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Introduction

• Large literature in economics and computer science focused on detecting bias on the part of a 
decision maker (humans, algorithms)

• Canonical setting involves a binary decision: grant pre-trial release, give a loan, admit to college

• In many practical settings, the decision maker produces a ranked list

• National Residency Match Program (Roth, 1984) or lab experiments (Castillo and Petrie, 2010)

• Online platforms: Google and LinkedIn produce search results, FB, Twitter, LinkedIn produce 
Feeds

• Detecting and quantifying bias for different types of algorithms: 

• Pointwise classification algorithms

• Pointwise ranking algorithms

• Listwise ranking algorithms

Yu and Saint-Jacques (2022)

This paper: how to test for bias in ranked lists?

https://arxiv.org/abs/2202.07300


Overview of the paper

• Develop tests of bias in ranked lists, in the spirit of Becker (1957)

• Show that a sharp testable implication of unbiased behavior is a set of moment inequalities

• Intuitively, these inequalities say that regardless of protected categories, you shouldn’t be able to flip 
the positions of adjacent candidates and systematically improve the objective

• Illustrates how these inequalities can be tested in data generated by listwise ranking algorithms 

• Validation exercise using data from LinkedIn



Model

• There is a Ranker and an Auditor

• For each query 𝑞, Ranker produces a ranking of 𝐽 candidates, 𝑗! 1 ,… , 𝑗! 𝐽 , with 

• characteristics 𝑋"! , … , 𝑋#! and 

• group status 𝐺"! , … , 𝐺#! (e.g., gender, race)

• The Auditor observes the ranked list of candidates and their

• realized outcomes (labels) : 𝑌$! " ! , … . , 𝑌$! # ! and 

• group status: 𝐺"! , … , 𝐺#!

• This captures the fact that the Auditor may not observe all the information used by the Ranker. Results 
easily extends to the case where 𝑋 is observed



Definition of unbiasedness

• Intuition: the Ranker is unbiased if it ranks candidates to maximizes its given objective, regardless of 
group status à equal opportunity for equally qualified candidates (Yu and Saint-Jacques, 2022)

• Auditor wants to test if the Ranker is unbiased in the sense that it maximizes 

𝐸[-
%

𝑤%𝑌$! % ! 𝐼!

• Example: Net Discounted Cumulative Gain (NDCG), a common objective for ranking algorithms, can 
be put in this form

Realized outcome (label) at rank 
𝑟 by candidates 𝑗!(𝑟) in query 𝑞

Decreasing sequence of weights

Information set of the ranker



Main results

• A sharp testable implication of unbiasedness is that 

𝐸 𝑌$! % ! − 𝑌$! %&" ! 𝐺! = 𝑔 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟

• Intuition: we should not be able to improve the objective (on average) by swapping candidates in 
positions 𝑟 and 𝑟 + 1 whenever we see group orientation 𝐺!
• E.g., flip candidates ranked 1 and 2 in all queries where 1 is M and 2 is F

• Show that statistical tests can be implemented using results from moment inequalities literature 
(Canay and Shaikh, 2017)

• Discuss several important implementation details: 

• adjust for position bias (𝑌$! % ! is affected by rank)

• dealing with high dimensional moments

• controlling for observed covariates 𝑋



Empirical implementation on LinkedIn data

• We apply our methodology to data from InstaJobs at LinkedIn 

• InstaJobs: pointwise classification algorithm that scores candidates’ propensity to apply for a job and 
receive recruiter interaction, 𝑠$!
• candidate receives a notification for a job if 𝑠$! ≥ ̅𝑆

• Reframe as pointwise ranking algorithm: 

• query = job, 

• candidates are ranked in decreasing order of their scores (up till the cutoff), 

• outcome, 𝑌!! , is observed for all candidates who received a notification

• Validate listwise outcome test results against that from pointwise outcome test (Yu and Saint-
Jacques, 2022)



Moment estimates for adjacent ranks

Evidence of bias: lower-ranked M systematically realize better outcomes than higher ranked F – consistent with 
pointwise implementation of the outcome test, where the scores do not appear to be calibrated by gender



Joint hypothesis test

Algorithm systematically ranked M below F despite the 
former having better outcomes

Reject joint 𝐻' that the algorithm is unbiased in ranking 
candidates between adjacent ranks

𝐻': the algorithm is unbiased in ranking pairs of candidates in adjacent ranks given their genders



Takeaways

• This paper proposes a test for discrimination for ranked lists, extending the framework of Becker 
(1957) for detecting taste-based discrimination in binary decisions

• This paper is a companion to Yu and Saint-Jacques (2022), which discusses how to detect and 
quantify algorithmic bias in pointwise classification and pointwise ranking algorithms

• Our approach is complementary to other approaches based on different definitions of bias, such as 
demographic parity (Zehlike et al., 2017); disparity treatment/impact (Singh and Joachims, 2018); 
or equal opportunity (Hardt et al, 2016)

• LinkedIn is actively measuring and developing mitigation strategies for identified bias
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