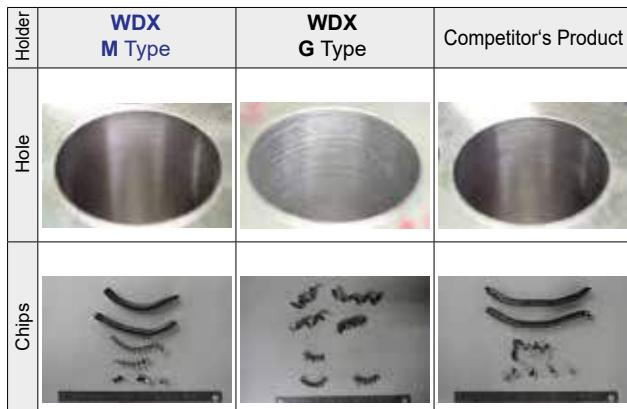


SumiDrill

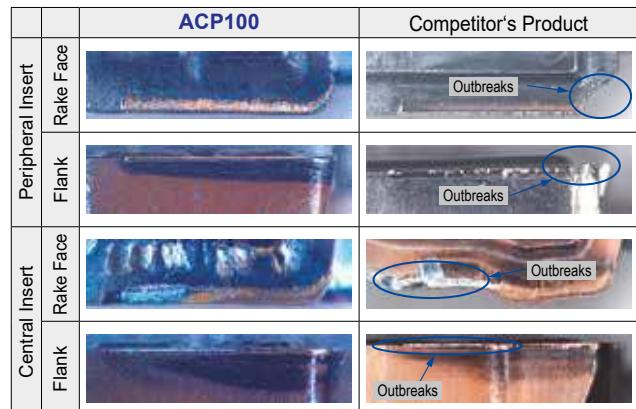

WDX Type

ACM300

For Machining of Stainless Steel

■ Features

Chip control by the newly developed M chip breaker for stainless steel machining achieves stable hole quality.

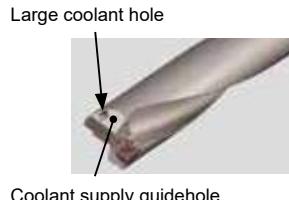

Work Material: X2CrNiMo17 13 2
 Holder: WDX200D3S25
 Insert: WDXT063006 M (ACM300)
 Cutting Data: $v_c = 150$ m/min, $f = 0,08$ mm/rev, $H = 60$ mm, wet

ACP100

For High-speed Drilling of Steel and Cast Iron

■ Features

Provides excellent wear resistance and high reliability thanks to our coating stress control technology and the ultra-fine crystal grain coating film of the Super FF Coat achieved through our proprietary technology.

Work Material: C50
 Holder: WDX250D3S25
 Insert: WDXT063006 G (ACP100)
 Cutting Data: $v_c = 200$ m/min, $f = 0,12$ mm/rev, $H = 50$ mm through hole, wet

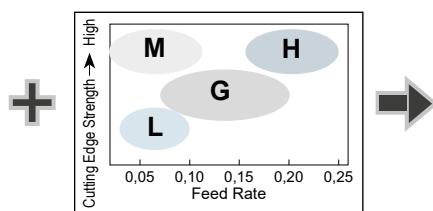
Drills for Deep Hole Drilling L/D = 5

■ Features

The SumiDrill WDX type for 5xD drilling features a specially designed flute shape and enlarged coolant hole for excellent chip evacuation even during hole drilling.

■ Performance

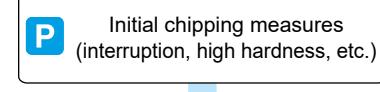
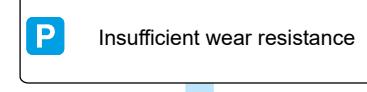
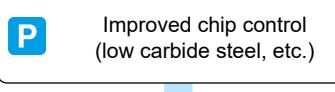
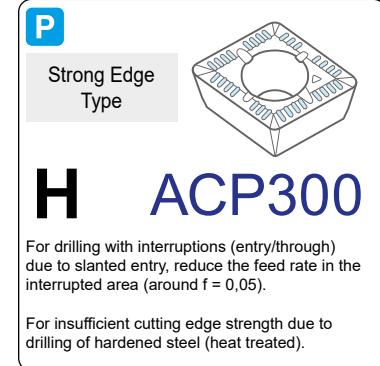
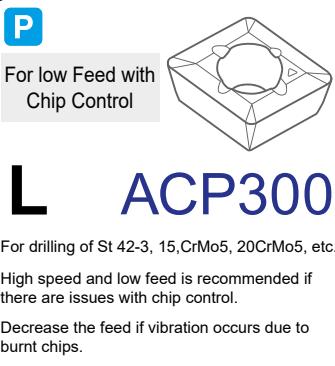
Characteristics	Figure	Cutting Resistance	Machined Surface (Exit)
<p>WDX260D5S32 Flutedesign L/D = 5</p> <p>Designed with emphasis on chip evacuation Expanded flute design improves chip evacuation for stable drilling performance even with holes up to 5xD.</p>		<p>(N) 12,000 10,000 8,000 6,000 4,000 2,000 0 -2,000 -4,000</p> <p>Amplitude in thrust direction is larger than flutes designed for up to 4xD, but drilling performance is stable even when drilling deep holes of 5xD.</p> <p>Thrust Horizontal component of force</p> <p>Depth L/D = 4 Depth L/D = 5</p>	<p>Produces an excellent surface finish - full hole depth</p>
<p>Comparison Tool Flutedesign L/D = 4</p> <p>Designed with emphasis on drill rigidity Flute design for greater rigidity of the drill enables stable drilling of deep holes up to 4xD.</p>		<p>(N) 12,000 10,000 8,000 6,000 4,000 2,000 0 -2,000 -4,000</p> <p>However, stable drilling up to 4xD Chip blockage at bottom of hole Strong rigidity allows only minute amplitude in the thrust direction</p> <p>Depth L/D = 4 Depth L/D = 5</p>	<p>Poor machined surface due to chip blockage at bottom of hole (near 5xD)</p>

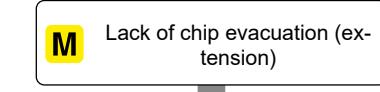
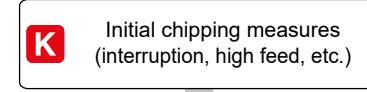
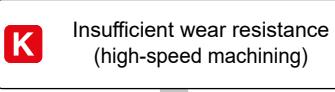
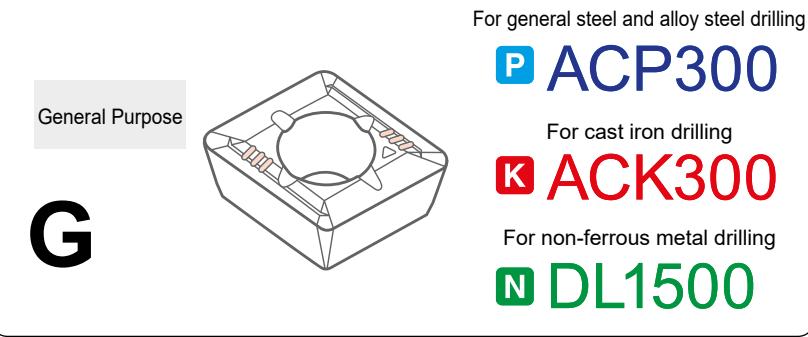

