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ABSTRACT: Wind energy accounts for a small share of the global energy consumption in spite of its widespread availability.
One of the obstacles hindering exploitation of wind energy is the lack of proper wind speed assessment models. The wind
energy field credibility has occasionally suffered from wind power potential estimation studies that were conducted based on
very short wind speed records and which did not give consideration to inter-annual wind variability. The objective of this paper
is to examine the long-term variability of wind speed in the United Arab Emirates (UAE) and its teleconnections with various
global climate indices by using wind speed collected from six ground stations and a reanalysis dataset. Linear correlation
analysis and wavelet analysis were used to characterize the interaction. The modified Mann—Kendall test and linear regression
indicated that half of the stations show a significant wind speed trend at the 5% level. The cumulative sum and Bayesian change
detection methods indicated that five of the stations present change points. Continuous wavelet transform of wind speed showed
biannual periodicity in some stations, in addition to the annual one. Wavelet coherence analysis demonstrated that wind speed
in the UAE is mainly associated with the North Atlantic Oscillation, East Atlantic Oscillation, El Nifio Southern Oscillation and
the Indian Ocean Dipole indices. The first two indices simultaneously modulate wind speed in the summer while the last two
influence winter and autumn wind speeds. Step-wise multiple linear regression models were developed to select appropriate

predictors among the various climate indices.

KEY WORDS
UAE

teleconnections; wind speed variability; wavelet analysis; climate index; trend; climate index; trend; change point;

Received 16 July 2015; Revised 24 December 2015; Accepted 29 January 2016

1. Introduction

Modern renewable energy sources contributed a tiny 9.7%
of the overall global energy consumption in 2011. Never-
theless, the global penetration of wind power is expanding
and the installed capacity has been increasing exponen-
tially during the last two decades reaching 318 gigawatt
(GW) in 2013 from barely 10.2 GW in 1998 — more than
30-fold increase in just 15 years (Fried, 2014). The rapid
progress in wind power installation is expected to continue
in the foreseeable future. By 2017, the global installed
capacity of wind power is estimated to reach about 536.1
GW. Compared with the 10,000 GW global potential of
wind power, the installed capacity will still be only about
5% by 2017 (Joselin Herbert et al., 2007).

One reason for the low penetration of wind power is
the lack of appropriate wind speed assessment efforts.
Wind energy potential assessment effort that rely on very
short wind speed records do not take into consideration
the information concerning the inherent inter-annual
variability in wind characteristics. These assessment
efforts occasionally lead to projects that do not deliver the
expected outputs once completed.
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Specifically, the United Arab Emirates (UAE) has
limited studies on wind energy and hence the nature of
wind speed variability in the country and the factors that
influence it are largely unknown. The objectives of this
paper are to: (i) examine variability and change in wind
speed time series by studying the presence of periodicity,
trend and change points in the series; (ii) identify the
teleconnections between wind speed in the UAE and
climate oscillations by applying cross wavelet transform
and wavelet coherence analysis; and (iii) develop multiple
linear regression models to represent wind speed as a
function of various climate indices.

The paper is organized as follows: Section 2 investigates
relevant literature with particular attention to the region
of study. Section 3 describes the region of study and the
various datasets being used. The research methodology
and the mathematical approach are outlined in Section 4.
Section 5 presents the results and discusses the important
findings of the research. Finally, conclusions are presented
in Section 6.

2. Review of teleconnection studies

Recurring and persistent, large-scale patterns of climate
anomalies that span over vast geographical areas are
commonly termed ‘teleconnection patterns’ or simply
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‘teleconnections’. The term teleconnection started to
appear in the literature since 1935. However, its applica-
tion and much of the work has been carried out since the
1960s (Diaz et al., 2001).

Teleconnections link the fluctuations in the dynamic
circulation of climate indices in one region to changes
in climatological variables in another remote location.
These dynamic circulations include the likes of the El
Nifio Southern Oscillation (ENSO) and the North Atlantic
Oscillation (NAO). It has been demonstrated that wind
speed and direction are affected by large-scale climate
oscillations. For instance, European and North American
wind speeds are affected by the annual variation of NAO
(Kirchner-Bossi et al., 2014; Scaife et al., 2014; Smith
etal.,2014).

Teleconnections between inter-annual variations in
tropical sea surface temperature and variations in
hydro-climate have also been established by a num-
ber of studies in different parts of the world, for example
in South America (Diaz et al., 1998; Romero et al., 2007),
North America (Ropelewski and Halpert, 1986; Nasri
etal., 2013), Europe (Trigo etal., 2004), Africa (Lee
et al., 2013; Ouachani et al., 2013), Asia (Zhang et al.,
2007; Li et al., 2008) and on global scale (Kiladis and
Diaz, 1989). These studies explained how climate phe-
nomena such as rainfall and temperature are coupled to
sea surface temperature and pressure anomalies in some
remote areas.

Some studies developed statistical methodologies that
effectively modelled the impact of climate indices on
hydro-climatic variables. El Adlouni efal. (2007) and
Ouarda and El-Adlouni (2011) investigated and modelled
the impact of Pacific Decadal Oscillation (PDO) on pre-
cipitations in the Southern USA whereas Lee et al. (2013)
showed the impact of PDO and NAO on streamflows in
locations in Africa. Using long-term patterns of climatic
indices and the Empirical Mode Decomposition (EMD)
procedure, Lee and Ouarda (2010) modelled the future
evolution of extreme streamflows in Quebec, Canada.

A number of publications focused on the teleconnec-
tions between major climate indices and hydro-climatic
phenomena in the Middle East. Cullen efal (2002)
examined the connection between the NAO index and
Middle Eastern streamflows and asserted that streamflow
variability in winter is affected by changes in the index.
Tabari et al. (2014) investigated the link between the
Arctic Oscillation (AO) fluctuations and the inter-annual
variability of evapotranspiration in Iran and observed
significant correlation between the two. Nazemosadat and
Cordery (2000) revealed significant negative correlation
between summer ENSO and autumn precipitation in the
northern part of Iran. In Ghasemi and Khalili (2006) study,
the association between AO and winter temperature in
the same country was examined. Positive winter temper-
ature anomalies were found to be caused by the negative
phases of AO in the previous summer. Conversely, cooler
temperatures were observed during the positive phases.
Ouachani et al. (2013) explored the influence of ENSO,
PDO and Mediterranean Oscillation Index (MOI) on the

© 2016 Royal Meteorological Society

Southern Mediterranean precipitation and streamflow. A
strong correlation between the indices and precipitation
was reported.

A relatively limited number of publications dealt with
teleconnections in the Arabian Peninsula. Charabi and
Abdul-Wahab (2009) studied the effect of both ENSO
and Indian Oscillation Dipole (IOD) on the rainfall in
Oman and observed that rainfall events with extremely
low or high magnitudes were positively associated with
large amplitude of the indices. Rainfall anomalies in
Kuwait were investigated and showed significant positive
correlation with ENSO (Marcella and Eltahir, 2008).
It, however, did not show significant correlation with
NAO. Nasrallah et al. (2001) developed a statistical fore-
casting model for Kuwait winter precipitation by using
climate indices, which include ENSO, Western Pacific
(WP) and Northern Pacific (NP) among others, and was
able to explain 70% of the precipitation variance which
showed significant positive and negative correlation with
ENSO and WP, respectively. A teleconnection study
conducted on the southeastern region of the peninsula
demonstrated that higher rainfall in Salalah is associated
with El Nifio conditions, while high rainfall in Muscat and
Sharjah is associated with La Nifia conditions (Brook and
Sheen, 2000).

In the UAE, a few studies explored the teleconnections
of the hydro-climate of the country with global climate
oscillations. Ouarda efal. (2014) observed an overall
decreasing precipitation trends in the UAE and identified
a change point in the precipitation time series data around
1999 which was associated with the change of phase in
the Southern Oscillation Index (SOI). In Niranjan Kumar
and Ouarda (2014) study, the connections of ENSO and
NAO with the precipitation variability in the UAE and the
neighbouring regions were analyzed and found significant
positive correlation between the rainfall and ENSO in con-
trast to limited negative correlation with NAO. The work
also explained the physical mechanism governing the
interaction between ENSO and precipitation variability. A
more in-depth study of the remote influences of various
climate oscillations on the temperature and precipitation
in the UAE using linear correlation and wavelet analysis
was conducted by Chandran efal. (2015). The work
indicated that precipitation variability is associated with
the SOI, PDO and IOD while the temperature variability
is related to NAO, East Atlantic Oscillation (EAO) and
Atlantic Multidecadal Oscillation (AMO).

In spite of the various studies on teleconnections of
hydro-climatological variables with climate indices car-
ried out in this region, very few studies have been carried
out to explore the teleconnections of wind speed with the
climate indices and none of them used wavelet techniques.
All these studies were mainly carried out on temperature
and precipitation data (Almazroui, 2012; Donat et al.,
2014). To the knowledge of the authors, this work rep-
resents a first effort to use continuous wavelet transform
(CWT) to study wind speed data, and cross wavelet trans-
form and wavelet coherence analysis to study wind speed
teleconnections to climate circulation.
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Figure 1. Geographical location of the ground stations.

3. Dataset description

Three sets of data were used in this work. The first set
contains wind speed data from six ground stations. The
second set consists of reanalysis data of wind speed in
the UAE and surrounding regions. The last set comprises
climate indices data.

3.1. Region of study and ground station data

The UAE is located in the southeastern end of the Arabian
Peninsula along the Arabian Gulf between latitudes 22.5°
and 26.5°N and longitudes 51.5° and 56.5°E (Figure 1) and
covers a total area of 83,600 km?. It is bordered by Oman
in the east, Saudi Arabia in the west and the Arabian Gulf
in the north. The country has an arid tropical climate with
lowest annual rainfall of 63 mm in Abu Dhabi and high-
est of 127 mm in Ras Al Khaimah (Ouarda et al., 2014).
A limited number of studies targeting the wind regime of
the country have been done. Ouarda et al. (2015) studied
the probability density functions (pdf) of wind speed based
on 10 min wind data collected from nine stations and iden-
tified the Kappa and Generalized Gamma distributions as
the best one-parameter pdf’s, Weibull distribution to be the
best two-parameter pdf and mixture distributions in case
of bimodal wind regimes. Furthermore, only a few studies
dealt with the modelling of the UAE climate. Basha et al.
(2015) developed long-term forecasts of climate variables
in the UAE and predicted an increase in temperature and a
decrease in rainfall in the next 30 years.
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Six ground stations (Figure 1) located at the interna-
tional airports of six cities of the UAE are considered
in this study. The average daily wind speed, which is
calculated by taking the average of the wind speed
intensity (magnitude), in each station is obtained from the
National Climatic Data Centre (NCDC) (http://www.ncdc.
noaa.gov/). Of the six stations five are located in the coastal
areas of both the Arabian Gulf (Abu Dhabi, Dubai, Sharjah
and Ras Al Khaimah) and the Gulf of Oman (Fujairah).
Al Ain station is located deep inland. Observational data
is severely limited in the southern and southwestern parts
of the country due to the lack of ground stations. The
geographical coordinates, elevation, period of recording
and summary of statistical characteristics of the stations
are presented in Table 1.

3.2.  Gridded NCEP/NCAR reanalysis data

The National Centre for Environmental Prediction
(NCEP) and the National Centre for Atmospheric
Research (NCAR) began ‘The NCEP/NCAR Reanal-
ysis Data’ project in 1991 to provide accurate and
global datasets on different atmospheric parameters
(Kalnay et al., 1996). The datasets incorporate numerical
weather prediction model outputs and observed climate
data originating from different metrological centres of
individual countries. The archived reanalysis wind dataset
(http://www.esrl.noaa.gov/psd/) used in this paper covers
the period from January 1948 to December 2013. The
dataset gives both zonal and meridional components of
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Table 1. Geographical location, recording period and summary of statistical characteristics of the ground stations.

Station Lat. (N) Long.(E) Elevation (mas.l)  Recording period ~ Years Mean (ms™')  STD (ms~!)
Abu Dhabi 24°26 54°39 27 1984-2013 30 3.67 1.06
Dubai 25°15 55°22 19 1984-2013 30 3.58 1.07
Al Ain 24°15 55°37 265 1995-2013 19 3.89 1.02
Fujairah 25°06 56°20 46 1996-2013 18 3.14 1.62
Ras Al Khaimah 25°37 55°56 31 1984-2013 30 2.33 0.91
Sharjah 25°20 55°31 34 1984-2013 30 3.00 0.95

surface wind speed at a height of 10 m and a spatial reso-
lution of 2.5° X 2.5° at three different temporal resolutions
(4-times daily, daily and monthly). In accordance to the
climate oscillation data, the monthly reanalysis data is
used in the current work.

3.3.

Climate oscillations indicate the large scale, dynamic
ocean and atmospheric circulations that result in climate
patterns characterized by recurring cyclical fluctuations
within global or regional climate at different time scales.
Climate indices are the ‘parameters’ used to measure the
values of such fluctuations. These parameters are mostly
measured from anomalies in sea surface temperature,
air pressure or solar radiation. The current work covers
some of the major global climate oscillations in order to
determine their influence on the wind speed in the UAE
and ultimately to use them as possible predictors. These
oscillations have different periodicity that enable both
short-term and long-term interpretations of climate and
wind speed variables in the region of interest. The data
period and the links to the data source for each climate
index are provided in Table 2.

Climate oscillation data

4. Research methods

The methodology adopted in this work uses different sta-
tistical methods that include the following analyses.

4.1.

Correlation coefficient describes the linear dependence
between two variables and helps understand how well
the two variables are related by providing the magni-
tude (strength) and the sign (direction) of the relationship.
Although there are a number of methods that study the
correlation, Pearson’s correlation coefficient (PCC), one of
the most commonly used methods, is adopted here. PCC,
denoted by r, between two variables x and y, is defined as
the covariance of the two variables divided by the product
of their standard deviations:

e (E) ()
VriZe - (o) \E e - (2

where n is the total number of observations in each vari-

able. 72, also known as the coefficient of determination in
the case of linear regression, describes how much of the

Pearson’s correlation coefficient

6]
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variance in y is explained by x. For a more general case, the
coefficient of determination is evaluated using a different
expression. The statistical significance of r is determined
by testing the null hypothesis H: =0 (there is no corre-
lation), against the alternative hypothesis H;: r # 0O (there
is correlation). The test statistic ¢, is computed from:

i = ry] 222
! 1-r2

The value of ¢, is compared to the 7 distribution table with
n—2 degrees of freedom. H, is rejected at a significance
level of « if the absolute value of 7, is greater than 7y ).

2)

4.2. Change point detection

4.2.1. Centred cumulative sum method

Change point is an instance in time before and after which
the statistical properties of a time series differ and indicates
the non-stationarity of the time series. The Centred cumu-
lative sum (Cusum) method is a simple non-parametric
approach which helps identify the time (year) the change
had occurred. Cusum (C,), for a time series x; of length n
at time 7 is given by:

t
C=) (x-%), t=12...n

i=1

3)

where x is the mean of the time series. Cusum transforms
a given time series to values of C, that have negative
(positive) slope if x; lies below (above) the mean. Rapid
changes in direction of the C, values indicate change
points.

The statistical significance of the change point is
assessed by applying the Student’s -test for the equality
of the means of the data before and after the change point.
The test is computed from:

PR St 2 )

§

— o

+

3
G 88

1

where X, and X, are the mean of the data before and after
the change point respectively; s; and s, are the standard
deviations whereas n; and n, are the sample sizes in each
respective data.

4.2.2.  Bayesian change point procedure

The Bayesian procedure outlined by Seidou and Ouarda
(2007) is followed in this work to identify the number,
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Table 2. Major global climate indices used in the current study and their source of data.

Climate oscillation Short name Period Source of data

North Atlantic Oscillation NAO 1950-2013  http://www.esrl.noaa.gov/psd/data/correlation/nao.data

El Nifio Southern Oscillation Index ~ SOI 1951-2013  http://www.cpc.ncep.noaa.gov/data/indices/soi

Nino 3.4 1854-2013  http://climexp.knmi.nl/data/iersst_nino3.4a.dat

Pacific Decadal Oscillation PDO 1900-2013  http://www.esrl.noaa.gov/psd/data/correlation/pdo.data

North Pacific Oscillation NP 1899-2013  https://climatedataguide.ucar.edu/climate-data/
north-pacific-np-index-trenberth-and-hurrell-monthly-
and-winter

Indian Ocean Dipole 10D 1958-2013  http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/
dmi.monthly.txt

Atlantic Multi-decadal Oscillation AMO 1948-2013  http://www.esrl.noaa.gov/psd/data/correlation/amon.
us.data

East Atlantic Oscillation EAO 1950-2013  http://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml

Mediterranean Oscillation 1 & 2 MOII and MOI2  1958-2013  http://www.cru.uea.ac.uk/cru/data/moi/moil .output.dat
http://www.cru.uea.ac.uk/cru/data/moi/moi2.output.da

Arctic Oscillation AO 1979-2013  http://www.ncdc.noaa.gov/teleconnections/ao/

magnitude and position of change points. The procedure
detects change points in the relationship between indepen-
dent variables and a dependent variable. In the absence
of independent variables, it detects changes in the time
series of the dependent variable. For n observations and
d independent variables, the dependent variable is rep-
resented by A (G =1, ..., n), whereas X i=1, ...,d
and j = 1, ..., n) indicates the jth value of the ith inde-
pendent variable. The multiple linear regression can be
expressed by:

d
Y= Z 0.x; + € 5
i=1

A thorough description of the mathematical formulation
of the procedure and how it detects the number and posi-
tion of change points are presented in Seidou and Ouarda
(2007).

4.3.
4.3.1.

Trend analysis
Modified Mann—Kendall test

When a clear non-stationarity or trend are observed in wind
speed data, this information must be taken into account
in the assessment of future wind characteristics and wind
energy potential (see for instance Hundecha et al. (2008)).
Long-term trend in wind speed can be investigated
using the Mann—Kendall test. The test was developed to
assess trends in time series and is the most widely used
trend analysis method for hydro-climatologic time series
(Mann, 1945). This test has two main advantages. One, it
is non-parametric and hence does not require the data to
follow any specific distribution. Second, it is less sensitive
to sudden changes because of the non-homogeneity in
the data. A modified Mann—Kendall test was proposed
to account for autocorrelation in the time series (Hamed
and Rao, 1998) and has gained wide acceptance in the
hydro-climatological community (Khaliq et al., 2009a,
2009b). The modified Mann—Kendall test is adopted in
this work.

© 2016 Royal Meteorological Society

4.3.2.  Linear regression method of trend analysis

The linear regression of a random variable Y (in this case
wind speed) on time X can be written as:

Y=p+pX (6)

The regression coefficient f, (the slope) indicates the
mean temporal change of the variable Y. Positive value of
f, shows increasing trend whereas negative value shows
decreasing trend. The test statistic for #, is used by testing
the null hypothesis H,: f; = 0 (absence of trend) against
the alternative hypothesis H,: f; # O (presence of trend)
at a significance level of a. H, is rejected when the abso-
lute value of the test statistic exceeds the critical value
11~ The total change during the period of observation is
obtained by multiplying the slope with the time duration.

