

Tactical Emergency Casualty Care (TECC) Guidelines

Pediatric Appendix

DIRECT THREAT CARE (DTC)

Goals:

1. Accomplish the mission with minimal casualties
2. Prevent any casualty from sustaining additional injuries
3. Keep response team maximally engaged in neutralizing the existing threat (e.g. active shooter, unstable building, confined space HAZMAT, etc.)
4. Minimize public harm

Principles:

1. Establish tactical supremacy and defer in depth medical interventions if engaged in ongoing direct threat (e.g. active fire fight, unstable building collapse, dynamic explosive scenario, etc.).
2. Threat mitigation techniques will minimize risk to casualties and the providers. These should include techniques and tools for rapid casualty access and egress.
3. Minimal trauma interventions are warranted.
4. Consider hemorrhage control
 - a. TQ application is the primary “medical” intervention to be considered in Direct Threat Care.
 - b. Consider instructing casualty to apply direct pressure to the wound if no tourniquet available or application is not tactically feasible.
5. Consider quickly placing or directing casualty to be placed in position to protect airway.

Guidelines:

1. Mitigate any threat and move to a safer position (e.g. Return fire, utilize less lethal technology, assume an overwhelming force posture, extraction from immediate structural collapse, etc.).
2. Direct the casualty to move to a safer position and apply self aid if able.
 - a. Attention must be paid to the type of instruction that will be presented to this population.
 - b. Use of tactile direction, visual signaling and simple language may improve communication.
3. Casualty Extraction

35 a. If a casualty can move to safety, they should be instructed to do so.

36 b. If a casualty is unresponsive, the scene commander or team leader should weigh
37 the risks and benefits of a rescue attempt in terms of manpower and likelihood of
38 success. Remote medical assessment techniques should be considered.

39 c. If the casualty is responsive but cannot move, a tactically feasible rescue plan
40 should be devised.

41 d. Recognize that threats are dynamic and may be ongoing, requiring continuous
42 threat assessments.

43 4. Stop life threatening external hemorrhage if tactically feasible:

44 a. Provider should not hesitate to apply tourniquets to pediatric casualties.

45 b. Apply a tourniquet over the clothing as proximal-- high on the limb-- as possible.

46 c. Tighten until cessation of bleeding and move to safety. Consider moving to
47 safety prior to application of the TQ if the situation warrants.

48 d. Consider instructing casualty to apply direct pressure to the wound if no
49 tourniquet available or application is not tactically feasible

50 5. Consider quickly placing casualty, or directing the casualty to be placed, in position to
51 protect airway if tactically feasible

52 **Skill Sets:**

- 53 1. Tourniquet application
- 54 2. Consider PACE Methodology- Primary, Alternative, Contingency, Emergency
- 55 3. Commercially available tourniquets
- 56 4. Field expedient tourniquets
- 57 5. Tactical casualty extraction
- 58 6. Rapid placement in recover position

59 **INDIRECT THREAT CARE (ITC)**

60 **Goals:**

61 1. Goals 1-4 as above with DTC care
62 2. Stabilize the casualty as required to permit safe extraction to dedicated treatment sector or
63 medical evacuation assets

64 **Principles:**

65 1. Maintain tactical supremacy, mitigate threats and complete the overall mission.
66 2. Conduct dedicated patient assessment and initiate appropriate life-saving interventions as
67 outlined in the ITC guidelines. DO NOT DELAY casualty extraction/evacuation for non
68 life-saving interventions.
70 3. Consider establishing a casualty collection point if multiple casualties are encountered
71 4. Establish communication with the tactical and/or command element and request or verify
72 initiation of casualty extraction/evacuation.
73 5. Prepare casualties for extraction and document care rendered for continuity of care
74 purposes.

75 **Guidelines:**

76 1. Bleeding:
77 a. Assess for unrecognized hemorrhage and control all sources of major bleeding:
78 i. If not already done, use a tourniquet for potentially life-threatening
79 bleeding.
80 ♦♦ Apply the tourniquet over the clothing as proximal-- high on the
81 limb-- as possible. If able and tactical situation permits, consider
82 fully exposing the wound, applying tourniquet directly to the skin.
83 ♦♦ For any traumatic total or partial amputation, a tourniquet should
84 be applied regardless of bleeding.
85 ii. Apply pressure dressing with deep wound packing to control life-
86 threatening external hemorrhage that is anatomically amenable to such
87 treatment.
88 b. For compressible hemorrhage not amenable to tourniquet use, or as an adjunct to
89 tourniquet removal (if evacuation time is anticipated to be longer than two hours),
90 apply a hemostatic agent in accordance with the directions for its use with an

91 appropriate pressure bandage. Before releasing any tourniquet on a casualty who
92 has received IV fluid resuscitation for hemorrhagic shock, ensure a positive
93 response to resuscitation efforts (i.e., a peripheral pulse normal in character and
94 normal mentation).