Insert: WDXT073506-G Work Material: X5CrNiS18 10
 Cutting Data: $v_c = 150$ m/min, $f = 0,05$ mm/rev, $H = 130$ mm, through hole, wet

■ Insert Selection Guide – The WDX Insert Series has a Variety of Options

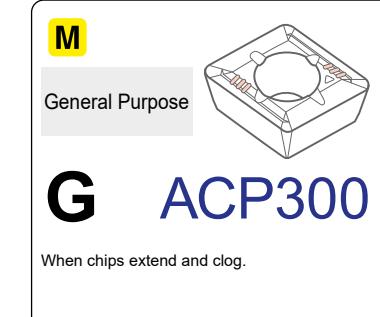
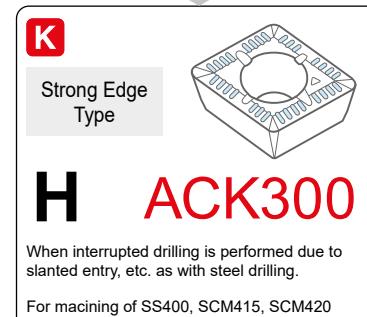
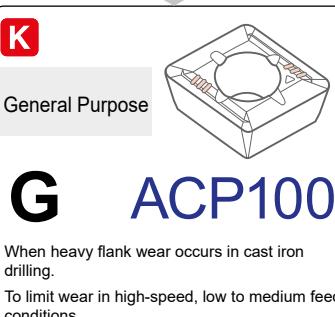
5 Grades

	ACP100	ACP300	ACM300	ACK300	DL1500
P High-speed Drilling	○				
P General Drilling		○			
M Stainless Steel		○	○		
K High-speed Drilling	○				
K General Drilling				○	
N Non-ferrous Metal					○






4 Types of Chipbreakers





11 Combinations

ACP100	ACP300	ACM300	ACK300	DL1500
P K L	P L		P K L	
P K G	P M G		P K G	N G
P K H	P H		K H	
			M M	




2nd Recommendation

1st Recommendation

2nd Recommendation

ACP100 is the first recommendation for steel with a hardness of 200HB or greater or for high-speed drilling of steel.

SumiDrill

WDX Type

Application Examples

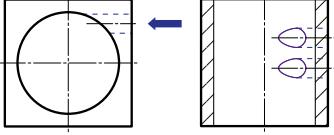

<p>WDX</p> <table border="1"> <tr> <td>300 holes per corner</td><td>K</td></tr> <tr> <td>150 holes per corner</td><td>Competitor A</td></tr> <tr> <td colspan="2" style="text-align: center;">2 times tool life</td></tr> <tr> <td colspan="2" style="text-align: center;">Number of Workpieces</td></tr> </table>	300 holes per corner	K	150 holes per corner	Competitor A	2 times tool life		Number of Workpieces		<p>P</p> <p>No issues even when the exit surface is diagonal</p>
300 holes per corner	K								
150 holes per corner	Competitor A								
2 times tool life									
Number of Workpieces									
<p>Work Material: Machine component (GGG-40.3) Holder: WDX205D3S25 Insert: WDXT063006 G (ACK300) Cutting Data: $v_c = 122$ m/min, $f = 0,15$ mm/rev, $H = 33$ mm, through, wet</p> <p>Significant increase in tool life; twice that conventional tools. Stable cutting with minimal cutting force.</p>	<p>Work Material: Plate (C15) Holder: WDX430D3S40 Insert: WDXT125012 H (ACP300) Cutting Data: $v_c = 136$ m/min, $f = 0,15$ mm/rev, $H = 60+50$ mm (semicircle area), through, wet</p> <p>Enables drilling even in unstable conditions (interrupted cutting at deepest point) Quieter cutting than conventional tools.</p>								
<p>WDX</p> <table border="1"> <tr> <td>2.400 holes per corner</td><td>P</td> </tr> <tr> <td>2.000 holes per corner</td><td>Competitor B</td> </tr> <tr> <td colspan="2" style="text-align: center;">20% longer tool life 25% greater efficiency</td> </tr> <tr> <td colspan="2" style="text-align: center;">Number of Holes</td> </tr> </table>	2.400 holes per corner	P	2.000 holes per corner	Competitor B	20% longer tool life 25% greater efficiency		Number of Holes		<p>WDX</p> <p>Excellent chip disposal.</p> <p>Competitor C</p>
2.400 holes per corner	P								
2.000 holes per corner	Competitor B								
20% longer tool life 25% greater efficiency									
Number of Holes									
<p>Work Material: Machine component (42CrMo4) Holder: WDX200D3S25 Insert: WDXT063006 G (ACP300) Cutting Data: $v_c = 157$ m/min, $f = 0,19$ mm/rev, $H = 19$ mm, through, wet Competitor B: $v_c = 157$ m/min, $f = 0,15$ mm/rev, $H = 19$ mm, through, wet</p> <p>Good chip control even in high-efficiency conditions. Good stability with low vibration during cutting. 25% greater efficiency and 20% longer tool life.</p>	<p>Work Material: Piping parts (X5CrNiS18 10) Holder: WDX210D3S25 Insert: WDXT063006 M (ACM300) Cutting Data: $v_c = 105$ m/min, $f = 0,08$ mm/rev, $H = 34$ mm, wet</p> <p>Improved chip control and better stable machining.</p>								
<p>WDX</p> <table border="1"> <tr> <td>$v_c = 127$ mm/min</td><td>P</td> </tr> <tr> <td>$v_c = 32$ mm/min</td><td>Competitor D</td> </tr> <tr> <td colspan="2" style="text-align: center;">4 times efficiency</td> </tr> <tr> <td colspan="2" style="text-align: center;">Feed Rate</td> </tr> </table> <p>Entry: $\varnothing 60,155$ Exit: $\varnothing 60,157$</p> <p>Good performance in terms of both machined surface and hole diameter.</p>	$v_c = 127$ mm/min	P	$v_c = 32$ mm/min	Competitor D	4 times efficiency		Feed Rate		<p>WDX</p> <p>Good performance in terms of both machined surface and hole diameter.</p> <p>Competitor E</p> <p>Hole dia. (mm)</p>
$v_c = 127$ mm/min	P								
$v_c = 32$ mm/min	Competitor D								
4 times efficiency									
Feed Rate									
<p>Work Material: Plate (C48) Holder: WDX600D3S40 Insert: WDXT186012 G (ACP300) Cutting Data: $v_c = 150$ m/min, $f = 0,16$ mm/rev, $H = 60$ mm, through, wet Competitor D: $v_c = 30$ m/min, $f = 0,20$ mm/rev, $H = 60$ mm, through, wet</p> <p>Achieves steady machining even at large diameters. Achieves 4 times the efficiency of conventional tools.</p>	<p>Work Material: Machine component (15CrMo5) Holder: WDX200D3S25 Insert: WDXT063006 G (ACP300) Cutting Data: $v_c = 185$ m/min, $f = 0,12$ mm/rev, $H = 87$ mm, through, wet</p> <p>Good machined surface. Consistent bore diameter.</p>								
<p>WDX</p> <p>Normal wear</p> <p>Competitor F</p> <p>Corner chipping, rake face wear</p> <p>Work Material: Tractor links (35MnBM) Holder: WDX205D5S25 Insert: WDXT063006 G (ACP300) Cutting Data: $v_c = 100$ m/min, $f = 0,11$ mm/rev, $H = 60$ mm, through, wet</p> <p>Achieves steady machining even at L/D = 5. Reduces insert chipping and wear for stable tool life.</p>	<p>WDX</p> <p>Normal wear</p> <p>Corner chipping</p> <p>Work Material: Bearing for wind power generator (equivalent to 42CrMo4) Holder: WDX330D5S40 Insert: WDXT094008 L (ACP300) Cutting Data: $v_c = 146$ m/min, $f = 0,10$ mm/rev, $H = 158$ mm, through, wet</p> <p>Eliminates defects in workpieces caused by insert chipping.</p>								