4.4. Continuous wavelet transform

The CWT has been developed to address the shortcomings
of Fourier transform which decomposes the signal (time
series data) into a series of sinusoidal functions with vary-
ing frequencies giving the localization in frequency only.
CWT, however, decomposes the signal into a number of
wavelets enabling localization in both time and frequency
(scale) by shifting and stretching the wavelet, respectively.
The Fourier transformation X(f) of a time series x(¢) reveal-
ing the information regarding the frequency content f is
given by:

X(f)= /oox(t) e gy @)

The CWT of a given continuous signal x(¢) is defined as
the convolution of x, with the local basis function y,, (1),
which is the scaled, translated and normalized form of
the mother wavelet y(#), and is given by Torrence and
Compo (1998):

Wr(s) = / x (1) u/:,xdt and y,, = Lt,uo (t_ n)

o0 \/E N
(8)
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where s is the scale parameter, n is the translation (time
localization) parameter, y, is the mother wavelet and the
asterisk (*) denotes the complex conjugate of the wavelet.
The mother wavelet used in this study is the Morlet func-
tion. The Morlet is often considered for most natural phe-
nomena as it provides optimum balance between time
and frequency localization and adequately describes the
shape of non-stationary signals such as hydro-climatology
(Jevrejeva et al., 2003). Being a complex function consist-
ing of a number of oscillation waves, the Morelet provides
phase angle relationship and captures the oscillatory nature

of a signal.
A discretized form of CWT for a discrete observations
(x,, n =1,...., N) with uniform time steps o6t at finite

number of locations is given by:

1 N ’r_
Wi =(2) Y [@] ©
n'=1

where N is the time series length. The wavelet coeffi-
cient, W,*(s) indicates the degree of similarity between the
wavelet and the time series. In the transformation, lower
values of s compress the wavelet to analyze high-frequency
components whereas higher values dilate the wavelet to
describe low-frequency components.

In CWT, there is a wraparound effect near the begin-
ning and end of the time series during the convolution
process as the wavelet runs off the edge. Hence, the time
series is padded with zeros which reduce the variance
of the time series near the edge resulting in the cone of
influence (COI). The COI is taken as the area influenced
by the padding (edge effects). Due to the COI, only peri-
ods smaller than N/ 2\/5 are considered significant
(Torrence and Compo, 1998; Grinsted et al., 2004).

Wavelet power spectrum (WPS) gives a measure of the
time series variance (power) at each time n and scale
(period) s with times of large variance showing high power.
WPS, which contains no phase information from the orig-
inal function, is evaluated from:

WE@| = wE oW o)

(10)

Other quantities such as the global wavelet spectrum
(GWS) have been derived from the wavelet transform to
condense the large amount of information contained in the
wavelet spectrum. GWS, which is calculated by averaging
the power spectrum over all times (temporal averaging),
determines the characteristic scales and is given by:

N
W)=Y |W, )

n=1

an

4.5.

The cross wavelet transform (XWT) shows regions in
time-frequency space where the two time series show high
common power. Given two time series X and ¥ with CWTs
W X (s)and W X(s), respectively, their XWT W, X (s) is the
product of the complex wavelet transform of the first time

Cross wavelet transform
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series and the complex conjugate of the second time series
(Torrence and Compo, 1998):

WX (5) = WX () W)™ (5) (12)

Two time series with a significant XWT signal can
suggest causation and thus potential teleconnection. Con-
fidence levels of the XWT are derived from the square
root of the product of two chi-squared distributions. A
thorough description of cross wavelet analysis can be
found in Torrence and Compo (1998).

Although XWT is an important tool to investigate
relationships between two time series, a cautious interpre-
tation needs to be made in light of the original time series.
As XWT is not a normalized measure, significant powers
will be detected not only in the case of co-varying power
but also in the case of an extreme high power in one of
the time series. In contrast, even if the two time series
co-vary, XWT may fail to indicate this relationship if the
individual CWT of the time series shows low power. Thus,
for significance testing of the inter-relation between two
time series, it is recommended to apply wavelet coherence
which addresses the drawbacks of XWT (Maraun and
Kurths, 2004).

4.6. Wavelet coherence analysis

The wavelet transform coherence (WTC) detects regions
where two time series co-vary in the time-frequency space,
but they do not essentially have high common power.
Unlike XWT, which measures the common power, WTC
measures the intensity of the covariance of the two series
in the time-frequency space (Jevrejeva et al., 2003). As
described by Torrence and Webster (1999), the WTC of
two time series is given by:

s (571w @)
s(s1wr o) s (s wror)

where S is a smoothing operator. Wavelet coherence,
whose value ranges between O and 1 inclusive, is sim-
ilar to the traditional correlation coefficient, and can be
conceptualized as a localized correlation coefficient in the
time-frequency space.

The phase relationship in the time-frequency space is
measured by the phase angle gbffy (s) which gives the delay
between two time series at time 7 and scale s (Torrence and
Webster, 1999):

o3 —1ywXY
¢~ (s) = tan™! S{S(7W," )} (14)
" RA{S (s WX (5)) }

|2

R} (s) = (13)

where J is the imaginary component and R is the real
component.

XWT and WTC of two data series give complementary
information. Wavelet coherence is particularly useful in
cases where the two time series have low-wavelet power
but still with high coherence. The statistical tests devel-
oped by Torrence and Compo (1998) are followed in this
paper. In addition, the Monte—Carlo method described by
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Grinsted et al. (2004) is employed to estimate the statisti-
cal significance at the 5% level. The degree of coherence is
indicated by some patterns in different regions of the WTC
plots showing that the two signals are correlated.