95 c. Reassess all tourniquets that were applied during previous phases of care.
96 Consider exposing the injury. Tourniquets applied hastily during DTC phase that
97 are determined to be both necessary and effective in controlling hemorrhage
98 should remain in place if the casualty can be rapidly evacuated to definitive
99 medical care. If ineffective in controlling hemorrhage or if there is any potential
100 delay in evacuation to care, expose the wound fully, identify an appropriate
101 location immediately proximal (or adjacent) to the first tourniquet, and apply a
102 new tourniquet directly to the skin.

103 d. When time and the tactical situation permit, a distal pulse check should be
104 accomplished on any limb where a tourniquet is applied. If a distal pulse is still
105 present, consider additional tightening of the tourniquet or the use of a second
106 tourniquet, side by side and proximal to the first, to eliminate the distal pulse.

107 e. Expose and clearly mark all tourniquet sites with the time of tourniquet
108 application.

109 2. Airway Management:

110 a. Unconscious casualty without airway obstruction:

- 111 i. Chin lift or jaw thrust maneuver
- 112 ii. Nasopharyngeal airway
- 113 iii. Place casualty in the recovery position
- 114 iv. Caution advised in patients with suspected C-spine injury.

115 b. Casualty with airway obstruction or impending airway obstruction:

- 116 i. Chin lift or jaw thrust maneuver
- 117 ii. Nasopharyngeal airway
- 118 iii. Allow casualty to assume position that best protects the airway- including
119 sitting up
- 120 iv. Place unconscious casualty in the recovery position

121 c. If previous measures unsuccessful:

- 122 i. Airway positioning may be enhanced by elevation of the shoulders
- 123 ii. Bag mask ventilation is equivalent to intubation in the pediatric pre-
124 hospital population
- 125 iii. Oral/nasotracheal intubation

- iv. Consider surgical/invasive airway
 - ❖❖ Needle cricothyroidotomy recommended if signs of puberty are absent
 - ❖❖ Surgical cricothyroidotomy only recommended in pediatric patients with signs of puberty
- v. Consider Supraglottic Devices (e.g. King LT, CombiTube, or LMA) per protocol.

d. Apply oxygen if available

Intubating:

- a. In a casualty with progressive respiratory distress and known or suspected torso trauma, consider tension pneumothorax. Needle thoracostomy should be performed on the side of the injury, using the largest gauge (minimum 18-gauge) and the longest length appropriate for body size/chest wall thickness:
 - i. In the second intercostal space at the midclavicular line. Ensure that the needle entry into the chest is lateral to the nipple line and is not directed towards the heart.
 - ii. If properly trained, consider a lateral decompression, inserting the needle in the 4-5th intercostals space, anterior to the mid-axillary line on the injured side.
- b. All open chest wounds should be treated by immediately applying an occlusive material to cover the defect and securing it in place. Monitor the casualty for the potential development of a subsequent tension pneumothorax.

Non-vascular (IV/IO) access:

- a. If rapid fluid resuscitation is indicated consider primary intraosseous (IO) route (per agency protocol).
- b. Consider IV saline lock

Field resuscitation: Assess for hemorrhagic shock; altered mental status (in the absence of head injury) and weak or absent peripheral pulses are the best field indicators of shock.

- a. If not in shock:
 - i. No IV fluids necessary
 - ii. PO fluids permissible if:
 - ❖❖ Conscious, can swallow, and has no injury requiring potential surgical intervention
 - ❖❖ If confirmed long delay in evacuation to care

- b. If in shock:
 - i. Administer appropriate IV fluid bolus (20cc/kg NS/LR) and re-assess casualty. Repeat bolus after 30 minutes if still in shock.
 - ii. If a casualty with an altered mental status due to suspected TBI has a weak or absent peripheral pulse, resuscitate to mid age-specific systolic blood pressure range, or return of strong peripheral pulse.
- 6. Prevention of hypothermia (Note: due to high total body surface area ratio and other physiological variables, children are at high risk of hypothermia):
 - a. Initiate all efforts to eliminate heat loss as soon as operationally feasible, after life-saving interventions have been employed.
 - b. Minimize casualty's exposure to the elements.
 - c. Replace wet clothing with dry if possible. Place the casualty onto an insulated surface as soon as possible.
 - d. Cover the casualty with commercial warming device, dry blankets, poncho liners, sleeping bags, or anything that will retain heat and keep the casualty dry.
 - e. Warm fluids are preferred if IV fluids are required.
- 7. Penetrating Eye Trauma: If a penetrating eye injury is noted or suspected:
 - a. Perform a rapid field test of visual acuity.
 - b. Cover the eye with a rigid eye shield (NOT a pressure patch). If a commercial eye shield is not available, use casualty's eye protection device or anything that will prevent external pressure from being applied to the injured eye.
- 8. Reassess casualty:
 - a. Complete secondary survey checking for additional injuries. Inspect and dress known wounds that were previously deferred.
 - b. Consider splinting known/suspected fracture to include applying pelvic binding techniques for suspected pelvic fractures.
- 9. Provide analgesia as necessary.
 - a. Consider oral or rectal (if available) non-narcotic medications such as Tylenol for mild to moderate pain.
 - b. Avoid the use of non-steroidal anti-inflammatory medications (e.g. aspirin, ibuprofen, naproxen, ketorolac, etc) in the trauma patient as these medications interfere with platelet functioning and may exacerbate bleeding.
 - c. Narcotic pain medications should be utilized per protocol. Consider utilization of mucosal atomizer devices (MAD). Exercise caution when using narcotic

194 medications (e.g. fentanyl citrate) and/or Ketamine for moderate to severe pain in
195 pediatric patients due to their higher volumes of distribution.

196 i. Consider adjunct administration of anti-emetic medicines
197 ii. Have naloxone readily available whenever administering opiates
198 iii. Monitor for adverse effects such as respiratory depression or hypotension.

199 10. Antibiotics: Consider initiating antibiotic administration for casualties with open wounds
200 and penetrating eye injury when evacuation to definitive care is significantly delayed or
201 infeasible. This is generally determined in the mission planning phase and requires
202 medical oversight.

203 11. Burns:

204 a. Facial burns, especially those that occur in closed spaces, may be associated with
205 inhalation injury. Look for singed nasal hairs or facial hair or soot in and around
206 the nares which may indicate possible inhalational injury. Aggressively monitor
207 airway status and oxygen saturation in such patients and consider early definitive
208 airway management for respiratory distress or oxygen desaturation.

209 b. Smoke inhalation, particularly in a confined space, may be associated with
210 significant carbon monoxide and cyanide toxicity. Patients with signs of
211 significant smoke inhalation plus:

212 i. Significant symptoms of carbon monoxide toxicity should be treated with
213 high flow oxygen if available

214 ii. Significant symptoms of cyanide toxicity should be considered candidates
215 for cyanide antidote administration

216 c. Estimate total body surface area (TBSA) burned to the nearest 10% using the
217 appropriate locally approved burn calculation formula.

218 d. Cover the burn area with dry, sterile dressings and initiate measures to prevent
219 heat loss and hypothermia.

220 e. If burns are greater than 20% of Total Body Surface Area, fluid resuscitation
221 should be initiated under medical control as soon as IV/IO access is established. If
222 hemorrhagic shock is also present, resuscitation for hemorrhagic shock takes
223 precedence over resuscitation for burn shock as per the guidelines.

224 f. All previously described casualty care interventions can be performed on or
225 through burned skin in a burn casualty.

226 g. Analgesia in accordance with TECC guidelines may be administered.

227 h. Aggressively act to prevent hypothermia for burns greater than 20% TBSA.

228 12. Monitoring: Apply appropriate monitoring devices and/or diagnostic equipment if
229 available. Obtain and record vital signs.

230 13. Prepare casualty for movement: Consider environmental factors for safe and expeditious
231 evacuation. Secure casualty to a movement assist device when available. If vertical
232 extraction required, ensure casualty secured within appropriate harness, equipment
233 assembled, and anchor points identified.

234 14. Communicate with the casualty if possible. Encourage, reassure and explain care.

235 15. Cardiopulmonary resuscitation (CPR) within a tactical environment for victims of blast
236 or penetrating trauma who have no pulse, no ventilations, and no other signs of life will
237 not be successful and should not be attempted unless appropriate manpower is available.

238 a. However, consider bilateral needle decompression for victims of torso or
239 polytrauma with no respirations or pulse to ensure tension pneumothorax is not
240 the cause of cardiac arrest prior to discontinuation of care.

241 b. In certain circumstances, such as electrocution, drowning, atraumatic arrest, or
242 hypothermia, performing CPR may be of benefit and should be considered in the
243 context of the tactical situation.

244 16. Documentation of Care: Document clinical assessments, treatments rendered, and
245 changes in the casualty's status in accordance with local protocol. Consider implementing
246 a casualty care card that can be quickly and easily completed by non-medical first
247 responders. Forward this information with the casualty to the next level of care.

248 **Skill set:**

249 1. **Hemorrhage Control:**

250 a. Apply Tourniquet
251 b. Apply Direct Pressure
252 c. Apply Pressure Dressing
253 d. Apply Wound Packing
254 e. Apply Hemostatic Agent

255 2. **Airway:**

256 a. Apply Manual Maneuvers (chin lift, jaw thrust, recovery position, shoulder elevation)
257 b. Insert Nasal pharyngeal airway
258 c. Insert Supraglottic Device (LMA, King-LT, Combitube, etc)
259 d. Perform Tracheal Intubation
260 e. Perform Surgical Cricothyrotomy (Not recommended for under 10 yrs)
261 f. Perform Needle Cricothyrotomy

262 3. **Breathing:**

263 a. Application of effective occlusive chest seal
264 b. Assist Ventilations with Bag Valve Mask
265 c. Apply Oxygen
266 d. Apply Occlusive Dressing

267 e. Perform Needle Chest Decompression

268 **4. Circulation:**

269 a. Gain Intravascular Access
270 b. Gain Intraosseous Access
271 c. Apply saline lock
272 d. Administer IV/IO medications and IV/IO fluids
273 e. Administer blood products

274 **5. Wound management:**

275 a. Apply Eye Shield
276 b. Apply Dressing for evisceration
277 c. Apply Extremity Splint
278 d. Apply Pelvic Binder
279 e. Initiate Basic Burn Treatment
280 f. Initiate Treatment for Traumatic Brain Injury

281 **6. Prepare Casualty for Evacuation:**

282 a. Move Casualty (drags, carries, lifts)
283 b. Apply Spinal Immobilization Devices
284 c. Secure casualty to litter
285 d. Initiate Hypothermia Prevention

286 **7. Other Skills:**

287 a. Perform Hasty Decontamination
288 a. Initiate Casualty Monitoring
289 b. Establish Casualty Collection Point
290 c. Perform Triage

291 **EVACUATION CARE (EVAC):**

292 **Goals:**

1. Maintain any life saving interventions conducted during DTC and ITC phases
2. Provide rapid and secure extraction to an appropriate level of care
3. Avoid additional preventable causes of death

296 **Principles:**

1. Reassess the casualty or casualties
2. Rapidly evacuate patients/casualties is critical
3. Utilize additional resources to maximize advanced care
4. Avoid hypothermia
5. Communication is critical, especially between tactical and non tactical EMS teams.

302 **Guidelines:**

1. Reassess all interventions applied in previous phases of care. If multiple wounded, perform primary triage.
2. Airway Management:

306 a. The principles of airway management in Evacuation Care are similar to that in
307 ITC with the addition of increased utility of supraglottic devices and endotracheal
308 intubation.

309 a. Unconscious casualty without airway obstruction:
310 i. Chin lift or jaw thrust maneuver
311 ii. Nasopharyngeal airway
312 iii. Place casualty in the recovery position
313 iv. Caution advised in patients with suspected C-spine injury

314 b. Casualty with airway obstruction or impending airway obstruction:
315 i. Recovery position
316 ii. Naso/oropharyngeal airway
317 iii. Airway positioning may be enhanced by elevation of shoulders
318 iv. Bag mask ventilation is equivalent to intubation in the pediatric pre-
319 hospital setting
320 v. If previous measures unsuccessful, it is prudent to consider supraglottic
321 Devices (King LT, CombiTube, LMA, etc), endotracheal intubation with
322 Rapid Sequence Intubation.
323 vi. Needle cricothyroidotomy recommended if signs of puberty are absent
324 vii. Surgical cricothyroidotomy only recommended in patients with signs of
325 puberty

326 c. If intubated and attached to a mechanical ventilator, consider lung protective
327 strategies and reassess for respiratory decline in patients with potential
328 pneumothoraces.

329 d. Consider the mechanism of injury and the need for spinal immobilization. Spinal
330 immobilization is not necessary for casualties with penetrating trauma if the
331 patient is neurologically intact. Patients may be clinically cleared from spinal
332 immobilization under a locally approved protocol if they have none of the
333 following:
334 i. Midline c-spine tenderness
335 ii. Neurologic impairment
336 iii. Altered mental status
337 iv. Distracting injury

338 3. Breathing:

339 a. Reassess casualties who have had chest seals applied or had needle thoracostomy.
340 If there are signs of continued or progressive respiratory distress:

341 i. Consider repeating needle decompression. If this results in improved
342 clinical status, the decompression can be repeated multiple times.

343 ii. If appropriate provider scope of practice and approved local protocol,
344 consider placing a chest tube if no improvement of respiratory distress
345 after decompression if long duration or air transport is anticipated.

346 b. All open chest wounds should be treated by immediately applying an occlusive
347 material to cover the defect and securing it in place. Monitor the casualty for the
348 potential development of a subsequent tension pneumothorax. Tension
349 pneumothoraces should be treated as described in ITC.

350 c. Administration of oxygen may be of benefit (absent an environmental risk for fire
351 or explosion) for all traumatically injured patients, especially for the following
352 types of casualties:

353 i. Low oxygen saturation by pulse oximetry
354 ii. Injuries associated with impaired oxygenation
355 iii. Unconscious casualty
356 iv. Casualty with TBI (maintain oxygen saturation > 90%)
357 v. Casualty in shock
358 vi. Casualty at altitude
359 vii. Casualties with pneumothoraces

360 4. Bleeding:

361 a. Fully expose wounds to reassess for unrecognized hemorrhage and control all
362 sources of major bleeding.

363 b. If not already done, use a tourniquet or an appropriate pressure dressing with deep
364 wound packing to control life-threatening external hemorrhage that is
365 anatomically amenable to such treatment. For any traumatic total or partial
366 amputation, a tourniquet should be applied regardless of bleeding.

367 c. Reassess all tourniquets that were applied during previous phases of care. Expose
368 the injury and determine if a tourniquet is needed.

369 i. Tourniquets applied in prior phases that are determined to be effective in
370 controlling hemorrhage should remain in place if the casualty can be
371 rapidly evacuated to definitive medical care.

372 ii. If ineffective in controlling hemorrhage or if there is any potential delay in
373 evacuation to care, apply a new tourniquet immediately above the first.

- iii. If delay to definitive care longer than 2 hours is anticipated and wound for which tourniquet was applied is anatomically amenable, attempt a tourniquet downgrade as described in ITC (this should be a paramedic or MD action).
- iv. A distal pulse check should be performed on any limb where a tourniquet

iv. A distal pulse check should be performed on any limb where a tourniquet is applied. If a distal pulse is still present, consider additional tightening of the tourniquet or the use of a second tourniquet, side by side and proximal to the first, to eliminate the distal pulse.

- v. Expose and clearly mark all tourniquet sites with the time of tourniquet application. Use an indelible marker.

5. Fluid resuscitation:

- a. Reassess for hemorrhagic shock (altered mental status in the absence of brain injury, weak or absent peripheral pulses, and/or change in pulse character).
- b. If BP monitoring is available, maintain target systolic BP (minimum normal systolic BP = $70 + (\text{Age} \times 2)$ or Mean Arterial Pressure greater than 50 mm Hg in children under 10 years).
- c. Establish intravascular access if not performed in ITC phase. Consider primary intraosseous access in Pediatric population
- d. Management of resuscitation as in ITC with the following additions:
 - i. If in shock and blood products are not available or not approved under scope of practice/local protocols resuscitate as in ITC.
 - ii. If in shock and blood products are available with an appropriate provider scope of practice under an approved medical protocol:
 - 1. Resuscitate with 10cc/kg of plasma (FFP) and 10cc/kg of packed red blood cells (PRBCs) in a 1:1 ratio.
 - 2. If blood component therapy is not available, and appropriate training, testing and protocols are in place, consider transfusing fresh whole blood.
 - 3. Continue resuscitation as needed to maintain target BP or clinical improvement.
 - iii. If a casualty with an altered mental status due to suspected TBI has a weak or absent peripheral pulse, resuscitate as necessary to maintain mid age-specific systolic blood pressure range, or a strong peripheral pulse.
 - iv. If suspected TBI and casualty not in shock, raise the casualty's head to 30 degrees and maintain MAP > 60mm Hg with volume resuscitation or

vasopressor medications, if indicated and approved under scope of practice/local protocols.

6. Prevention of hypothermia:

- a. Continue all efforts to eliminate heat loss as operationally feasible, after life-saving interventions have been employed.
- b. Minimize casualty's exposure to the elements. Move into a medic unit, warmed vehicle, or warmed structure if possible. Ensure transport vehicle climate control system does not worsen hypothermia.
- c. Replace wet clothing with dry if possible. Place the casualty onto an insulated surface as soon as possible.
- d. Cover the casualty with commercial warming device, dry blankets, poncho liners, sleeping bags, or anything that will retain heat and keep the casualty dry.
- e. Warm fluids are preferred if IV fluids are required.

7. Monitoring

- a. Institute electronic monitoring if available, including pulse oximetry, cardiac monitoring, etCO₂ (if assisted ventilation or altered mental status), and blood pressure.
- b. Obtain and record vital signs.

8. Reassess casualty:

- a. Complete secondary survey checking for additional injuries. Inspect and dress known wounds that were previously deferred.
- b. Determine mode and destination for evacuation to definitive care.
- c. Splint known/suspected fractures and recheck pulses.
- d. Apply pelvic binding techniques for suspected pelvic fractures.

9. Provide analgesia as necessary.

- a. Mild pain:
 - i. Consider oral non-narcotic medications
 - ii. Avoid the use of non-steroidal anti-inflammatory medications (e.g. aspirin, ibuprofen, naproxen, ketorolac, etc.) in the trauma patient as these medications interfere with platelet functioning and may exacerbate bleeding
- b. Moderate to severe pain:
 - i. Narcotic pain medications should be utilized per protocol. Consider utilization of mucosal atomizer devices (MAD). Exercise caution when

443 455 using narcotic medications (e.g. fentanyl citrate.) and/or Ketamine for
444 456 moderate to severe pain in pediatric patients due to their higher volumes of
445 457 distribution.
446 458 ❖❖ Place patient on appropriate monitor
447 459 ❖❖ Consider adjunct administration of anti-emetic medicines
448 460 ❖❖ Have naloxone readily available whenever administering opiates
449 461 ❖❖ Monitor for adverse effects such as respiratory depression or
450 462 hypotension.

453 10. Burns:

454

- 463 a. Burn care is consistent with the principles described in ITC.
- 464 b. Smoke inhalation, particularly in a confined space, may be associated with
465 significant carbon monoxide and cyanide toxicity. Patients with signs of
466 significant smoke inhalation plus:
 - 467 i. Significant symptoms of carbon monoxide toxicity should be treated with
468 high flow oxygen if available
 - 469 ii. Significant symptoms of cyanide toxicity should be considered candidates
470 for cyanide antidote administration
- 471 c. Be cautious of off-gassing from patient in the evacuation vehicle if there is
472 suspected chemical exposure (e.g. cyanide) from the fire.
- 473 d. Consider early airway management if there is a prolonged evacuation period and
474 the patient has signs of significant airway thermal injury (e.g. singed facial hair,
475 oral edema, carbonaceous material in the posterior pharynx and respiratory
476 difficulty).

477 11. Prepare casualty for movement: Consider environmental factors for safe and expeditious
478 evacuation. Secure casualty to a movement assist device when available. If vertical
479 extraction required, ensure casualty secured within appropriate harness, equipment
480 assembled, and anchor points identified.

481 12. Communicate with the casualty, transporting crew and with the accepting facility.
482 Encourage, reassure and explain care to patient and parents.

483 13. Cardiopulmonary resuscitation (CPR) may have a larger role during the evacuation phase
484 especially for patients with electrocution, hypothermia, non traumatic arrest or near
485 drowning.

- 486 a. Consider rescue breaths in small children with deteriorating cardiopulmonary
487 status.

488 b. Consider bilateral needle decompression for victims of torso or polytrauma with
489 no respirations or pulse to ensure tension pneumothorax is not the cause of
490 cardiac arrest prior to discontinuation of care.

491 **14. Documentation of Care:** Continue or initiate documentation of clinical assessments,
492 treatments rendered, and changes in the casualty's status in accordance with local
493 protocol. Forward this information with the casualty to the next level of care.

494 **Skills:**

495 1. Familiarization with advanced monitoring techniques
496 2. Familiarization with transfusion protocols
497 3. Ventilator and advanced airway management
498 500 4. Familiarization with staging, transport and vehicle operations

502 REFERENCES

- 503 1. American Academy of Pediatrics Section on Orthopaedics; American Academy of Pediatrics
504 Committee on Pediatric Emergency Medicine; Et Al. "Management of pediatric trauma."
505 Pediatrics. 2008 Apr;121(4):849-54.
- 506 2. Badjatia N, Carney N, Et Al "Guidelines for prehospital management of traumatic brain injury
507 2nd edition." Prehosp Emerg Care. 2008;12 Suppl 1:S1-52.
- 508 3. Bankole S, Asuncion A, Ross S, Aghai Z, Nollah L, Echols H, et al. "First responder
509 performance in pediatric trauma: A comparison with an adult cohort." Pediatr Crit Care Med.
510 2011;12:e166-70.
- 511 4. Bhalla T, Dewhirst E, Sawardekar A, Dairo O, Tobias JD. Perioperative management of the
512 pediatric patient with traumatic brain injury. Paediatr Anaesth. 2012 Jul;22(7):627-40.
- 513 5. Bell MJ, Kochanek PM. "Pediatric traumatic brain injury in 2012: the year with new guidelines
514 and common data elements." Crit Care Clin. 2013 Apr;29(2):223-38.
- 515 6. Berg, Marc D.; Stephen M. Schexnayder; Leon Chameides; Mark Terry; Aaron Donoghue;
516 Robert W. Hickey; Robert A. Berg; Robert M. Sutton; Mary Fran Hazinski. Pediatric Basic Life
517 Support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and
518 Emergency Cardiovascular Care. Circulation. 2010;122[suppl 3]:S862– S875.
- 519 7. Blackbourne LH, Baer DG, Eastridge BJ, Kheirabadi B, Bagley S, Kragh JF Jr, Cap AP, Dubick
520 MA, Morrison JJ, Midwinter MJ, Butler FK, Kotwal RS, Holcomb JB. Military medical
521 revolution: prehospital combat casualty care. J Trauma Acute Care Surg. 2012 Dec;73(6 Suppl
522 5):S372-7.
- 523 8. Bochicchio GH et. Al. Endotracheal intubation in the field does not improve outcomes in trauma
524 patients who present without an acutely lethal traumatic brain injury. J Trauma, Feb 2003; 54:2
525 307-311.
- 526 9. Boer C, Franschman G, Loer SA. Prehospital management of severe traumatic brain injury:
527 concepts and ongoing controversies. Curr Opin Anaesthesiol. 2012 Oct;25(5):556-62.
- 528 10. Browne GJ, Cocks AJ, McCaskill ME. "Current trends in the management of major
529 paediatric trauma." Emerg Med (Fremantle). 2001 Dec;13(4):418-25.
- 530 11. DiRusso et al., Intubation of Pediatric Trauma Patients in the field: Predictor of negative
531 outcome despite risk stratification. J Trauma, Jul 2005; 59:1 84-91.
- 532 12. Doyle, G. et al. "Tourniquets: A Review of Current Use with Proposals for Expanded
533 Prehospital Use." Prehospital Emergency Care. 2008, Vol.12 (2): 241-256.
- 534 13. Eastridge BJ, Mabry RL, Seguin P, et al. Death on the
535 battlefield (2001-2011): implications for the future of combat casualty care. J
536 Trauma Acute Care Surg. 2012 Dec;73(6 Suppl 5):S431-7.
- 537 14. Eastridge BJ, Hardin M, Cantrell J, Oetjen-Gerdes L, Zubko T, Mallak C, Wade

538 CE, Simmons J, Mace J, Mabry R, Bolenbaucher R, Blackbourne LH. Died of wounds on the
539 battlefield: causation and implications for improving combat casualty care. *J Trauma*. 2011
540 Jul;71(1 Suppl):S4-8.

541 15. Eastridge BJ, Salinas J, McManus JG, et al. Hypotension begins at 110 mm Hg: redefining
542 "hypotension" with data. *J Trauma*. 2007;63(2):291-297.

543 16. Edwards MJ, Lustik M, Eichelberger MR, Elster E, Azarow K, Coppola C. Blast injury in
544 children: an analysis from Afghanistan and Iraq, 2002-2010. *J Trauma Acute Care Surg*. 2012
545 Nov;73(5):1278-83.

546 17. Eidelman M, Katzman A, Bialik V. "A novel elastic exsanguination tourniquet as an
547 alternative to the pneumatic cuff in pediatric orthopedic limb surgery." *J Pediatr Orthop B*. 2006
548 Sep;15(5):379-84.

549 18. Fiorito et al. Intraosseous access in the setting of pediatric critical care transport. *Pediatr
550 Crit Care Med*, Jan 2005; vol 6:1 50-53.

551 19. Fowler et al. The role of intraosseous vascular access in the out-of-hospital environment.
552 *Prehospital Emergency Care*, 2007 vol 11:1 63-66.

553 20. Gausche M et al., Effect of out-of-hospital pediatric endotracheal intubation on survival
554 and neurological outcomes. *JAMA*, Feb 2000; 283: 6.

555 21. Gerhardt RT, Berry JA, Blackbourne LH. Analysis of life-saving interventions
556 performed by out-of-hospital combat medical personnel. *J Trauma*. 2011 Jul;71(1
557 Suppl):S109-13.

558 22. Hansen M, Meckler G, Spiro D, Newgard C. Intraosseous line use, complications, and
559 outcomes among a population-based cohort of children presenting to California hospitals.
560 *Pediatr Emerg Care*. 2011 Oct;27(10):928-32.

561 23. Huwer, C. Are colloid solutions essential for the treatment of pediatric trauma or burn
562 patients? *World Health Organization Review*, Nov 2012

563 24. Ivashkov Y. and Bhananker, SM. Perioperative management of pediatric trauma patients.
564 *Int J Crit Illn Inj Sci*. 2012 Sep-Dec; 2(3): 143-148.

565 25. Johnson, L, Bugge, J. *Child-Led Disaster Risk Reduction: A Practical Guide*. The
566 International Save the Children Alliance. 2007.

567 26. Kannikeswaran N, Mahajan PV, Et Al "Epidemiology of pediatric transports and non-
568 transports in an urban Emergency Medical Services system." *Prehosp Emerg Care*. 2007 Oct-
569 Dec;11(4):403-7.

570 27. Kokoska, E., et al. Early hypotension worsens neurological outcome in pediatric patients
571 with moderately severe head trauma. *J of Ped Surg*. February 1998 Vol. 33 (2) 333-338.

572 28. Kotwal RS, Montgomery HR, Kotwal BM, Champion HR, Butler FK Jr, Mabry RL, Cain
573 JS, Blackbourne LH, Mechler KK, Holcomb JB. Eliminating preventable death on the
574 battlefield. *Arch Surg*. 2011 Dec;146(12):1350-8

575 29. Kragh et al. Survey of Trauma Registry Data on Tourniquet Use in Pediatric War
576 Casualties. *Pediatric Emergency Care* 2012.

577 30. Kragh JF Jr, Walters TJ, Baer DG, Fox CJ, Wade CE, Salinas J, Holcomb JB.
578 Survival with emergency tourniquet use to stop bleeding in major limb trauma. *Ann Surg*. 2009
579 Jan;249(1):1-7.

580 31. Kotwal RS, Montgomery HR, Kotwal BM, Champion HR, Butler FK Jr, Mabry RL, Cain
581 JS, Blackbourne LH, Mechler KK, Holcomb JB. Eliminating preventable death on the
582 battlefield. *Arch Surg*. 2011 Dec;146(12):1350-8.

583 32. Mackenzie R, Sutcliffe R. "The injured child." *J R Army Med Corps*. 2002 Mar;
584 148(1):58-68.

585 33. Navsa et al. Dimensions of the neonatal cricothyroid membrane - how feasible is a
586 surgical cricothyroidotomy? *Pediatr Anesth*, 2005; 15: 402-406

587 34. Patel S, Rasmussen TE, Gifford SM, Apodaca AN, Eastridge BJ, Blackbourne
588 LH. Interpreting comparative died of wounds rates as a quality benchmark of combat casualty
589 care. *J Trauma Acute Care Surg*. 2012 Aug;73(2 Suppl 1):S60-3.

590 35. Pietrini, D. Plasma Substitutes Therapy in Pediatrics. *Curr Drug Targets*, 2012; 13:893-
591 899.

592 36. