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Inference on Winners

@ We study inference on the best-performing treatment in an experiment

e Data-driven choice of target parameter leads to bias and undercoverage for
conventional estimators and confidence sets, respectively
o Previously noted by many others, e.g. Lee and Shen (2018)

@ To illustrate, consider a stylized example



Setup

o Consider a researcher who runs a randomized trial and estimates average
outcomes under two treatments, § € © = {61, 6>}

( X(61) ) Y << 14(61) > ,2>
X(02) we2) )7 7))
where 1(6) is population average outcome under 6
@ Which treatment to recommend? Natural to maximize observed outcomes:
0 =arg max X(0)

@ Along with recommendation, want assessment of effectiveness: estimates and
confidence sets for (9)



Winner's Curse
o =0 = X(61) > X(62)
e Distribution of X(6;) conditional on § = 6; is truncated below, and

1

Pr{X(@l) > u(61)]0 = 91} >3

@ Since same true for 65, holds unconditionally as well

P {X(é) > M(é)} > %

e Hence, X(0) is upwards median biased as an estimator of (). Confidence set
[X(é) —1.96,X(d) + 1.96}

may undercover



Simulation Designs

o Consider cases with |©] = 2,10, 50 treatments
o Still assume identity covariance matrix

e Consider p(01) > u(62) = ... = p(0-1)
o First treatment (weakly) most effective

@ Examine performance of conventional estimator
fi = X(0)
and conventional (“naive") confidence set

[X(é) ~1.96,X(d) +1.96



Winner's Curse

probability
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Winner's Curse

Unconditional coverage probability of Conventional 95% Cls
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Stylized Example: Conditional Inference

Two possible goals for corrected inference
o First: Conditional Inference

o Want procedures to be valid conditional on §
e Requires validity conditional on the recommendation made

@ For confidence sets, conditional coverage
Pr, {,u(é) € CS|h = 5} >1—aforalldecO,p
@ For estimators, conditional median unbiasedness

A A ~ 1 -
Pr, {ﬂ > u(0)|d = e} =S foralldeo,u



Unconditional Inference

@ Second: Unconditional Inference

e Require validity only on average across values of 6
e Valid on average, but not conditional on recommendation

@ For confidence sets, unconditional coverage
Pr, {,u(é) € CS} >1—aforall

@ For estimators, unconditional median unbiasedness

A 1
Pr, {ﬂ > u(ﬁ)} =5 for all u

@ Less demanding than conditional inference
e Any valid conditional procedure is also valid unconditionally
o Class of unconditional procedures is larger. May allow (unconditional) performance
improvements



Conditional vs. Unconditional

Why would we want to impose conditional validity?

@ Suppose #; is a new treatment, and 6, is control
e Baseline is the control

@ If impose only unconditional validity, and Pr {é = 91} is small, may have

Pr{,u(é) e CS|0 = 91} <l-a

so confidence set is too optimistic when recommend new treatment
o If implement, results may lie below CS with high probability
e Conditional vs. unconditional validity: does this bother us?

e Yes: want coverage conditional on recommendation
= impose conditional validity

o No: only care about performance on average across cases where do and don't
recommend the new treatment
= impose unconditional validity



Conditional Inference Results

e Consider inference on y(f) conditional on 6 = 6;
e Conditional distribution of X multivariate truncated normal

e Exponential family = optimal median-unbiased estimator ﬁ%, equal tailed
confidence set CSer
e “Equal tailed” in sense that equally likely to over- and under-estimate p(6)



Unconditional Inference Results

Two options:
@ Conditional confidence set CSet

@ Projection confidence set (existing approach)
CSp = [X(0) — c1-a, X(0) + c1-a],

for c1_q the (1 — «) quantile of max{|Zi|, | 22|}, Z ~ N(0, k)

o Forms a rectangular joint confidence for (u(61), 1(62)) and projects to obtain

A

confidence set for p(6)
Neither confidence set fully satisfactory:
e Conditional confidence sets performs well when i(61) > 1(62) or the reverse,
poorly when u(601) ~ p(62)
e CSp performs reasonably well when 1(01) =~ p(62), but unnecessarily wide when
(1) > 1(62)



Unconditional Inference Results

@ If we require conditional coverage, conditional procedures optimal so little scope
for improvement
@ If we only care about unconditional coverage, propose Hybrid confidence set
CSET, and corresponding estimator
e Combine conditioning and projection (details in paper)
o Allows substantial (unconditional) performance improvements
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Median Length
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Wrapping Up

Takeaways:
@ Inference on the best-performing treatment invalidates conventional inference
@ We develop optimal inference procedures that are valid conditional on treatment
selected
@ If satisfied with unconditional validity, we propose Hybrid inference procedures
with better performance
In the paper we:
e Extend our results to more general settings (general correlation structures,
asymptotic results)
@ Show how similar ideas dominate sample-splitting

@ lllustrate with applications



The End

Thanks very much!
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