4.7. Model performance evaluation

The performance of a model shows how well the model
represents a set of observations. It quantifies the difference
between the observed values and the modelled values. In
this study, the root-mean-square error (RMSE), relative
RMSE (rRMSE), mean bias error (MBE), relative MBE
(rMBE) and the adjusted coefficient of determination

(1_?2) metrics have been used to assess the performance of
the model (multiple linear regression) used. The relative
values, rRMSE and rMBE, are used to account for the
magnitude of the variable by standardizing the RMSE
and MBE values with respect to the actual value of the
variable. The mathematical expressions used to evaluate
the model performance are:

1IN a2
RMSE = \/nZ(y y) (15)
1 v\’

rRMSE = 100 x ;Z <T> (16)

IS5
MBE_nZ(y y) (17)
MBE = 120 <§l> (18)

n y

—2 Z(y_/y\)z n—1

R zl_z(y_y)zn—(k+1) )

where 7 is the sample size, y are the actual values, y are
the estimated values, y is the mean of the actual values,
n is the number of observations and k is the number of
variables. The performance of the model is evaluated as

—2
satisfactory based on the proximity of the value of R to
one and the proximity of the values of RMSE, rRMSE,
MBE and rMBE to zero.

5. Results and discussion

5.1.  Wind speed characteristics of the region
5.1.1. Spatial distribution of wind speed and wind
vector

To examine the circulation of wind in the UAE and sur-
rounding regions, the spatial distribution of the wind speed
and direction obtained from the gridded reanalysis data
are presented in Figure 2. As indicated by the vectors, the
UAE has northerly and northwesterly wind blowing from
the sea throughout the year. This is due to the fact that
Shamal (‘north’ in Arabic) wind, which blows from north
to south, is dominant in the Arabian Gulf. This wind has
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two distinct regimes: winter Shamal and summer Shamal.
Winter Shamal is characterized by strong northwesterly
winds and is a rare event punctuated by irregular gale
winds. Summer Shamal, in contrast, is generally more sta-
ble but less significant in terms of its strength (Perrone,
1979).

Over the Arabian Peninsula, wind is mostly westerly.
It originates from the Mediterranean Sea sweeping east
across the northern part of the peninsula and flows down
the Arabian Gulf before it turns west forming a clockwise
circulation. In the southern part of the peninsula, the circu-
lation is, however, reversed in the course of some months.
In winter, the wind comes from the Gulf of Oman but in
summer this pattern is reversed as the wind originates from
the western part of the Indian Ocean resulting in a coun-
terclockwise pattern. This observation was also reported in
Nasrallah et al. (2001). In the northern part of the penin-
sula, nevertheless, the westerly wind originating from the
Mediterranean persists throughout of the year.

5.1.2.  Inter-annual variability and monthly climatology
of wind speed

The annual wind speed intensity in each station and aver-
age wind speed intensity of all stations are presented in
Figure 3. In contrast to the highest wind speed in Al Ain,
Ras Al Khaimah experiences the lowest wind speed. Dubai
and Abu Dhabi exhibit high and similar wind speed pat-
terns till 2008. Although wind speed in Sharjah is low,
it is stronger than in Ras Al Khaimah. The lowest wind
speed in Ras Al Khaimah could be attributed to the prox-
imity of the station to the Hajar Mountains. Wind speed in
Fujairah shows peculiar behaviour with a clearly increas-
ing trend and hence the highest variance of all the stations
(see Table 1).

The seasonality shown in Figure 4, depicts the
intra-annual variations of the wind speed in the sta-
tions in terms of the maximum, median and minimum
wind speed. Higher wind speed is observed from the end
of winter to the beginning of summer while in the remain-
ing months, especially during autumn, it is lower with
the exception of Fujairah which shows a different pattern
with higher and lower wind speeds observed in summer
and winter, respectively. In Abu Dhabi, Dubai and Al Ain,
the monthly climatology reveals a slightly bimodal distri-
bution of the wind speed with humps occurring in early
spring and late summer. This seems to indicate the close
association of the wind speed in these stations. Sharjah
and Ras Al Khaimah, on the other hand, show a unimodal
distribution with the highest wind speed prevailing in early
summer in Sharjah and late summer in Ras Al Khaimah.
The months show also different wind speed variations.
Seasons of high-wind speed generally experience high
variation while low variation is recorded in seasons of
low-wind speed. The highest and lowest variations are
observed in March and September, respectively.

5.2. Correlation results

With the exception of NP and MOI, which exhibit high cor-
relation with wind speed in Abu Dhabi, all other indices
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Figure 2. Spatial distribution of wind speed and wind direction during different seasons.
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Figure 3. Annual wind speed in each ground station and average wind speed of all stations.

© 2016 Royal Meteorological Society Int. J. Climatol. (2016)



Wind speed [m/s]

Wind speed [m/s]

Wind speed [m/s]

TELECONNECTIONS AND WIND SPEED VARIABILITY IN THE UAE

Abu Dhabi (1984-2013)

s Al Khaimah (198

Ra

T T T T T

4-2013)

Al Ain (1995-2013)

T T

Fujairah (1996-2013)

08

08

04

02

Corr. coeff.
[w )

Month

Figure 4. Seasonality of the wind speed in each ground station.

—&— NAQ —&— S0O| ——PD0 —@— NP —&— |OD —8— EAQ —e— MOI1 —%— MOI2 —a— AD

Q 1 2 3 4 =l

Time lag (month)

2]

B g 10

Figure 5. Correlation values between the 3-month wind speed in Abu Dhabi and the corresponding climate indices at different time lags.
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show low correlation. Correlation coefficients observed
at a significance level of 95% range from 0.12 to 0.74
explaining as high as 55% of the wind speed variation.
Although other indices also show statistically significant
correlation coefficients, the values are too low to give
meaningful explanation for the wind speed variations. The
high correlation values exhibited by the NP and MOI
indices are basically capturing the seasonality as opposed
to the actual wind speed pattern. This is the reason why the
correlation values are swinging from negative to positive
(Figure 5) as the size of the lags between the indices and
the wind increases, indicating in-phase and anti-phase rela-
tionship expressed by the negative and positive correlation
values, respectively.

5.3.
5.3.1.

Change point detection results

Cusum method

From the Cusum result of each station, the change points
are visually identified and their statistical significance is
evaluated by conducting the Student’s #-test for change in
the mean wind speed before and after the change point. All
stations, with the exception of Al Ain, reveal at least one
change point. The statistical significance of the identified
change points is estimated at the significance levels of 1
and 5%. By comparing these results to the results of change
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Table 3. Summary of change point analysis.

Stations Change Significance Indices possibly associated
pointat  level (%) with the change point
(year)

Abu Dhabi 2006 1 NP and IOD
Dubai 2004 5 SOIL EAO and PDO
Sharjah 1995 1 NAO, SOI, AMO,

MOI1 & 2 and AO
Ras Al Khaimah 1995 5 NAO, SOIL, AMO,

MOII1 & 2 and AO
Fujairah 2004 1 SOI, EAO and PDO

point analysis for the various climate indices, associations
were made between wind speed and climate indices based
on the year of occurrence of the change points. The year of
occurrence of the change points, the statistical significance
level and the indices likely associated with the change
points are summarized in Table 3.

