

12TH ANNUAL NABE

TRANSFER PRICING SYMPOSIUM

JULY 19-21, 2022

FOUR SEASONS HOTEL | WASHINGTON, DC

SHAPLEY VALUE Can Be Used as an Unspecified Method in Transfer Pricing

Lorraine Eden, Texas A&M

Yves Hervé, NERA

John Hickey, Johnson & Johnson

AGENDA

- I. Introduction - Shapley Value: A Fairer Way to Allocate Group Profits**
- II. Using Shapley Value to Attribute Value within the MNE Group**
- III. Why Shapley Value Should Be an Unspecified Method in Transfer Pricing Regulations**
- IV. Wrap-Up and Q&A**

I. Shapley Value: A Fairer Way to Allocate Group Profits

Shapley Value - “for the theory of stable allocations and the practice of market design”

- Shapley Value is a solution concept in cooperative game theory.
 - Named in honor of Lloyd Shapley
 - Nobel Prize in Economics 2012
- Problem: A coalition of players cooperates and obtains a certain overall gain from that cooperation.
 - *How important is each player to the overall cooperation, and what payoff can each player reasonably expect?*

Useful Properties of Shapley Value

Assigns a unique distribution of the total surplus generated by a coalition of players in a cooperative game. Clear focus on business synergies from collaboration that add extra value to the players.

Takes account of (1) differences among players in their contributions to the coalition and (2) differences in their bargaining power when considering outside options.

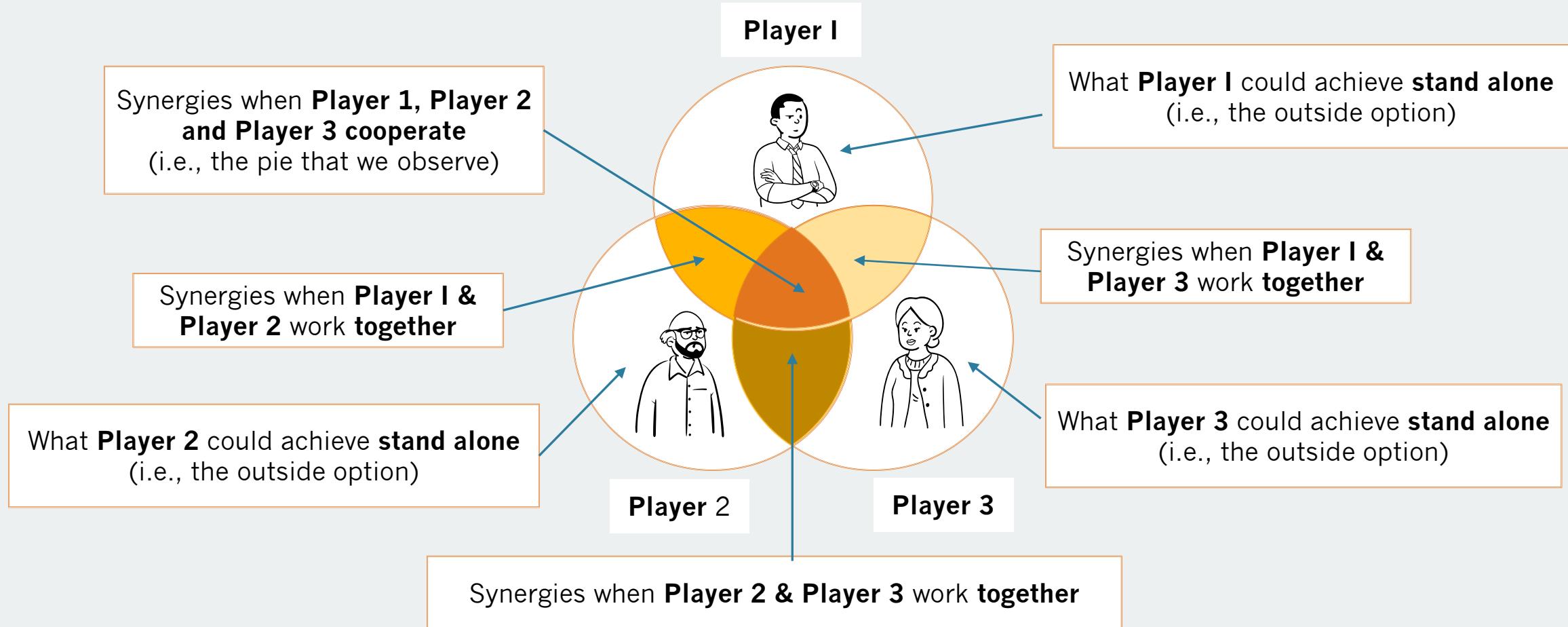
Assesses the relative contribution of each player to the overall game and what payoff each player should reasonably expect from their respective contribution.