Fig 1

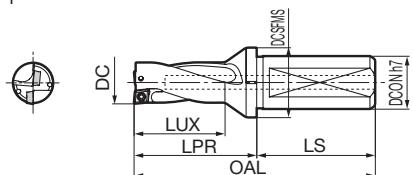


Fig 2

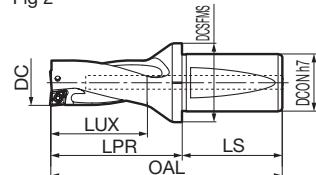
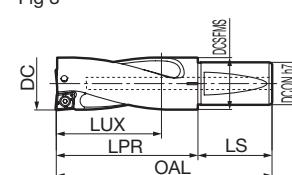



Fig 3

Holder Diameter $\varnothing 0.5625"$ to $2.6250"$

Dimensions (inch)

	Dia. DC	Stock	Cat.No.	Neck Length LUX	Overhang Length LPR	Overall Length OAL	Shank LS	Flange DCSFMS	Shank Dia. DCON	Applicable Insert	Coolant Connection	Fig
Solid	0.5625	•	WDX0562D2S075	1.2420	1.8330	3.8330	2.0000	1.1020	0.7500	WDXT042004	1/8 NPT	1
	0.5937	•	WDX0594D2S075	1.3060	1.8960	3.8960						1
Indexable Head Type	0.6250	•	WDX0625D2S100	1.3680	1.9590	4.4590						1
	0.6562	•	WDX0656D2S100	1.4300	2.0210	4.5210	2.5000	1.2600	1.0000	WDXT052504		1
	0.6875	•	WDX0687D2S100	1.4920	2.0830	4.5830						1
Indexable Insert Type	0.7500	•	WDX0750D2S100	1.6180	2.2090	4.7090						1
	0.7870	•	WDX0787D2S100	1.6920	2.2830	4.7830	2.5000	1.2990	1.0000	WDXT063006		1
	0.8125	•	WDX0812D2S100	1.7430	2.3340	4.8340						1
	0.8750	•	WDX0875D2S100	1.8680	2.4590	4.9590						1
	0.9375	•	WDX0937D2S125	1.9930	2.7020	5.2020	2.5000	1.6140	1.2500			2
	1.0000	•	WDX1000D2S125	2.1180	2.8270	5.3270						2
Reamers	1.0625	•	WDX1062D2S125	2.2430	2.9520	5.9520	3.0000	1.6140	1.2500	WDXT073506		2
	1.1250	•	WDX1125D2S125	2.3680	3.0770	6.0770						2
	1.1875	•	WDX1187D2S125	2.5320	3.3590	6.3590	3.0000	1.9680	1.2500			2
	1.2500	•	WDX1250D2S125	2.6570	3.4840	6.4840						2
	1.3125	•	WDX1312D2S150	2.7820	3.7270	6.7270						2
	1.3750	•	WDX1375D2S150	2.9070	3.8520	6.8520	3.0000	2.1260	1.5000	WDXT094008		2
	1.4375	•	WDX1437D2S150	3.0320	3.9770	6.9770						2
	1.5000	•	WDX1500D2S150	3.1570	4.1020	7.1020						2
	1.5625	•	WDX1562D2S150	3.2810	4.2260	7.2260	3.0000	1.9490	1.5000			2
	1.6250	•	WDX1625D2S150	3.4070	4.3520	7.3520						2
	1.6875	•	WDX1687D2S150	3.5330	4.4780	7.4780	3.0000	1.9490	1.5000	WDXT125012		3
	1.7500	•	WDX1750D2S150	3.6570	4.6020	7.6020						3
Brazed	1.8125	•	WDX1812D2S150	3.7830	4.7280	7.7280						3
	1.8750	•	WDX1875D2S150	3.9070	4.8520	7.8520						3
	1.9375	•	WDX1937D2S150	4.0330	4.9780	7.9780	3.0000	1.9490	1.5000	WDXT156012		3
	2.0000	•	WDX2000D2S150	4.1570	5.1020	8.1020						3
	2.1250	•	WDX2125D2S150	4.4070	5.3520	8.3520						3
	2.2500	•	WDX2250D2S150	4.8150	6.0750	9.0750						3
	2.3750	•	WDX2375D2S150	5.0670	6.3270	9.3270	3.0000	2.2950	1.5000	WDXT186012		3
	2.5000	•	WDX2500D2S150	5.3150	6.5750	9.5750						3
	2.6250	•	WDX2625D2S150	5.5670	6.8270	9.8270		2.4210				3
								2.5470				3

Identification Code - Inch

WDX 05625 D2 S075

Dia. DC
($\varnothing 0.5625"$)Flute Length L/D
(2D)Shank Dia. DCON
($\varnothing 0.750"$)

Parts

Applicable Holder	Flat Screw	Wrench	Wrench	
WDX0562D2S075 to WDX0594D2S075	BFTX01604N	0.3	TRX06	-
WDX0625D2S100 to WDX0687D2S100	BFTX0204N	0.5	TRX06	-
WDX0750D2S100 to WDX0875D2S100	BFTY02206	1.0	-	TRD07
WDX0937D2S125 to WDX1125D2S125	BFTX02506N	1.5	-	TRD08
WDX1187D2S125 to WDX1437D2S150	BFTX03584	3.5	-	TRD15
WDX1500D2S150 to WDX1750D2S150	BFTX0511N	5.0	-	TRD20
WDX1812D2S150 to WDX2625D2S150	BFTX0615N	5.0	-	TRD25