5.3.2.  Bayesian procedure

The Bayesian approach was employed to detect the
change points and compare them with those of the Cusum
method. Results of this approach presented in Figure 6
also coincide with the results of the Cusum method. With
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Figure 6. Results of the Bayesian change point detection procedure.
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Table 4. Mann—Kendall test result for the presence of trend in wind speed in each month.

Station January February March April May June July August September October November December
Abu Dhabi Yes No No Yes No Yes No Yes No Yes Yes Yes
Dubai No No No No No No No No No Yes Yes No
Sharjah No No No No Yes Yes No Yes No Yes Yes No
Ras Al Khaimah  Yes No No No No No No No No No No No
Al Ain No No No No No No No No No No No No
Fujairah Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
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Figure 7. Trend analysis using linear regression method.

the exception of the Ras Al Khaimah station which shows
a change point in 1993 instead of 1995, all other stations
indicate the same instance of change point as presented in
Table 3. Most of the stations show change point in 1995
or 2004.

5.4. Trend analysis results
5.4.1. Modified Mann—Kendall test

Using the modified Mann—Kendall test (with a =0.05),
monthly (wind speed of a particular month taken from
each year of the record period) and annual wind speed
time series at all stations are assessed for the presence of
trend. As shown in Table 4, a significant positive trend is
observed in Fujairah for all months as opposed to Al Ain,
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which does not show trend in any of the months. Ras Al
Khaimah shows trend in 1 month only (January) whereas
Dubai shows trend in 2 months. Abu Dhabi and Sharjah,
howeyver, show trends in few months.

The same test is also carried out on annual wind speed
data. Annual wind speed in Abu Dhabi, Sharjah and
Fujairah show significant trends at the 5% level. It is
observed that wind speed in Abu Dhabi and Fujairah is
increasing in contrast to wind speed in Sharjah which is
showing a decreasing trend. Wind speed in Dubai, Ras
Al Khaimah and Al Ain do not show statistically signifi-
cant trends. Stations that show significant trends in several
months (Table 4) are found to exhibit significant trend in
the annual wind speed as well.

Int. J. Climatol. (2016)



M. S. NAIZGHI AND T. B. M. J. OUARDA

Abu Dhabi Dubai
4 ——— e
T 39} WS =-0.0054 Year +366 { By Wi;;gfgﬁ;far g 7
E % p_value =0.0653 sap P b 1
g R :
3 37 41 36 b
3 :
35} "y, 4
T o2 ¥\ O\ g al ]
S a5 p_value =0.9817 | p_value =0.0435
WS =0.0003 Year +385 | > WS =-0.0471 Year +3.95 1
- I I S L mod e g ey g g SRT g e T g,
Sharjah Ras Al Khaimah
34 rr T T T 28 rr T T T T T T T T T T T T T
= a3t WS =0.0091 Year +2.84 WS =0.0139 Year +2.10
)
é’ .o p_value =0.0367 asr p_value =0.0495 1
B a1 124-"7" MM A L 1
il WA A qn] I N e
L T (O VO & e e 1 eakt™ 0 N g e J
Basl o LA N et | I A =, v
g p_value =0.0959 g™ s | p_value =0.4530 i
28r = 4
WS =-0.0169 Year +3.21 WS =0 0125 Year +2:36
opbo o o P T L L S S S S R SR S
Fujairah
41— e e S S St
— —e— Annaul Wind speed WS =0.0067 Year +3.35
Tm 4k sussmns Trend before change point p_value =0.5107
‘E 3.5 | wovmssane Trend after change point | A& A 1
5 asf
@
@ ar 1
=1
W 3 E -
o
b 25| WS =0.0650 Year +2.51 ]
37k WS =2.0724e-06 Year +3.89 - p_value =0,0584
p_value =0.9996
apbo 0 PR S T S S S S S R S S S S
1884 1986 1988 1990 1992 1994 1995 1998 2000 2002 2004 2006 2008 2010 2012 1984 1986 1988 1960 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Year

Year

Figure 8. Trend analysis before (in black) and after (in red) the change point.

5.4.2. Linear regression method

Linear regression was also used separately to perform
trend analysis on the annual wind speed data and the result
is shown in Figure 7. Although the regression lines for all
stations, except Al Ain, seem to show either a decreasing
or increasing trend, their statistical significance is checked
by calculating the p value of the slopes. Trends in Dubai,
Ras Al Khaimah and Al Ain are insignificant at the 5%
level as the p-values for these stations are greater than
0.05. The remaining stations, however, show statistically
significant trends. Sharjah exhibits a decreasing trend at
the 5% significance level whereas Abu Dhabi and Fujairah
show an increasing trend at the 1% level. The results of this
method confirm what has been observed with the modified
Mann-Kendall test.

For stations that show distinct change points, further
trend analysis is done by considering the data before and
after the change point separately. The outcome of this anal-
ysis is presented in Figure 8 and a different scenario from
the case which did not consider the change points emerged.
Stations, which have shown a monotonic statistically sig-
nificant (at the 5% or less) increase or decrease of wind
speed when the whole data was considered, such as Abu
Dhabi and sharjah, now show two different trends although
all the trends are not significant at the 5% level. At a signifi-
cance level of 5%, wind speed in Dubai shows a decreasing
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trend after the change point while in Sharjah and Ras Al
Khaimah, it shows an increasing trend. Interestingly, no
station shows a statistically significant trend at the 5% level
before the change point.

5.5.

To determine the dominant frequency of wind speed,
both wavelet and Fourier transform were performed. The
CWT power spectrum and the GWS of the monthly
wind speed time series are shown in Figure 9. The 95%
confidence interval enclosing the high variance in the
CWT and the corresponding peak in the GWS shows
that the significant and dominant period in all stations
is 1 year (annual). In addition to the annual periodicity,
wind speed in Abu Dhabi, Al Ain and to some extent
in Dubai shows half-yearly (biannual) periodicity. The
biannual periodicity observed here corresponds to the
slight bimodal pattern observed in Figure 4. No signif-
icant higher periods are identified in any of the stations
though.