Example: Shapley Value in a Three-Player Game

Example: Assume a three-player game. How should the total value be distributed among the players if they provide different contributions and differ in their bargaining power?

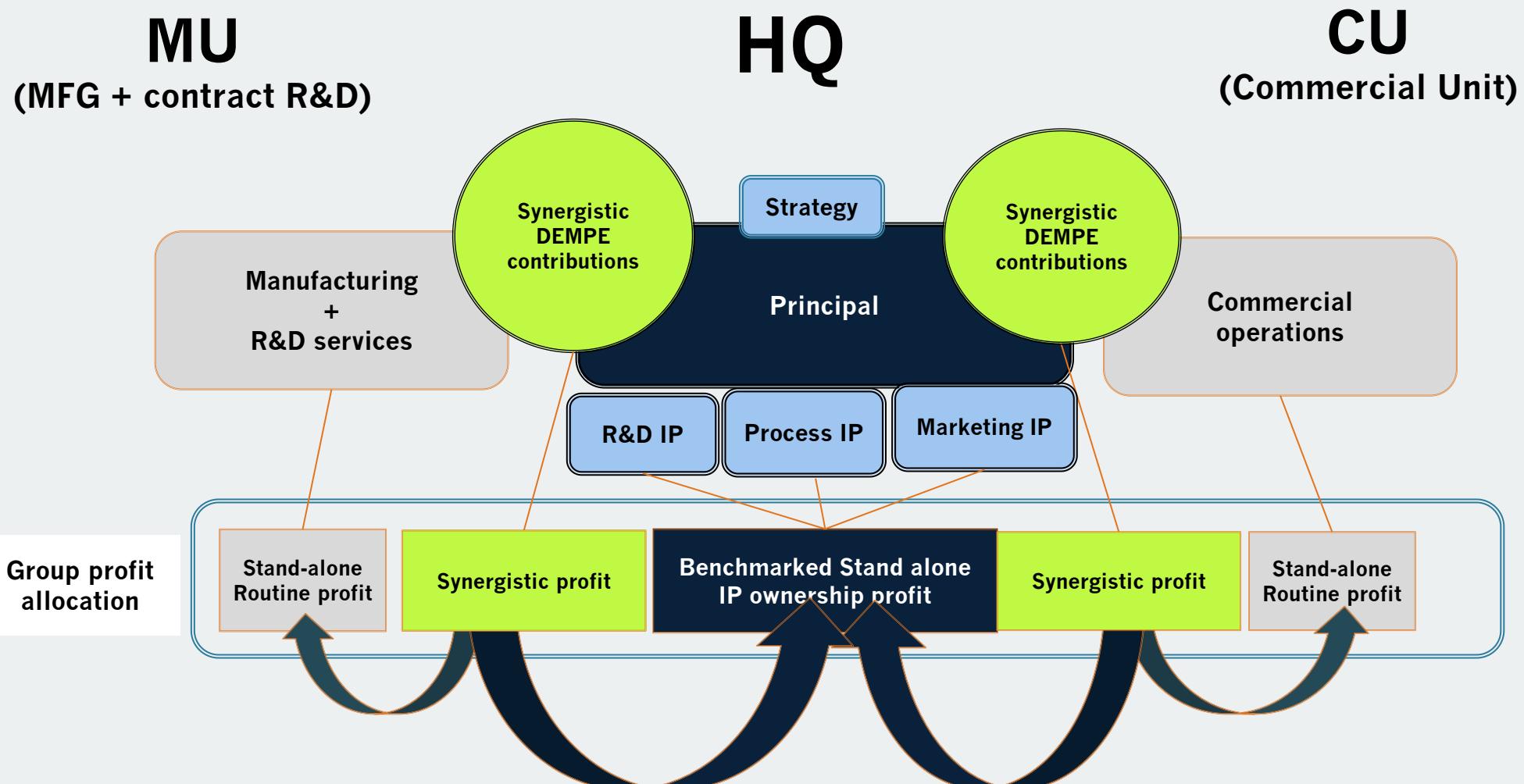
1. Calculate value to each player of playing alone or of playing with different sized coalitions
2. Take ordering into account by calculating, for each ordering, the marginal contribution each new player adds to the coalition
3. The average of the sum of each player's marginal contributions is his/her Shapley Value.
4. The Shapley Value formula allocates all consolidated profit earned together.