Radial Offset Amount J122

Fig 1

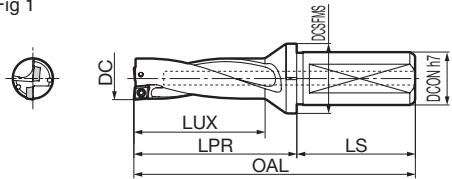


Fig 2

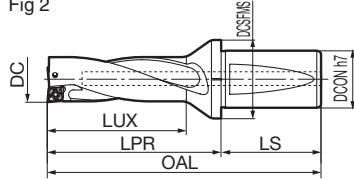
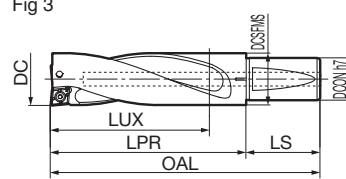



Fig 3

Holder Diameter $\varnothing 0.5625"$ to $2.6250"$

Dimensions (inch)

Dia. DC	Stock	Cat.No.	Neck Length LUX	Overhang Length LPR	Overall Length OAL	Shank LS	Flange DCSFMS	Shank Dia. DCON	Applicable Insert	Coolant Connection	Fig
0.5625	•	WDX0562D3S075	1.8040	2.3950	4.3950	2.0000	1.1020	0.7500	WDXT042004	1/8 NPT	1
0.5937	•	WDX0594D3S075	1.9000	2.4910	4.4910						1
0.6250	•	WDX0625D3S100	1.9930	2.5840	5.0840						1
0.6562	•	WDX0656D3S100	2.0860	2.6770	5.1770	2.5000	1.2600	1.0000	WDXT052504		1
0.6875	•	WDX0687D3S100	2.1790	2.7700	5.2700						1
0.7500	•	WDX0750D3S100	2.3680	2.9590	5.4590						1
0.7870	•	WDX0787D3S100	2.4790	3.0700	5.5700	2.5000	1.2990	1.0000	WDXT063006		1
0.8125	•	WDX0812D3S100	2.5560	3.1460	5.6460						1
0.8750	•	WDX0875D3S100	2.7430	3.3340	5.8340						2
0.9375	•	WDX0937D3S125	2.9310	3.6390	6.1390	2.5000	1.6140	1.2500			2
1.0000	•	WDX1000D3S125	3.1180	3.8270	6.3270				WDXT073506		2
1.0625	•	WDX1062D3S125	3.3060	4.0140	7.0140	3.0000	1.6140	1.2500			2
1.1250	•	WDX1125D3S125	3.4930	4.2020	7.2020						2
1.1875	•	WDX1187D3S125	3.7200	4.5470	7.5470	3.0000	1.9680	1.2500			2
1.2500	•	WDX1250D3S125	3.9070	4.7340	7.7340						2
1.3125	•	WDX1312D3S150	4.0950	5.0400	8.0400				WDXT094008		2
1.3750	•	WDX1375D3S150	4.2820	5.2270	8.2270	3.0000	2.1260	1.5000			2
1.4375	•	WDX1437D3S150	4.4700	5.4150	8.4150						2
1.5000	•	WDX1500D3S150	4.6970	5.8780	8.8780	3.0000	1.9490	1.5000			2
1.5625	•	WDX1562D3S150	4.8830	6.0640	9.0640				WDXT125012		2
1.6250	•	WDX1625D3S150	5.0720	6.2530	9.2530						3
1.6875	•	WDX1687D3S150	5.2610	6.4420	9.4420	3.0000	1.9490	1.5000			3
1.7500	•	WDX1750D3S150	5.4470	6.6280	9.6280						3
1.8125	•	WDX1812D3S150	5.6360	6.8170	9.8170						3
1.8750	•	WDX1875D3S150	5.8820	7.0030	10.0030						3
1.9375	•	WDX1937D3S150	6.0110	7.1920	10.1920	3.0000	1.9490	1.5000	WDXT156012		3
2.0000	•	WDX2000D3S150	6.1970	7.3780	10.3780						3
2.1250	•	WDX2125D3S150	6.5720	7.7530	10.7530						3
2.2500	•	WDX2250D3S150	7.0670	8.3270	11.3270		2.1730				3
2.3750	•	WDX2375D3S150	7.4410	8.7010	11.7010	3.0000	2.2950		WDXT186012		3
2.5000	•	WDX2500D3S150	7.8150	9.0750	12.0750		2.4210				3
2.6250	•	WDX2625D3S150	8.1890	9.4490	12.4490		2.5470				3

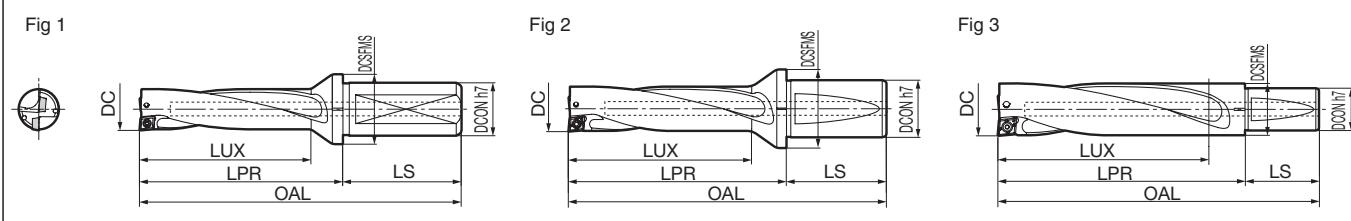
Identification Code - Inch

WDX 05625 D3 S075

Dia. DC
($\varnothing 0.5625"$)

Flute Length L/D
(3D)

Shank Dia. DCON
($\varnothing 0.750"$)


Parts

Applicable Holder	Flat Screw	Wrench	Wrench	
WDX0562D3S075 to WDX0594D3S075	BFTX01604N	0.3	TRX06	-
WDX0625D3S100 to WDX0687D3S100	BFTX0204N	0.5	TRX06	-
WDX0750D3S100 to WDX0875D3S100	BFTY02206	1.0	-	TRD07
WDX0937D3S125 to WDX1125D3S125	BFTX02506N	1.5	-	TRD08
WDX1187D3S125 to WDX1437D3S150	BFTX03584	3.5	-	TRD15
WDX1500D3S150 to WDX1750D3S150	BFTX0511N	5.0	-	TRD20
WDX1812D3S150 to WDX2625D3S150	BFTX0615N	5.0	-	TRD25

Radial Offset Amount J122

• USA Stocked Item

Recommended Tightening Torque (N·m)

Holder Diameter $\varnothing 0.5625"$ to $2.5000"$

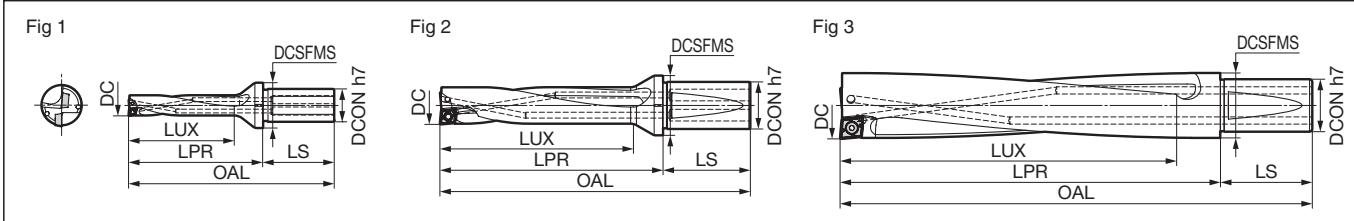
Dimensions (inch)