Similar analyses were carried out using the Fourier
transform for comparison, as depicted in Figure 10. The
horizontal axis represents the frequency (f) and the ver-
tical axis shows energy or variance at the corresponding
frequency. High energy is recorded in all stations at a fre-
quency f ~0.002747 day~!. This frequency corresponds

Wind speed periodicity
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Figure 9. Continuous wavelet transform (CWT) power spectrum and corresponding global wavelet spectrum (GWS) of monthly wind speed. Black
solid contour lines in the CWT enclose peaks of greater than 95% confidence for a red noise process. The curve (broken black line) depicts the COI
where the edge effects become important. The dashed blue line in the GWS shows the 95% confidence level.

to a period of 364 days, which is roughly equivalent to
1 year, consistent with the results of the CWT. Another
peak is also noted around f ~0.00554 day~! which rep-
resents biannual periodicity. This peak is clearly distinct
in Abu Dhabi, Al Ain and Dubai reflecting the findings
of the continuous wavelet analysis. No other significant
lower frequencies corresponding to higher periods are
detected in this transform. This confirms also the fact that
wind speed does not show longer periodicities other than
the yearly and half-yearly.

5.6.  Wavelet coherence analysis results

5.6.1. Ground station wind speed data

*WTC was performed for annual 3-month data (3 month
average data from each recording year) to examine the
time of coherence as well as the phase relationship between
climate indices and wind speeds. As shown in Figure 11(a),
the NAO index shows strong coherence with the wind
speed in Abu Dhabi during the months of May—June—July
in the time period of 6-7 years from 1991 till 2003.
Both signals are in-phase indicating positive correlation.
The in-phase relationship implies that a positive phase
of the index results in higher wind speed. Swings in
the phase of NAO and their effect on wind speed in

© 2016 Royal Meteorological Society

the northern hemisphere have already been reported by
Hurrell and Deser (2010). The NAO WTC analysis result
is consistent with the findings of Hurrell (1995) which
indicated a relationship between the positive phase of
NAO and stronger than average westerly winds across the
middle latitudes swiping in the west—east direction. The
influence of the NAO on the Middle East climate was also
documented by Cullen et al. (2002).

Wind speed in Abu Dhabi exhibits significant coher-
ence with SOI during September—October—November
with a 5—6 years period in the years 1992 to 2004 with
in-phase relationship (Figure 11(b)). Similar results, in
terms of periodicity, but with opposite phase relation-
ship are observed for the Nino 3.4 index (Figure 11(c)).
This is because SOI and Nino 3.4 have strong negative
correlation. During the rest of the autumn months and
winter, significant coherences are also observed between
wind speed and both SOI and Nino 3.4 indicating the
influence of ENSO during these seasons. The phase rela-
tionship confirms that when SOI is in positive phase (La
Nifia), wind speed in Abu Dhabi picks up and during the
negative phase of SOI (El Nifio) wind speed decreases
as the pressure gradient weakens because of the warm-
ing of the Arabian Gulf as explained by Nazemosadat
et al. (2006).
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Figure 10. Fourier transform power spectrum of ground stations’ wind speed.

Similarly, PDO exhibits negative coherence with peri-
ods of 5—7 years but during August—September—October
from the year 1998 to 2005 (Figure 11(d)). The anti-phase
relationship is clearly indicated by the arrows pointing to
the left. The negative coherence indicates that the high
(warm) phase of PDO results in low-wind speed which has
also been observed during the El Nifio period (low phase
of SOI). A positive relationship between PDO and ENSO
was already established (Zhang et al., 1997; Oliver, 2012).
Accordingly, the high phase of PDO occurs during El Nifio
periods during which the western Pacific becomes cooler
than the eastern part and the event is reversed during La
Nina (low phase of PDO). The result of WTC analysis
obtained here replicates the positive relationship between
the two indices.

As can be seen in Figure 12(a), IOD reveals
strong coherence in the 2-3 years period during
November—December—January in the late 1990s and
early 2000s; both signals exhibiting an in-phase coher-
ence. This coherence demonstrates the positive influence
of IOD during the winter months. Similar to PDO,
IOD is associated with ENSO and accordingly pos-
itive IOD events are connected to El Nifio episodes
(Saji and Yamagata, 2003). The result here, however,
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does not support this association as high wind speeds
are related to the positive phase of I0OD. In addition,
Figure 12(b) indicates significant coherence between EAO
and wind speed in Abu Dhabi at the 7 years period during
August—September—October from 1992 to 2002. During
this time both signals are in-phase with EAO slightly
leading wind. The in-phase relation indicates that during
positive (warm) phases of EAO, wind speed in Abu Dhabi
increases. The result is similar to the correlation found
between wind speed and the phases of NAO. EAO is struc-
turally similar to the NAO (Barnston and Livezey, 1987)
and the outcome of the WTC analysis is in line with this
similarity.

Results of wavelet coherence analysis for MOI indicate
also a stronger relationship with MOI1 than with MOI2.
As shown in Figure 12(c), MOIl demonstrates strong
coherence during the months of July—August—September
with 6-7 years period from 1992 to 2005 and 2 years
period around 2000. An in-phase relationship is observed
between the two signals. This positive association between
MOI and wind speed may indicate the influence of NAO
on MOI oscillation as reported by Criado-Aldeanueva and
Soto-Navarro (2013). In addition, AO (Figure 12(d))
shows significant coherence during the months of
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September—October—November at a period of 5-7
years for an extended length of time (1991 to 2006) with
an in-phase relationship.

For wind speed in Dubai, NAO reveals (figure
not shown) strong coherence during the months of
August—September—October in the 3-4 years period
starting from 1995 to 2007. SOI also indicates strong pos-
itive coherence with wind speed at a period of 4—6 years
during the months of October—November—December
from the year 1993 until 2006. In the same season and
years, Nino 3.4 reveals significant coherence during the
months of September—October—November. The period-
icity of the association observed here is consistent with
the cycle of ENSO, which generally ranges from 2 to 7
years (Torrence and Webster, 1999). Wind speed in Dubai
also shows strong but short coherence with EAO during
August—September—October. The results of the coher-
ence analyses of wind speed in Dubai with the various
climate indices are in agreement with those of Abu Dhabi.

