| _
@ FPAaRALLELIZATION @
BREEZING THROUGH THE TIDYVERSE
Introduction

: A IR EEEE———— ———8 =_ 1
* This module goes over some advanced topics that may

help with simulation.

* You will only master with much practice.

* This module should provide a foundation to know when you
may want to attempt these methods but you will not
master it by the end of this module. Paul Sabin

Senior Fellow, Wharton
Ex ESPN & SumerSports

| _
@ FPAaRALLELIZATION @
BREEZING THROUGH THE TIDYVERSE

What is Parallelization?
| | | —— TE =

Parallelization is the process of splitting a task into multiple
smaller tasks that can be processed simultaneously.

* Exploits multiple CPU cores

* |deal for repetitive tasks like simulations

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Libraries to Know

For parallel execution in R:
* doParallel: backend for foreach
* foreach:loop construct for parallelization

library(tidyverse)

install.packages(c("doParallel", "foreach"))
library(doParallel)

library(foreach)

Paul Sabin

Senior Fellow, Wharton

-- Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Sequential vs Parallel

el | __— N W
Sequential (%do%): - Processes one task after the other.

* Like for() but returns a list at the end.
Parallel (%dopar%): - Processes multiple tasks at once.

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Simulating the NBA Season
Glven game win probabilities, we'll simulate each game to
determine a winner.

We will use the same data from last module’s quiz: the 2022
NBA Season

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Simulating the NBA Season

(—_ -_'
nba_schedule <- read_rds('"nba_2022_season_schedule. rds") -I —=
We S I m u | ate th e # Number of simulations

season as we did T
before, not In oo h
pa ra | |e|. We do 1,000 nba_schedule <- nba_schedule %>%

mutate(team_win = ifelse(team_score > opp_score, 1, 0))

S i m u | atl O n S (fo r # Create simulations
. - nba_schedule_simulations <- nba_schedule %>%
tl me and breV|t}/). slice(rep(1:n(), each = n.iter)) %% PaUI Sabin

mutate(sim = rep(l:n.iter, times = n.games*2)) %>% Senior FeIIow Wharton

ungroup()
._ Ex ESPN & SumerSports

Number of games per season
n.games <- nrow(nba_schedule)/2

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

We simulate the
* nba_schedule_simulations <- nba_schedule_simulations %>%
Sea SO n a S We d Id mutate(lsjim_t;a; wir: = r;inom(n(), sLijze :l e]

1, team_wp))

' #since we had two rows per game, we only take the sim of the home team..
before, not in

then force the other one to match
nba_schedule_simulations <- nba_schedule_simulations %>%

parallel. We do 1,000 = =

game_id) %>%

simulations (for T e hone
) =) %>%
time and brevity).

mutate(sim_team_win = ifelse(team_home == 1,

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

| _
@ FPAaRALLELIZATION @
BREEZING THROUGH THE TIDYVERSE
Playoff Seeding
A 1 T L U R — S AN e

* After simulating, teams are ranked based on wins:
* Top 8 from each conference go to the playoffs (now play-
in round).
* Two-way ties are broken with head-to-head records.

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Tiebreakers

A IR EEEE———— ———8 =_1
If two teams have equal wins:

1. Head-to-head record
2. Division winner
3. Conference record ... (follow NBA’s tiebreaker rules)

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Playoff Seeding

nba sim records <- nba schedule simulations %>%
We can get e - -
group_by(sim,

p | aYOff Seed | ng team_display_name,

team_conference) %>%

before brea klﬂg summarize(wins = sum(sim_team_win),
losses = sum(1-sim_team_win),

ties with games = ()
min_rank(). Rl
mutate(win_pct = wins / games) %>%

ungroup () Paul Sabin
Senior Fellow, Wharton

- Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Playoff Seeding

We 2l get nba_sim_records <- nba_sim_records %>%
BIENOERSEEElIREN orow--by(sin, teanconference) %>

mutate(playoff_seed = min_rank(desc(win_pct))) %>%

pefore breaking ungrou() %

arrange(sim,

ties with team_conference,

miﬂ_ranko. playoff_seed)

nba_sim_records %>% head(10) Paul Sabin
Senior Fellow, Wharton

-i Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Playoff Seeding

A tibble: 10 x 8 [p—
r sim team_display_name team_conference wins losses games win_pct -I -_l
<int> <glue> <chr> <db1l> <dbl> <int> <dbl> |

1 Miami Heat East 60 23 83 .723
Milwaukee Bucks East 58 24 82 .707
Atlanta Hawks East 53 30 83 .639
Boston Celtics East 52 30 82 .634
Toronto Raptors East 50 35 85 .588
Brooklyn Nets East 49 36 85 .576
Cleveland Cavaliers East 46 37 83 .554
New York Knicks East 44 38 82 .537
Philadelphia 76ers East 44 39 83 .530

1 Charlotte Hornets East 43 39 82 .524
playoff_seed

We can get

playoff seeding
before breaking
ties with
min_rank().