	Dia. DC	Stock	Cat.No.	Neck Length LUX	Overhang Length LPR	Overall Length OAL	Shank LS	Flange DCSFMS	Shank Dia. DCON	Applicable Insert	Coolant Connection	Fig
Solid	0.5625	•	WDX0562D4S075	2.3660	2.9570	4.9570	2.0000	1.1020	0.7500	WDXT042004	1/8 NPT	1
	0.5937	•	WDX0594D4S075	2.4940	3.0850	5.0850						1
Indexable Head Type	0.6250	•	WDX0625D4S100	2.6180	3.2090	5.7090						1
	0.6562	•	WDX0656D4S100	2.7420	3.3330	5.8330	2.5000	1.2600	1.0000	WDXT052504		1
	0.6875	•	WDX0687D4S100	2.8660	3.4570	5.9570						1
Indexable Insert Type	0.7500	•	WDX0750D4S100	3.1180	3.7090	6.2090						1
	0.7870	•	WDX0787D4S100	3.2660	3.8570	6.3570	2.5000	1.2990	1.0000	WDXT063006		1
	0.8125	•	WDX0812D4S100	3.3680	3.9590	6.4590						1
	0.8750	•	WDX0875D4S100	3.6180	4.2090	6.7090						2
	0.9375	•	WDX0937D4S125	3.8680	4.5770	7.0770	2.5000	1.6140	1.2500			2
	1.0000	•	WDX1000D4S125	4.1180	4.8270	7.3270						2
Reamers	1.0625	•	WDX1062D4S125	4.3680	5.0770	8.0770	3.0000	1.6140	1.2500	WDXT073506		2
	1.1250	•	WDX1125D4S125	4.6180	5.3270	8.3270						2
	1.1875	•	WDX1187D4S125	4.9070	5.7340	8.7340	3.0000	1.9680	1.2500			2
	1.2500	•	WDX1250D4S125	5.1570	5.9840	8.9840						2
	1.3125	•	WDX1312D4S150	5.4070	6.3520	9.3520				WDXT094008		2
	1.3750	•	WDX1375D4S150	5.6570	6.6020	9.6020	3.0000	2.1260	1.5000			2
	1.4375	•	WDX1437D4S150	5.9070	6.8520	9.8520						2
	1.5000	•	WDX1500D4S150	6.1970	7.3780	10.3780						2
	1.5625	•	WDX1562D4S150	6.4450	7.6260	10.6260	3.0000	1.9490	1.5000			2
	1.6250	•	WDX1625D4S150	6.6970	7.8780	10.8780				WDXT125012		3
	1.6875	•	WDX1687D4S150	6.9490	8.1300	11.1300	3.0000	1.9490	1.5000			3
	1.7500	•	WDX1750D4S150	7.1970	8.3780	11.3780						3
Brazed	1.8125	•	WDX1812D4S150	7.4490	8.6300	11.6300						3
	1.8750	•	WDX1875D4S150	7.6970	8.8780	11.8780						3
	1.9375	•	WDX1937D4S150	7.9490	9.1300	12.1300	3.0000	1.9490	1.5000	WDXT156012		3
	2.0000	•	WDX2000D4S150	8.1970	9.3780	12.3780						3
	2.1250	•	WDX2125D4S150	8.6970	9.8780	12.8780						3
	2.2500	•	WDX2250D4S150	9.3150	10.5750	13.5750	2.1730					3
	2.3750	•	WDX2375D4S150	9.8150	11.0750	14.0750	3.0000	2.2950	1.5000	WDXT186012		3
	2.5000	•	WDX2500D4S150	10.3150	11.5750	14.5750		2.4210				3

Identification Code - Inch

WDX 05625 D4 S075

Dia. DC ($\varnothing 0.5625"$) Flute Length L/D (4D) Shank Dia. DCON ($\varnothing 0.750"$)


Parts

Applicable Holder	Flat Screw	Wrench	Wrench
WDX0562D4S075 to WDX0594D4S075	BFTX01604N	0.3	TRX06
WDX0625D4S100 to WDX0687D4S100	BFTX0204N	0.5	TRX06
WDX0750D4S100 to WDX0875D4S100	BFTY02206	1.0	-
WDX0937D4S125 to WDX1125D4S125	BFTX02506N	1.5	-
WDX1187D4S125 to WDX1437D4S150	BFTX03584	3.5	-
WDX1500D4S150 to WDX1750D4S150	BFTX0511N	5.0	-
WDX1812D4S150 to WDX2625D4S150	BFTX0615N	5.0	-
			TRD20

Radial Offset Amount J122

•: USA Stocked Item

Recommended Tightening Torque (N·m)

Holder Diameter $\varnothing 0.5625"$ to $2.1250"$

Dimensions (inch)

Dia. DC	Stock	Cat.No.	Neck Length LUX	Overhang Length LPR	Overall Length OAL	Shank LS	Flange DCSFMS	Shank Dia. DCON	Applicable Insert	Coolant Connection	Fig
0.5625	•	WDX0562D5S075	2.9280	3.5190	5.5190	2.0000	1.1020	0.7500	WDXT042004	1/8 NPT	1
0.5937	•	WDX0594D5S075	3.0880	3.6790	5.6790						1
0.6250	•	WDX0625D5S100	3.2430	3.8340	6.3340						1
0.6562	•	WDX0656D5S100	3.3980	3.9890	6.4890	2.5000	1.2600	1.0000	WDXT052504		1
0.6875	•	WDX0687D5S100	3.5530	4.1440	6.6440						1
0.7500	•	WDX0750D5S100	3.8680	4.4590	6.9590						1
0.7870	•	WDX0787D5S100	4.0530	4.6440	7.1440	2.5000	1.2990	1.0000	WDXT063006		1
0.8125	•	WDX0812D5S100	4.1780	4.7690	7.2690						1
0.8750	•	WDX0875D5S100	4.4930	5.0840	7.5840						2
0.9375	•	WDX0937D5S125	4.8030	5.5120	8.0120	2.5000	1.6140	1.2500			2
1.0000	•	WDX1000D5S125	5.1180	5.8270	8.3270						2
1.0625	•	WDX1062D5S125	5.4280	6.1370	9.1370	3.0000	1.6140	1.2500	WDXT073506		2
1.1250	•	WDX1125D5S125	5.7430	6.4520	9.4520						2
1.1875	•	WDX1187D5S125	6.0930	6.9200	9.9200	3.0000	1.9680	1.2500			2
1.2500	•	WDX1250D5S125	6.4080	7.2350	10.2350						2
1.3125	•	WDX1312D5S150	6.7180	7.6630	10.6630				WDXT094008		2
1.3750	•	WDX1375D5S150	7.0330	7.9780	10.9780	3.0000	2.1260	1.5000			2
1.4375	•	WDX1437D5S150	7.3430	8.2880	11.2880						2
1.5000	•	WDX1500D5S150	7.6970	8.8780	11.8780	3.0000	1.9490	1.5000			2
1.5625	•	WDX1562D5S150	8.0070	9.1880	12.1880						2
1.6250	•	WDX1625D5S150	8.3220	9.5030	12.5030				WDXT125012		3
1.6875	•	WDX1687D5S150	8.6320	9.8130	12.8130	3.0000	1.9490	1.5000			3
1.7500	•	WDX1750D5S150	8.9470	10.1280	13.1280						3
1.8125	•	WDX1812D5S150	9.2570	10.4380	13.4380						3
1.8750	•	WDX1875D5S150	9.5720	10.7530	13.7530						3
1.9375	•	WDX1937D5S150	9.8820	11.0630	14.0630	3.0000	1.9490	1.5000	WDXT156012		3
2.0000	•	WDX2000D5S150	10.1970	11.3780	14.3780						3
2.1250	•	WDX2125D5S150	10.8220	12.0030	15.0030						3

