

Productivity Effects of Artificial Intelligence and Other Emerging Technologies

Alex Xi He
University of Maryland

March 21, 2022
NABE Economic Policy Conference

Today

- How do recent technologies like artificial intelligence (AI) affect productivity?
 - Our evidence shows a null effect on firm-level productivity
 - However, these technologies do lead to firm growth through product innovation
- Potential explanations and policy implications

Explosion in AI Investments

- There has been an explosion in AI investments
 - From \$7.6 billion in 2010 to \$48 billion in 2018 in the US + \$24 billion targeted by EU, \$150 billion by China
 - AI system is a “*Machine-based system that can, for a given set of human-defined objectives, make predictions, recommendations or decisions*”
 - Most AI investments are in machine learning (ML), natural language processing (NLP), and computer vision (CV)
- Key inputs of AI: data, computing power, and AI-skilled labor
- In Babina, Fedyk, He, and Hodson (2021), we measure AI investments using AI-skilled labor based on worker resumes

Explosion in AI Investments

AI is a General Purpose Technology

AI Investments Leads to Growth in Firm Output

A one-standard-deviation increase in AI investment \Rightarrow **20%** higher sales over 2010–2018

We Find No Effect on Firm-level Productivity

	$\Delta \text{Log Sales/Worker}$	$\Delta \text{Revenue TFP}$	
$\Delta \text{Share AI Workers}$	-0.028 (0.038)	-0.006 (0.035)	-0.015 (0.033)
Ind FE	Y	Y	Y
Controls	N	Y	N

- **Sales/Worker** measures labor productivity
- **(Revenue) TFP** is a standard measure of productivity based on Cobb-Douglas production function

But There Is A Strong Positive Effect on Product Innovation

	Δ Trademarks		Δ Product Patents		Δ Product Fluidity	
	(1)	(2)	(3)	(4)	(5)	(6)
Δ Share AI Workers	0.144** (0.065)	0.152** (0.077)	0.221*** (0.035)	0.227*** (0.039)	0.148*** (0.036)	0.114*** (0.035)
Industry FE	Y	Y	Y	Y	Y	Y
Controls	N	Y	N	Y	N	Y

- **Trademarks** are registered whenever new products/services are commercialized
- **Product patents** measures product innovation (as opposed to process innovation)
- **Product fluidity** reflects updates to firms' product portfolios

Growth is Concentrated in the Largest and Most Productive Firms

Implications for Aggregate Productivity

- We find:
no productivity growth at the **firm** level and
reallocation to more productive firms at the **aggregate** level
- Consistent with “fading stars” in Gutiérrez and Philippon (2019)

Panel A. Hulten contribution, top 20 no oil

Productive reallocation

How Does AI Compare to Previous General Purpose Technologies?

- Previous general purpose technologies lead to huge productivity gains
 - Fiszbein et al. (2020): **electricity** adoption led to rapid productivity growth
 - Graetz and Michaels (2018): **robot** adoption raises labor productivity
 - These technologies also led to product innovation
[Bartel et al. \(2007\)](#); [Braguinsky et al. \(2020\)](#); [Dixon et al. \(2021\)](#)
- **IT**: Solow Paradox in 1987, but followed by productivity growth in the 1990s
- Acemoglu et al. (2022) also find no effect of AI on productivity, but find positive effects of robotics and cloud computing

Maybe Productivity Growth is Lagged...

- **Productivity J-curve:** firms accumulate intangible capital without increasing output in early years of technology adoption (Brynjolfsson et al. 2021)

Is This Time Different?

- Unique features of AI:
 1. Ability to predict facilitates product development & customization (e.g. Moderna)
 2. Reliance on big data benefits large firms owning more data

Is This Time Different?

- Unique features of AI:
 1. Ability to predict facilitates product development & customization (e.g. Moderna)
 2. Reliance on big data benefits large firms owning more data
- Why do AI-investing firms grow and develop new/better products but fail to improve productivity?
 - Ideas may get harder to find (Bloom et al. 2020), esp for productive firms
 - Acemoglu (2021): AI currently focuses on automating human tasks instead of creating new tasks in the production process
 - Size gives superstar firms a natural advantage in the age of AI, and reduces competition and incentives to improve productivity
 - Aghion et al. (2019): productivity gains from reallocation may be temporary and offset by long-run decline in incentives to innovate

Conclusion and Thoughts for Policy

- We have seen
 - An explosion of AI investments
 - Growth from AI is *not* accompanied by productivity gains
 - Growth from AI is concentrated in largest and most productive firms
- The adoption of AI is still quite low: 3% of firms and 13% of workers in 2018
- Policies to fully unleash the potential productivity benefits of AI:
 - Address constraints of AI adoption: AI-skilled labor and data access
 - Targeted R&D subsidies and public-private research partnerships
 - Competition policy

The End

Thank you!

References

- Acemoglu, Daron, Gary Anderson, David Beede, Catherine Buffington, Eric Childress, Emin Dinlersoz, Lucia Foster, Nathan Goldschlag, John Haltiwanger, and Zachary Kroff. 2022. "Automation and the Workforce: A Firm-Level View from the 2019 Annual Business Survey."
- Acemoglu, Daron. 2021. "Harms of AI." NBER Working Paper 29247.
- Aghion, Philippe, Antonin Bergeaud, Timo Boppart, Peter J. Klenow, and Huiyu Li. 2019. "A Theory of Falling Growth and Rising Rents." NBER Working Paper 26448.
- Babina, Tania, Anastassia Fedyk, Alex Xi He, and James Hodson. 2021. "Artificial Intelligence, Firm Growth, and Product Innovation." SSRN Scholarly Paper ID 3651052.
- Bartel, Ann, Casey Ichniowski, and Kathryn Shaw. 2007. "How Does Information Technology Affect Productivity? Plant-Level Comparisons of Product Innovation, Process Improvement, and Worker Skills*." *The Quarterly Journal of Economics* 122 (4): 1721–58.
- Bloom, Nicholas, Charles I. Jones, John Van Reenen, and Michael Webb. 2020. "Are Ideas Getting Harder to Find?" *American Economic Review* 110 (4): 1104–44.
- Braguinsky, Serguey, Atsushi Ohyama, Tetsuji Okazaki, and Chad Syverson. 2020. "Product Innovation, Product Diversification, and Firm Growth: Evidence from Japan's Early Industrialization." NBER Working Paper 26665.

References

- Brynjolfsson, Erik, Daniel Rock, and Chad Syverson. 2021. "The Productivity J-Curve: How Intangibles Complement General Purpose Technologies." *American Economic Journal: Macroeconomics* 13 (1): 333–72.
- Dixon, Jay, Bryan Hong, and Lynn Wu. 2021. "The Robot Revolution: Managerial and Employment Consequences for Firms." *Management Science* 67 (9): 5586–5605.
- Fiszbein, Martin, Jeanne Lafortune, Ethan G. Lewis, and José Tessada. 2020. "Powering Up Productivity: The Effects of Electrification on U.S. Manufacturing." NBER Working Paper 28076.
- Graetz, Georg, and Guy Michaels. 2018. "Robots at Work." *The Review of Economics and Statistics* 100 (5): 753–68.
- Gutiérrez, Germán, and Thomas Philippon. 2019. "Fading Stars." *AEA Papers and Proceedings* 109 (May): 312–16.