Number of players: 3 ▾


Change

Value of coalition {}:	0
Value of coalition {1}:	0
Value of coalition {2}:	0
Value of coalition {2, 1}:	0
Value of coalition {3}:	0
Value of coalition {3, 1}:	0
Value of coalition {3, 2}:	0
Value of coalition {3, 2, 1}:	0

Compute


<http://shapleyvalue.com>

Intuition behind the Shapley Value

How to calculate Shapley Value: Determine the marginal contribution of each player to each possible coalition and average each player's marginal contribution across all possible coalitions to estimate that player's Value Creation to the group.

II. Using Shapley Value to Attribute Value within MNE Group

Economic Aspects to Consider for MNE Group

Stand-alone options of contributing entities in view of own capabilities, competitive market conditions, barriers to entry

Marginal DEMPE contributions & business synergies from collaborating with complementary companies

Observable market data & outcomes

Hypothetical Example: Estimated Coalition Values

Three players:

HQ: Headquarters as IP owner

MU: Manufacturing unit (+ contract R&D)

CU: Commercial unit

Coalition	Lower Bounds Synergies		Upper Bounds Synergies	
¹ HQ	8.0%		10.0%	
² MU (+ contract R&D)	2.0%		4.0%	
³ CU	2.0%		4.0%	
⁴ HQ, MU	14.0%	4.0%	22.0%	8.0%
⁵ HQ, CU	11.0%	1.0%	17.0%	3.0%
⁶ MU, CU	5.0%	1.0%	10.0%	2.0%
⁷ HQ, CU, MU	25.0%	13.0%	25.0%	7.0%

Consolidated value chain profit

Business & group synergies

Determined through stand-alone functional or IP benchmarking (e.g., CPM, TNMM, CUT)

In consideration of local market conditions and relative bargaining power, to be assessed through case-specific fact finding

Hypothetical Example: Shapley Value with Lower Bounds

MU

Ordering	Set of players before MU	Coalition value before MU	Coalition value with MU	Marginal contribution of the MU
1 HQ, CU, MU	{HQ, CU}	11.0%	25.0%	14.0%
2 HQ, MU, CU	{HQ}	8.0%	14.0%	6.0%
3 CU, HQ, MU	{CU, HQ}	11.0%	25.0%	14.0%
4 CU, MU, HQ	{CU}	2.0%	5.0%	3.0%
5 MU, HQ, CU	0	0.0%	2.0%	2.0%
6 MU, CU, HQ	0	0.0%	2.0%	2.0%

MU Shapley value

6.8%

HQ

Ordering	Set of players before HQ	Coalition value before HQ	Coalition value with HQ	Marginal contribution of the HQ
1 HQ, CU, MU	0	0.0%	8.0%	8.0%
2 HQ, MU, CU	0	0.0%	8.0%	8.0%
3 CU, HQ, MU	{CU}	2.0%	11.0%	9.0%
4 CU, MU, HQ	{CU, MU}	5.0%	25.0%	20.0%
5 MU, HQ, CU	{MU}	2.0%	14.0%	12.0%
6 MU, CU, HQ	{MU, CU}	5.0%	25.0%	20.0%

HQ Shapley value

12.8%

CU Shapley value

5.3%

Total

25.0%

Profit
margins in %
of external
sales

Estimate of Shapley Value with Upper Bounds and Comparison

MU				
Ordering	Set of players before MU	Coalition value before MU	Coalition value with MU	Marginal contribution of the MU
1 HQ, CU, MU	{HQ, CU}	17.0%	25.0%	8.0%
2 HQ, MU, CU	{HQ}	10.0%	22.0%	12.0%
3 CU, HQ, MU	{CU, HQ}	17.0%	25.0%	8.0%
4 CU, MU, HQ	{CU}	4.0%	10.0%	6.0%
5 MU, HQ, CU	0	0.0%	4.0%	4.0%
6 MU, CU, HQ	0	0.0%	4.0%	4.0%

Profit margins in % of external sales

HQ				
Ordering	Set of players before HQ	Coalition value before HQ	Coalition value with HQ	Marginal contribution of the HQ
1 HQ, CU, MU	0	0.0%	10.0%	10.0%
2 HQ, MU, CU	0	0.0%	10.0%	10.0%
3 CU, HQ, MU	{CU}	4.0%	17.0%	13.0%
4 CU, MU, HQ	{CU, MU}	10.0%	25.0%	15.0%
5 MU, HQ, CU	{MU}	4.0%	22.0%	18.0%
6 MU, CU, HQ	{MU, CU}	10.0%	25.0%	15.0%

Upper Bounds

Lower Bounds

MU Shapley value 7.0%

HQ Shapley value 13.5%

CU Shapley value 4.5%

Total 25.0%

Note: Difference in Shapley Values using Upper Bounds and Lower Bounds estimates is small

12.8%

5.3%

25.0%

III. Why Shapley Value as Unspecified Method in TP Regulations

Robust Economic foundation for crucial quantitative findings

Multi-sided analysis

Tailoring to specific market or business line conditions

validation and corroboration of profit split solutions

Tax audits: focus on quantitative-economic arguments, allowing for an informed and constructive discussion with tax authorities

Litigation and arbitration: Helping to resolve disputes in a principled manner in corroboration with traditional methods (e.g., adjustment of benchmarked CPM/TNMM margins in consideration of some local DEMPE contributions)

➤ **Shapley Value can help establish, support and defend a fair and robust profit allocation**

Post-BEPS Non-Routine Profit Allocation Considerations

Legal IP concept replaced by broader concept of **intangibles and entrepreneurial roles and risks**

Tension between legal ownership of intangibles and significant **DEMPE functions**

Distinction between routine and non-routine functions blurred

MNE theory suggests MNEs strive to maximize **cross-functional synergies to outcompete their peers**

Different entities within the MNE group can have **entrepreneurial roles and assume strategic risks**

At the legal entity level, bargaining power depends on:

- **available outside options (including status quo)**
- Entity's functional bundle, risks, and local market position

➤ **Shapley Value can also establish, support and defend a fair and robust profit allocation under the OECD Transfer Pricing Guidelines**

IV. Wrap-Up and Q&A

Some Reading Materials on Shapley Value

- Shapley, L. S. (1953). A value of N-person games. In H. Kuhn, & A. W. Tucker, *Contributions to the Theory of Games, II* (S. 307-319).
- Hart, S. (1990). Advances in value theory. In T. Ichiishi, A. Neyman, and Y. Tauman, *Game Theory and Applications*, Academic Press, 166-175.
- Chary, H., and Hinteregger, L. (2015). Allocation of benefits arising from pure economies of scale among subsidiaries of an MNE. *Global Tax Weekly*, Issue 157 (November 12).
- Hahn, Verena, Yves Hervé, Salem Saljanin, and Lorraine Eden (2021) Shapley Value: A Fair Solution to the Value Creation Puzzle in Transfer Pricing? *Tax Notes International*, 104.4 (Oct. 18): 291-306. (see also the references at end of this article)

COMMENTARY & ANALYSIS
tax notes international®

Shapley Value: A Fair Solution to the Value Creation Puzzle in Transfer Pricing?

by Verena Hahn, Yves Hervé, Salem Saljanin, and Lorraine Eden

Verena Hahn is a professor of economics and international business law at BBW Hochschule – University of Applied Sciences in Berlin and a senior economist with NERA Economic Consulting in Germany. Yves Hervé is a consulting director at NERA Economic Consulting in Paris and with NERA Economic Consulting in Germany. Lorraine Eden (eden@tamu.edu) is a professor emerita of management and research professor of law at Texas A&M University. They thank Alexander Vagelis and Emmanuel Linares for helpful comments on an earlier draft. Please address any correspondence to Eden or Hervé.

In this article, the authors show how the Shapley value can be used by transfer pricing professionals to implement the OECD's value creation approach when several legal entities make development, enhancement, maintenance, protection, and exploitation contributions to a multinational group's profit.

The views expressed in this article are the authors' and do not reflect those of NERA Economic Consulting, Texas A&M University, BBW Hochschule – University of Applied Sciences, or any other person or institution.

The 2017 OECD Transfer Pricing Guidelines for Multinational Enterprises and Tax Administrations recommend that transfer pricing outcomes be based on value creation. The value creation approach is, however, difficult to apply when multiple legal entities in different tax jurisdictions contribute jointly to the profits a multinational enterprise earns on its intangible assets. This article argues that the Shapley value can be used to determine an appropriate "arm's-length" attribution based on each entity's contributions to the group profit. It briefly discusses the OECD's value creation approach to implementing the arm's-length principle. The article also highlights the strengths of the Shapley value concept, and argues that the Shapley value can help implement the value creation approach. An empirical case study using the Shapley value to attribute a multinational group's profits from marketing intangibles to the group's legal entities provides support for those arguments.

TAX NOTES INTERNATIONAL, VOLUME 104, OCTOBER 18, 2021 291

For more Tax Notes® International content, please visit www.taxonotes.com.

Comments? Questions? Thank-you!

To share additional comments and questions, contact us at:

Dr. Yves Hervé
NERA Economic Consulting
Managing Director
Germany
Cell: +49 172 8320462
Mail: yves.herve@nera.com
Web: www.nera.com

Dr. Lorraine Eden
Research Professor of Law
Professor Emerita of MGMT
Texas A&M University
Cell: +1 979 777 3489
Mail: leden@tamu.edu
Web: www.voxprof.com

John Hickey
Johnson & Johnson
Senior Director Global Transfer
Pricing
Mail: Jhickey5@ITS.JNJ.COM