•: USA Stocked Item

Identification Code - Inch

WDX 05625 D5 S075Dia. DC
($\varnothing 0.5625"$)Flute Length L/D
(5D)Shank Dia. DCON
($\varnothing 0.750"$)

Parts

Applicable Holder	Flat Screw	Wrench	Wrench	
WDX0562D5S075 to WDX0594D5S075	BFTX01604N	0.3	TRX06	-
WDX0625D5S100 to WDX0687D5S100	BFTX0204N	0.5	TRX06	-
WDX0750D5S100 to WDX0875D5S100	BFTY02206	1.0	-	TRD07
WDX0937D5S125 to WDX1125D5S125	BFTX02506N	1.5	-	TRD08
WDX1187D5S125 to WDX1437D5S150	BFTX03584	3.5	-	TRD15
WDX1500D5S150 to WDX1750D5S150	BFTX0511N	5.0	-	TRD20
WDX1812D5S150 to WDX2625D5S150	BFTX0615N	5.0	-	TRD25

Radial Offset Amount J122

Recommended Tightening Torque (N·m)

Recommended Cutting Conditions (for 2D)

	Work Material	Workpiece Hardness	Recommended Chipbreaker	Recommended Insert Grade	v_c (cutting speed) (SFM)	f (feed rate) (IPR) (Min. - Optimum - Max.)				
						$\phi 0.562 - \phi 1.00$	$\phi 1.062 - \phi 1.50$	$\phi 1.56 - \phi 2.125$	$\phi 2.25 - \phi 2.625$	
2D	P	Steel, Carbon Steel SS400	<190	G	ACP300	450 - 780	.002 - .006	.003 - .008	.005 - .010	.006 - .012
		S15C		L	ACP300	450 - 750	.002 - .004	.002 - .005	.003 - .006	N/A
		S45C	190 ~ 250	G	ACP300	400 - 700	.003 - .009	.004 - .010	.005 - .010	.006 - .012
		S45C Hardened		G	ACP100	400 - 700	.002 - .004	.002 - .005	.003 - .006	N/A
		S75C	250 ~ 350	G	ACP100	350 - 550	.003 - .007	.003 - .008	.004 - .009	.004 - .010
		S75C Hardened		G	ACP100	350 - 525	.002 - .004	.002 - .004	.003 - .005	N/A
	M	Low-alloy Steel SCM, SNCM	180 ~ 275	L	ACP300	350 - 700	.002 - .007	.003 - .008	.005 - .010	.006 - .010
		SCM, SNCM Hardened		G	ACP100	350 - 650	.002 - .004	.002 - .005	.003 - .006	N/A
		SCM, SNCM Hardened	275 ~ 350	G	ACP100	300 - 500	.002 - .006	.003 - .007	.004 - .008	.006 - .009
		SCM, SNCM Hardened		G	ACP100	300 - 500	.002 - .003	.002 - .004	.003 - .005	N/A
		High-alloy Steel SKD, SKT, SKH	200 ~ 325	G	ACP100	350 - 650	.003 - .006	.003 - .008	.006 - .010	.006 - .012
		SKD, SKT, SKH (Sintered)		G	ACP100	300 - 450	.002 - .004	.003 - .005	.003 - .006	N/A
	S	Stainless Steel SUS304, SUS316 (Austenitic)	160	G	ACP300	400 - 650	.003 - .007	.003 - .008	.005 - .010	.006 - .012
		SUS304, SUS316 (Austenitic)	280		ACP300	325 - 500	.002 - .006	.003 - .006	.004 - .008	.006 - .010
		SUS403/Others (Martensitic/Ferritic)	160	G	ACP300	400 - 650	.003 - .007	.003 - .008	.004 - .010	.006 - .012
		SUS403/Others (Martensitic (hardened))	240	G	ACP300	325 - 600	.002 - .006	.003 - .006	.004 - .008	.006 - .010
	K	Cast Iron		H	ACK300	400 - 650	.004 - .008	.004 - .012	.006 - .014	.006 - .017
		Ductile Cast Iron		H	ACK300	300 - 500	.004 - .008	.004 - .012	.006 - .014	.006 - .017
	N	Exotic Alloy (Heat-Resistant Alloy, Super Alloy, Titanium Alloy, etc.)	200 ~ 375	G	ACP300	80 - 250	.002 - .005	.003 - .007	.003 - .008	.003 - .010
		Aluminum Alloy		G	DL1500	650 - 1200	.003 - .006	.003 - .007	.004 - .008	.005 - .010
		Copper Alloy		G	DL1500	600 - 900	.003 - .006	.003 - .007	.004 - .008	.005 - .010

For the P and K grades for which ACP300 and ACK300 inserts are the first recommendation, ACP100 inserts are the second recommendation. In this case, it is recommended to set the cutting speed (V_c) to 130% and the feed rate (f) to 75% of the figures in the table above.

Recommended Cutting Conditions (for 3D)