©oONOU S WN R
P = = =Y
00 0000000

Jany
S

Paul Sabin

Senior Fellow, Wharton
Ex ESPN & SumerSports

W oo NS WN B
O oo NOULEAE WN R

=
S
=
[S)

-—_l

@ FPAaRALLELIZATION @
BREEZING THROUGH THE TIDYVERSE

Playoff Seeding

| e | —— R
Tiebreakers are first determined by head-to-head record (if the tie

involves 2 teams).

This has to be done individually in each simulation.

We will look at just1simulation and build a function that breaks
head-to-head ties and then randomly breaks the rest after that.

You can extend the code to follow the rest of the NBA’s tiebreakers.

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Tiebreaker Function

We need both the current standings & the simulation
standings.

sim_1 records <- nba_sim_records %>%
filter(sim == 2,
team_conference == "West")
sim_1_games <- nba_schedule_simulations %>%
filter(sim == 2,
team_conference == "West")

Paul Sabin

Senior Fellow, Wharton

- Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Tiebreaker Function

#ftextract out tied teams # A tibble: 2 x 8

tied teams <- sim 1 records %>% sim team_display_name team_conference wins losses games win_pct
group_by(sim, <int> <glue> | <chr> <dbl> <dbl> <int> <dbl>
1 2 Dallas Mavericks West 57 25 82 0.695

team_conference, 2 2 Phoenix Suns West 57 25 82 0.695

playoff_seed) %>% playoff seed
ungroup() 1
1
tied_teams
Paul Sabin
Senior Fellow, Wharton
Ex ESPN & SumerSports

FPARALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Tiebreaker Function

create unique key of variables that defines each tie
tied_teams_key <- tied_teams %>%
group_by(sim,
team_conference,
playoff_seed) %>%

summarise(teams = stringr::str_c(team_display_name, collapse =", ")) %%
ungroup()

tied_teams_key
A tibble: 1 x 4
sim team_conference playoff_seed teams
<int> <chr> <int> <chr>

1 2 West 1 Dallas Mavericks, Phoenix Suns . Paul Sabin
senior Fellow, Wharton

_Xx ESPN & SumerSports
T P

n_tiebreaks <- nrow(tied_teams_key)

head_2_head_results <- NULL
for(i in 1:length(n_tiebreaks)){
head_2_head_results <- sim_1_games %>%
filter(sim == tied_teams_key$sim[i],
team_conference == tied_teams_key$team_conferencelil,
#if any team is in the list of teams, return those games
str_detect(tied_teams_key$teams[i], team_display_name),
str_detect(tied_teams_key$teams[i], opp_display_name)

FPaR¢
BREEZING 1

) %>%
now return the number of wins for each of them
group_by(team_display_name,
opp_display_name,
sim,

Now we pull out all
eam_conference) %>%
ga meS betweeﬂ the summarize:wins = sum(sim_team_win),

, losses = sum(1-sim_team_win),
teamS |fyOU dOﬂ t win_pct = sum(sim_team_win) / n())%>%
ungroup() %>%

fOl |OW d ” the COd e, that mutate(playoff_seed = tied_teams_key$playoff_seed[i]) %>%

stack values with previous tied teams

ISN’'t as neccessay ry for bind_rows(head_2_head_results, .)
this exercise.

head_2 head_results

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Tiebreaker Function

— A =]
Now we pull out all # A tibble: 2 x B

team_display_name opp_display_name sim team_conference wins losses win_pct
<glue> <glue> <int> <chr> <dbl> <dbl> <dbl>

ga mes betwee n the 1 Dallas Mavericks Phoenix Suns 2 West 3 0 1

2 Phoenix Suns Dallas Mavericks 2 West 0 3 0

teams. If you don’t playoff_seed

<int>

follow all the code, that : :
Isn’t as necessary for
this exercise. Paul Sabin

Senior Fellow, Wharton
Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Tiebreaker Function

NOW We break the tieS head_2_head_results %>%

group_by(sim,
team_conference,
playoff_seed) %>%
mutate(h2h_rank = min_rank(desc(win_pct)),
A tibble: 2 x 10 new_playoff_seed = playoff_seed + (h2h_rank - 1))

Groups: sim, team_conference, playoff_seed [1]
team_display_name opp_display_name sim team_conference wins losses win_pc
<int> <chr> <dbl> <dbl> <dbl>
2 West
2 West

Paul Sabin

Senior Fellow, Wharton
Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Tiebreaker Function

Now we break the ties

head_2 head_results

A tibble: 2 x 8
team_display_name opp_display_name sim team_conference wins losses win_pct
<glue> <glue> <int> <chr> <dbl> <dbl> <dbl>
1 Dallas Mavericks Phoenix Suns 2 West 3 () 1
2 Phoenix Suns Dallas Mavericks 2 West 0 3 0
playoff_seed
<int>

1 Paul Sabin
1 Senior Fellow, Wharton
Ex ESPN & SumerSports

| Y | |
@ PARALLELIZATION @
BREEZING THROUGH THE TIDYVERSE
Tiebreaker Function
A2 1 T T S I A———— e

* Forour purposes we will then break any further ties by a
“coin flip.”

* We will then add the new playoff seeds back and create a
function that does all this.

* See code file for complete function code.

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

FPAaRALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Tiebreaker Function

break_ties <- function(game_results,
season_standings){

Paul Sabin

Senior Fellow, Wharton
Ex ESPN & SumerSports

| _
@ FPARALLELIZATION @
BREEZING THROUGH THE TIDYVERSE
Parallel Simulation

| A MR R ——— ——— -_]
Parallel simulation can be helpful if:

the processes don’t depend on one another (sequentially or
otherwise),

you can’t vectorize it, or

the savings of running multiple process at once outweighs
the overhead. Paul Sabin

Senior Fellow, Wharton
Ex ESPN & SumerSports

FPARALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Setting Up Parallel Backend

Before using %dopar%, you need to set up a parallel backend:

#how many cores your computer has

n_cores <- detectCores()

#register that many cores (or pick smaller number)
cl <- makeCluster(n_cores)

registerDoParallel(cl)

Paul Sabin

Senior Fellow, Wharton

- Ex ESPN & SumerSports

| _
@ FPARALLELIZATION @
BREEZING THROUGH THE TIDYVERSE
Parallel Simulation
A 1 T L U R — S AN e

Using %dopar% for parallelized simulation.

* You need to pass through each package (via .packages) you
need to run the code.

* You may also need to export which objects need to be
passed into parallel.

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

FPARALLELIZATION
BREEZING THROUGH THE TIDYVERSE

| Parallel Simulation

sim_standings <- foreach(i = 1l:n.iter, #i = icount(n.iter),
.inorder = TRUE,
.combine = 'rbind',
.packages = c("tidyverse"),
.export = c("nba_schedule_simulations",
"nba_sim_records")
%dopar%s {

select season game simulation
this_season_sim_games <- nba_schedule_simulations %>% filter(sim == i)
this_season_sim_records <— nba_sim_records %>% filter(sim == i)

#now apply function to break ties in this simulation
new_this_season_sim_records <- break_ties(game_results = this_season_sim_games,
season_standings = this_season_sim_records)

#now leave the dataframe we want to combine at the end to get the simulated results
new_this_season_sim_records

b

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

toc()

52.211 sec elapsed

FPARALLELIZATION
BREEZING THROUGH THE TIDYVERSE

),

Stopping the Cluster

A 1 IR R ——— ———8 =_ 1
After parallel operations, stop the cluster:

stopCluster(cl)

Paul Sabin

Senior Fellow, Wharton
Ex ESPN & SumerSports

FPARALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Stopping the Cluster

head(sim_standings, n = 10)

sim team_display_name team_conference wins losses games win_pct

P\J | l<(<int> <glue> <chr> <dbl> <dbl> <int> <dbl>
OW We C a n OO Miami Heat East 60 23 83 .723

Milwaukee Bucks East 58 24 82 .707

Atlanta Hawks East 53 30 83 .639
a t t h e re S u | tS Of Boston Celtics East 52 30 82 .634
t h e tl e b re a k I n g New York Knicks East 44 38 82 .537

Philadelphia 76ers East 44 39 83 .530
: h 1 Charlotte Hornets East 43 39 82 .524
I n t e playoff_seed

Toronto Raptors East 50 35 85 .588
<db1>
simulation.

Brooklyn Nets East 49 36 85 .576
Cleveland Cavaliers East 46 37 83 .554

©CoONOU A WNR
R R R R R R R R R
(SIS TS RS TS I ST S TS IS

=
S

Paul Sabin

Senior Fellow, Wharton
Ex ESPN & SumerSports

O oo NOULL A WN R
O oo NOWUL b WN R

[y
[
[y
[S)

FPARALLELIZATION
BREEZING THROUGH THE TIDYVERSE

Benefits of Parallelization

A IR EEEE———— ———8 =_ 1
* Speeds up computation time

* Essential for large-scale simulations
* Utilizes computer resources efficiently

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

-—_l

@ FPARALLELIZATION @
BREEZING THROUGH THE TIDYVERSE

Recap and Further Reading

: . r—-_——_l-:_]
e Parallelization for efficient simulations

* foreach, %dopar%, and %do% for loops

* Always test parallel code outside parallelization for
correctness

Further reading: Parallel computing in R guide

Paul Sabin
Senior Fellow, Wharton

Ex ESPN & SumerSports