Wind speed in Sharjah and Nino 3.4 display opposite
phases in the 5-6 years period with significant coher-
ence extending from 1992 to 2005. NAO displays high
coherence with the wind in Sharjah in the 6—7-year period
during May—June—July from 1993 to 2004. This period for
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NAO is consistent with the variability of the index which
is centred on 6—10 years and 2-3 years as noted by Cullen
et al. (2002). Furthermore, wind speed in Ras Al Khaimah
reveals strong coherence in excess of 0.9 with EAO during
the summer months. The same station also shows strong
coherence with IOD during the autumn months. Although
the recording length is short, wind speeds in Al Ain
and Fujairah also display significant coherence with NAO
and EAO.

From the wavelet coherence analyses between the wind
speeds and the various climate indices, ENSO, IOD,
PDO and AO influence the autumn and winter wind
speed with varying periodicity but largely at a band rang-
ing from 3 to 7 years. Summer wind speed is mainly
affected by NAO, EAO and MOI with a periodicity of
5-7 years. These indices have been found to influence the
hydro-climatological variables of this region as was estab-
lished by a number of studies (Charabi and Abdul-Wahab,
2009; Bannayan et al., 2010; Almazroui, 2012; Niranjan
Kumar and Ouarda, 2014; Chandran et al., 2015).

5.6.2. NCEP/NCAR gridded reanalysis wind speed data

Figure 13 shows the spatial variation of the wavelet
coherence between the reanalysis wind data (1984-2013)
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Figure 12. Same as Figure 11 but with (a) IOD during the months NDJ, (b) EAO during ASO, (c) MOI1 during the JAS and (d) AO during SON.

over the UAE and surrounding region and Nino 3.4 dur-
ing October—November—December. Strong coherence is
observed in two distinct periods. The first is in the 2—4
years period especially in the southern part of the region
from the end of 1980s to the early 2000s in which both
signals display in-phase relation indicating positive corre-
lation. The second is in the 4—8 years period which is more
prevalent in the northwestern part of the region and appears
to occur during the entire recording time. Here the two
signals are out of phase and hence negatively correlated.
These two periods are consistent with the 2—7 years period
of ENSO (Torrence and Webster, 1999). Significant coher-
ence is observed over the entire Arabian Gulf because of
the strong influence of ENSO on this region (Nazemosadat
and Cordery, 2000; Marcella and Eltahir, 2008; Niranjan
Kumar and Ouarda, 2014; Chandran et al., 2015).

It is noteworthy to mention that, for a 30-year time
series data due to the COI the longest periodicity that
can be observed is 10 years [~30/(2%2%°) (Torrence and
Compo, 1998)]. Such short time series data, therefore,
might not give the full extent of the coherence analy-
sis. Hence a longer time series data, for both the index
(Nino 3.4) and the reanalysis data during the same months
(October—November—December), stretching from 1948
to 2013 are taken for comparison with that of 1984 to 2013.
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The resulting WTC displaying the spatial variation dur-
ing these years is shown in Figure 14. In addition to the
two periods of high coherence (2—4 years and 4—8 years)
identified in Figure 13, another strong coherence with a
longer period of 12—16 years having in-phase relationship
is observed in the southern part of the region. Besides, the
4-8 years period that was observed to be occurring contin-
uously in Figure 13 can now be seen to be confined from
the early 1980s to 2013.

5.7. Partial correlation and step-wise regression

Partial correlation, which is the correlation between the
predicted variable and one of the predictor variables after
the effect (common variance) of all other predictor vari-
ables over that has been removed, has first been assessed
to check multicolinearity and interdependence between the
predictors at different lags. NP at lag-10 (wind speed lag-
ging the index by 10 months) is, for instance, found to be
highly correlated with NP at lag-4 and hence the influ-
ence of NP at lag-4 is effectively accounted for by NP
at lag-10. Only those indices that show higher correla-
tion values have been adopted. Following step-wise regres-
sion to select the best predictors for the wind speed, NP
at lag-10, MOII at lag-4 and NAO at lag-9 are taken as
predictor variables. The model performance is assessed
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Figure 13. Spatial variation of WTC of the NCEP/NCAR reanalysis wind speed over the UAE and surrounding regions with Nino 3.4 during OND
for the years 1984-2013. The thick black contour shows the level of significance at 5%. The thin black curve represents the COIL. The magenta line
indicates international borders and coastal lines.

using RMSE, rRMSE, MBE, rMBE and adjusted coeffi-
cient of determination which gave values of 0.21 ms™!,
5.9%, 0.001 ms~!, —0.35% and 0.63, respectively. The
RMSE helps to combine the discrepancies between values
estimated by a model and the actual observed value, i.e.
the residuals, into a single estimate of predictive power
and a value of 0.21 ms~! is reasonably acceptable. The
MBE is close to zero, which is equivalent to the required
ideal value, indicating the overall lack of bias. A positive
value of MBE gives the average amount of over-estimation
in the modelled variable while a negative value indicates
underestimation. The model has, however, sytematically
underestimated higher wind speeds while overestimating
lower wind speeds. Though the model is not able to capture
the relative extremes of wind speed, it is able to explain
over 63% of the wind speed variance.

6. Conclusions

Long-term variability of wind speed in the UAE was
explored using wind speed data collected from six
ground stations. Individual stations were investigated for
inter-annual and intra-annual variation. With the exception
of Fujairah all stations displayed similar intra-annual vari-
ation. Trend analysis was also performed to investigate the
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existence of trends and change points. Results indicated
that half of the stations have a significant trend at the 5%
significance level and with the exception of one station (Al
Ain), all stations exhibited change points with statistical
significance of at least 5%.

Wind speed revealed annual periodicity in all ground sta-
tions and biannual periodicity in three stations: Abu Dhabi,
Al Ain and Ras Al Khaimah. Wavelet analysis (both WTC
and XWT) using the Morlet function was carried out for
annual 3-monthly moving average wind speed and the vari-
ous climate indices. It was observed that the region’s wind
speed is mostly affected by four indices namely ENSO,
NAO, IOD and EAO at periods mainly ranging from 3
to 7 years. ENSO and IOD mostly influence wind speed
during the winter and autumn months while the remaining
two indices affect the summer months at varying periodic-
ity. Linear multiple regression of wind speed as a function
of climate indices gave satisfactory performance although
it did not capture the relative extremes in wind speeds.
Future efforts can focus on the adoption of an objective
approach for the identification of wind seasonality in the
region (see for instance Cunderlik et al., 2004) and the
use of this information for a better prediction of seasonal
winds. The methodology presented in the present paper
can also be adopted to study the teleconnections and the
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Figure 14. Same as Figure 13 but for the years 1948—-2013.

long-term wind speed variability in other regions of the
world.
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