	Work Material	Workpiece Hardness	Recommended Chipbreaker	Recommended Insert Grade	v_c (cutting speed) (SFM)	f (feed rate) (IPR) (Min. - Optimum - Max.)				
						$\phi 0.562 - \phi 1.00$	$\phi 1.062 - \phi 1.50$	$\phi 1.56 - \phi 2.125$	$\phi 2.25 - \phi 2.625$	
3D	P	Steel, Carbon Steel SS400	<190	G	ACP300	450 - 780	.002 - .006	.003 - .008	.005 - .010	.006 - .012
		S15C		L	ACP300	450 - 750	.002 - .004	.002 - .005	.003 - .006	N/A
		S45C	190 ~ 250	G	ACP300	400 - 700	.003 - .009	.004 - .010	.005 - .010	.006 - .012
		S45C Hardened		G	ACP100	400 - 700	.002 - .004	.002 - .005	.003 - .006	N/A
		S75C	250 ~ 350	G	ACP100	350 - 550	.003 - .007	.003 - .008	.004 - .009	.004 - .010
		S75C Hardened		G	ACP100	350 - 525	.002 - .004	.002 - .004	.003 - .005	N/A
	M	Low-alloy Steel SCM, SNCM	180 ~ 275	L	ACP300	350 - 700	.002 - .007	.003 - .008	.005 - .010	.006 - .010
		SCM, SNCM Hardened		G	ACP100	350 - 650	.002 - .004	.002 - .005	.003 - .006	N/A
		SCM, SNCM Hardened	275 ~ 350	G	ACP100	300 - 500	.002 - .006	.003 - .007	.004 - .008	.006 - .009
		SCM, SNCM Hardened		G	ACP100	300 - 500	.002 - .003	.002 - .004	.003 - .005	N/A
		High-alloy Steel SKD, SKT, SKH	200 ~ 325	G	ACP100	350 - 650	.003 - .006	.003 - .008	.006 - .010	.006 - .012
		SKD, SKT, SKH (Sintered)		G	ACP100	300 - 450	.002 - .004	.003 - .005	.003 - .006	N/A
	S	Stainless Steel SUS304, SUS316 (Austenitic)	160	G	ACP300	400 - 650	.003 - .007	.003 - .008	.005 - .010	.006 - .012
		SUS304, SUS316 (Austenitic)	280		ACP300	325 - 500	.002 - .006	.003 - .006	.004 - .008	.006 - .010
		SUS403/Others (Martensitic/Ferritic)	160	G	ACP300	400 - 650	.003 - .007	.003 - .008	.004 - .010	.006 - .012
		SUS403/Others (Martensitic (hardened))	240	G	ACP300	325 - 600	.002 - .006	.003 - .006	.004 - .008	.006 - .010
	K	Cast Iron		H	ACK300	400 - 650	.004 - .008	.004 - .012	.006 - .014	.006 - .017
		Ductile Cast Iron		H	ACK300	300 - 500	.004 - .008	.004 - .012	.006 - .014	.006 - .017
	N	Exotic Alloy (Heat-Resistant Alloy, Super Alloy, Titanium Alloy, etc.)	200 ~ 375	G	ACP300	80 - 250	.002 - .005	.003 - .007	.003 - .008	.003 - .010
		Aluminum Alloy		G	DL1500	650 - 1200	.003 - .006	.003 - .007	.004 - .008	.005 - .010
		Copper Alloy		G	DL1500	600 - 900	.003 - .006	.003 - .007	.004 - .008	.005 - .010

For the P and K grades for which ACP300 and ACK300 inserts are the first recommendation, ACP100 inserts are the second recommendation. In this case, it is recommended to set the cutting speed (V_c) to 130% and the feed rate (f) to 75% of the figures in the table above.

Recommended Cutting Conditions (for 4D)

	Work Material	Workpiece Hardness	Recommended Chipbreaker	Recommended Insert Grade	v_c (cutting speed) (SFM)	f (feed rate) (IPR) (Min. - Optimum - Max.)				
						ø0.562 - ø1.00	ø1.062 - ø1.50	ø1.56 - ø2.125	ø2.25 - ø2.625	
4D	Steel, Carbon Steel	SS400	<190	G	ACP300	450 - 780	.002 - .006	.003 - .008	.005 - .010	
				L	ACP300	450 - 750	.002 - .004	.002 - .005	.003 - .006	
		S15C	190 ~ 250	G	ACP300	400 - 700	.003 - .009	.004 - .010	.005 - .010	
				G	ACP100	400 - 700	.002 - .004	.002 - .005	.003 - .006	
		S45C	250 ~ 350	G	ACP100	350 - 550	.003 - .007	.003 - .008	.004 - .009	
				G	ACP100	350 - 525	.002 - .004	.002 - .004	.003 - .005	
	Low-alloy Steel	SCM, SNCM	180 ~ 275	L	ACP300	350 - 700	.002 - .007	.003 - .008	.005 - .010	
				G	ACP100	350 - 650	.002 - .004	.002 - .005	.003 - .006	
		SCM, SNCM Hardened	275 ~ 350	G	ACP100	300 - 500	.002 - .006	.003 - .007	.004 - .008	
				G	ACP100	300 - 500	.002 - .003	.002 - .004	.003 - .005	
	High-alloy Steel	SKD, SKT, SKH	200 ~ 325	G	ACP100	350 - 650	.003 - .006	.003 - .008	.006 - .010	
				G	ACP100	300 - 450	.002 - .004	.003 - .005	.003 - .006	
		SKD, SKT, SKH (Sintered)	200 ~ 325	G	ACP100	300 - 450	.002 - .004	.003 - .005	.003 - .006	
				G	ACP100	300 - 450	.002 - .004	.003 - .005	.003 - .006	
	M	Stainless Steel	SUS304, SUS316 (Austenitic)	160	G	ACP300	400 - 650	.003 - .007	.003 - .008	.005 - .010
				280	G	ACP300	325 - 500	.002 - .006	.003 - .006	.004 - .008
		SUS304, SUS316 (Austenitic)	160	G	ACP300	400 - 650	.003 - .007	.003 - .008	.004 - .010	
				240	G	ACP300	325 - 600	.002 - .006	.003 - .006	.004 - .008
	K	Cast Iron	H	ACK300	400 - 650	.004 - .008	.004 - .012	.006 - .014	.006 - .017	
		Ductile Cast Iron	H	ACK300	300 - 500	.004 - .008	.004 - .012	.006 - .014	.006 - .017	
	S	Exotic Alloy (Heat-Resistant Alloy, Super Alloy, Titanium Alloy, etc.)	200 ~ 375	G	ACP300	80 - 250	.002 - .005	.003 - .007	.003 - .008	.003 - .010
		Aluminum Alloy		G	DL1500	650 - 1200	.003 - .006	.003 - .007	.004 - .008	.005 - .010
	N	Copper Alloy		G	DL1500	600 - 900	.003 - .006	.003 - .007	.004 - .008	.005 - .010

For the P and K grades for which ACP300 and ACK300 inserts are the first recommendation, ACP100 inserts are the second recommendation. In this case, it is recommended to set the cutting speed (v_c) to 130% and the feed rate (f) to 75% of the figures in the table above.

Recommended Cutting Conditions (for 5D)

