditional vs. unconditional validity: does this bother us?
 - Yes: want coverage conditional on recommendation
⇒ impose conditional validity
 - No: only care about performance on average across cases where do and don't recommend the new treatment
⇒ impose unconditional validity

Conditional Inference Results

- Consider inference on $\mu(\hat{\theta})$ conditional on $\hat{\theta} = \theta_1$
- Conditional distribution of X multivariate truncated normal
 - Exponential family \Rightarrow optimal median-unbiased estimator $\hat{\mu}_{\frac{1}{2}}$, equal tailed confidence set CS_{ET}
 - “Equal tailed” in sense that equally likely to over- and under-estimate $\mu(\hat{\theta})$

Unconditional Inference Results

Two options:

- ① Conditional confidence set CS_{ET}
- ② Projection confidence set (existing approach)

$$CS_P = [X(\hat{\theta}) - c_{1-\alpha}, X(\hat{\theta}) + c_{1-\alpha}],$$

for $c_{1-\alpha}$ the $(1 - \alpha)$ quantile of $\max\{|Z_1|, |Z_2|\}$, $Z \sim N(0, I_2)$

- Forms a rectangular joint confidence for $(\mu(\theta_1), \mu(\theta_2))$ and projects to obtain confidence set for $\mu(\hat{\theta})$

Neither confidence set fully satisfactory:

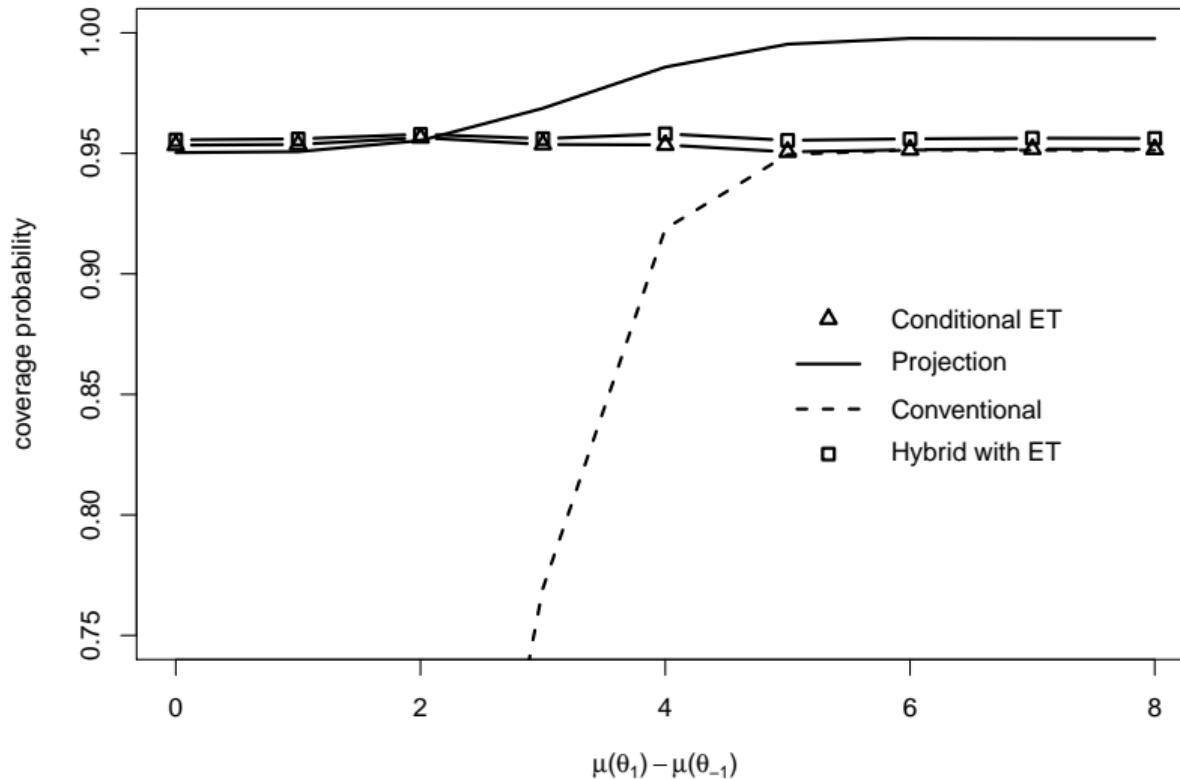
- Conditional confidence sets performs well when $\mu(\theta_1) \gg \mu(\theta_2)$ or the reverse, poorly when $\mu(\theta_1) \approx \mu(\theta_2)$
- CS_P performs reasonably well when $\mu(\theta_1) \approx \mu(\theta_2)$, but unnecessarily wide when $\mu(\theta_1) \gg \mu(\theta_2)$

Unconditional Inference Results

- If we require conditional coverage, conditional procedures optimal so little scope for improvement
- If we only care about unconditional coverage, propose Hybrid confidence set CS_{ET}^H , and corresponding estimator
 - Combine conditioning and projection (details in paper)
 - Allows substantial (unconditional) performance improvements

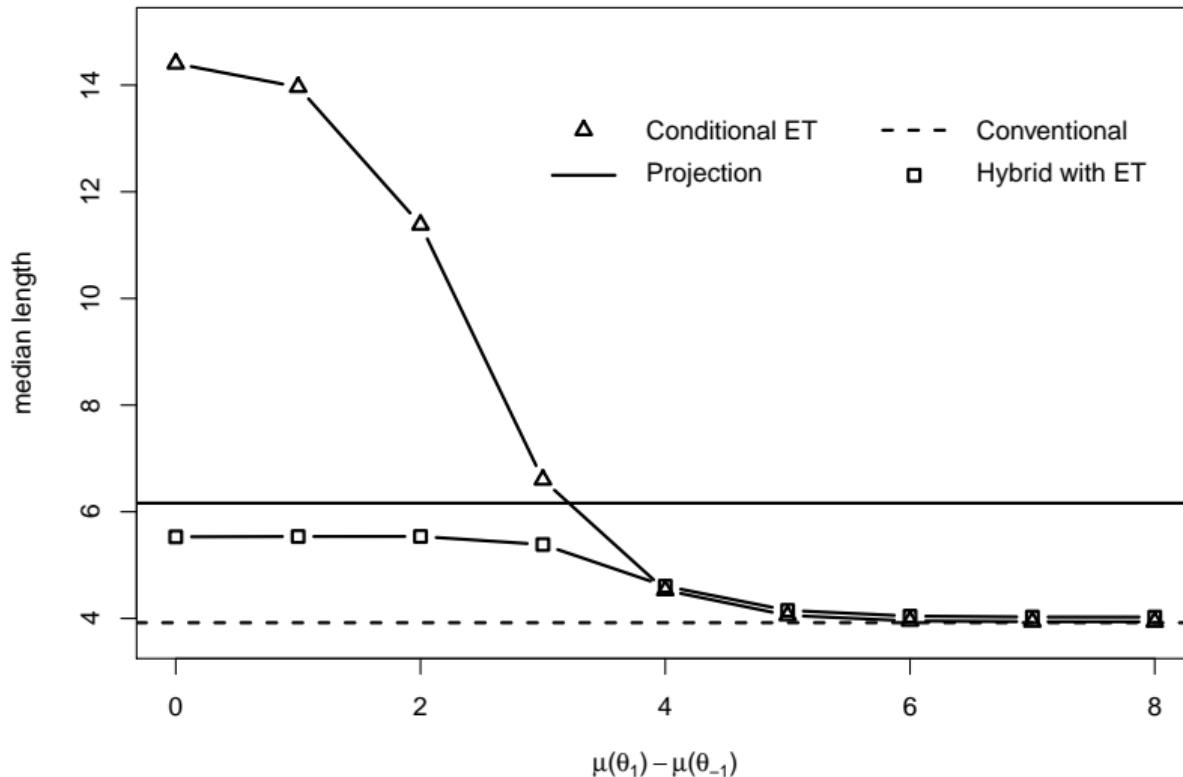
Coverage

Unconditional coverage probability of 95% CS: 50 policies



Median Length

Median length of 95% CS: 50 policies



Wrapping Up

Takeaways:

- Inference on the best-performing treatment invalidates conventional inference
- We develop optimal inference procedures that are valid conditional on treatment selected
- If satisfied with unconditional validity, we propose Hybrid inference procedures with better performance

In the paper we:

- Extend our results to more general settings (general correlation structures, asymptotic results)
- Show how similar ideas dominate sample-splitting
- Illustrate with applications

The End

Thanks very much!