	Work Material	Workpiece Hardness	Recommended Chipbreaker	Recommended Insert Grade	v_c (cutting speed) (SFM)	f (feed rate) (IPR) (Min. - Optimum - Max.)			
						ø0.562 - ø1.00	ø1.062 - ø1.50	ø1.56 - ø2.125	ø2.25 - ø2.625
5D	Steel, Carbon Steel	SS400	<190	G	ACP300	450 - 780	.002 - .004	.003 - .006	.004 - .007
				L	ACP300	450 - 750	.002 - .004	.002 - .005	.002 - .005
		S15C	190 ~ 250	G	ACP300	400 - 700	.003 - .006	.003 - .007	.005 - .008
				G	ACP100	400 - 700	.002 - .004	.002 - .005	.002 - .005
		S45C	250 ~ 350	G	ACP100	350 - 550	.003 - .006	.003 - .007	.003 - .007
				G	ACP100	350 - 525	.002 - .004	.002 - .004	.002 - .005
	Low-alloy Steel	SCM, SNCM	180 ~ 275	L	ACP300	350 - 700	.003 - .006	.003 - .008	.004 - .008
				G	ACP100	350 - 650	.002 - .004	.002 - .005	.002 - .005
		SCM, SNCM Hardened	275 ~ 350	G	ACP100	300 - 500	.003 - .005	.003 - .007	.004 - .008
				G	ACP100	300 - 500	.002 - .003	.002 - .004	.002 - .005
	M	High-alloy Steel	200 ~ 325	G	ACP100	350 - 650	.003 - .006	.003 - .008	.004 - .008
				G	ACP100	300 - 450	.002 - .004	.003 - .005	.003 - .006
		Stainless Steel	160	G	ACP300	400 - 650	.002 - .004	.003 - .006	.003 - .007
				280	G	ACP300	325 - 500	.001 - .003	.003 - .005
	K	Cast Iron	H	ACK300	400 - 650	.004 - .008	.004 - .010	.005 - .011	
		Ductile Cast Iron	H	ACK300	300 - 500	.004 - .008	.004 - .010	.005 - .011	
		Exotic Alloy (Heat-Resistant Alloy, Super Alloy, Titanium Alloy, etc.)	200 ~ 375	G	ACP300	80 - 250	.002 - .004	.003 - .006	.003 - .007
		Aluminum Alloy		G	DL1500	650 - 1200	.003 - .006	.003 - .007	.004 - .008
	N	Copper Alloy		G	DL1500	600 - 900	.003 - .006	.003 - .007	.004 - .008

For the P and K grades for which ACP300 and ACK300 inserts are the first recommendation, ACP100 inserts are the second recommendation. In this case, it is recommended to set the cutting speed (v_c) to 130% and the feed rate (f) to 75% of the figures in the table above.

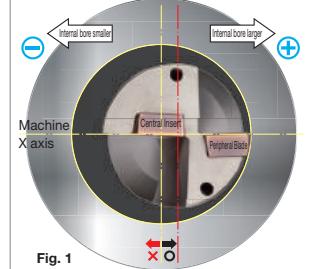
Indexable Insert Drills WDX Type

Drilling

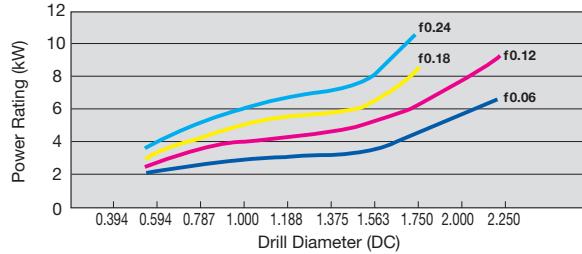
J

Solid

Indexable Head Type


Indexable Insert Type

Reamers


Brazed

Others

■ Lathe Machining Guidelines

■ Typical Power Ratings

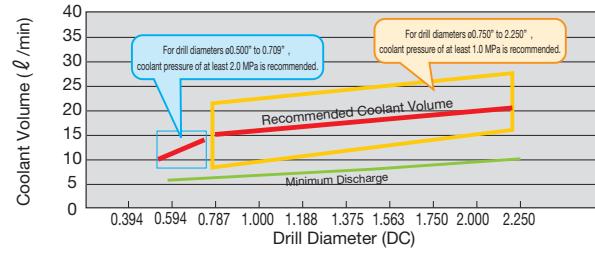
<CAUTIONS>

- Power ratings are subject to change based on conditions such as work material and cutting speed, and should only be used for reference.
- Cutting Conditions (Reference)
Work Material: S50C (230HB)
Cutting Speed: $v_c=492$ SFM

■ Drill Mounting

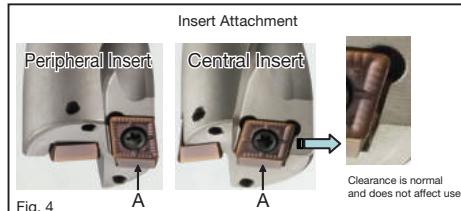
- Set the drill so that the peripheral insert is parallel to the X axis of the machine. (Fig.1)
- Press the end of the flange of the drill tightly against the face of the holder when tightening the bolt.

■ Adjusting work diameter (offset)


- The work diameter is adjustable by moving the machine X axis.
- Make the adjustment by moving in the positive direction of the X axis (enlarging the bore diameter). Moving the X axis in the negative direction (to reduce the bore diameter) is not recommended as the holder may interfere with the hole. (See Fig. 1)
- The maximum allowable adjustment (offset) differs depending on the drill diameter.

Refer to Radial Offset (Max) in the Holder dimension tables on pages J111, J114, J117, J120.

■ Other notes


- When the drill is mounted on a lathe, the centre of the central insert is designed to be 0.15 to 0.2 mm below the centre of the spindle.
- If the spindle deviates so far off centre that the centre of the central insert lies above the spindle centre, the central insert will break.
- Set the depth of cut for turning or internal boring work to 1/5 or less of the drill diameter (max. 5 mm or less). (Example: Set depth of cut to 4 mm or less for a drill diameter of $\phi 20$ mm)
- Install a cover to prevent injury from possible chip fly-out (see disc-shaped chip in Figure 2) when through boring on a lathe. If your equipment has no cover, attach a cover or similar part for your safety.

■ Typical Coolant Volume

■ Precautions for Attaching and Removing Inserts

- Before mounting the insert, remove all traces of foreign matter on the insert seat using air or other means.
- When using the wrench, align it to the axis of the screw and press while turning. (See Fig. 3)
If the wrench is not aligned with the screw, the insert will be insufficiently clamped and the tip of the wrench and/or the Torx hole of the screw may become deformed.
- Do not allow clearance between the insert seat and drill when mounting the insert (Fig. 4, Part A).
Figure 4 shows a properly mounted insert.
- It is normal for the outer sides of the central insert to have clearance because it is clamped at its centre and pushed to the rear.

■ Troubleshooting

Problem	Symptom	Cause	Countermeasures
Too much variation in hole diameter	Drilled hole diameter is larger than desired	Deflection of the holder due to high thrust force	Decrease the feed rate to decrease the thrust force. Make an adjustment on the X axis.
	Drilled hole diameter is smaller than desired	The cutting edge backs off and does not enter the workpiece	Increase the feed rate. Make an adjustment on the X axis.
	Pronounced difference in hole diameter at entrance and bottom	Packing of chips	Increase the feed rate to improve chip evacuation. Use an L type breaker for chip control.
Poor quality machined hole surface	Poor machined surface from entrance to bottom of hole	High cutting force Low rigidity of workpiece	Decrease the feed rate. Review tooling to improve rigidity.
	Poor machined surface at bottom of hole	Machined surfaces damaged by chips	Increase the feed rate to improve chip evacuation. Use an L type breaker for chip control.
Insert is broken	Breakage on central insert (centre)	Improper adjustment of centre height Insert is not strong enough	Check the centre height again. If the drill is being used on a lathe, try flipping the drill 180°. Use a strong edge chipbreaker (H type).
	Breakage on peripheral insert	High cutting load in cutting edge	Decrease the feed rate to decrease cutting load. Use a strong edge chipbreaker (H type).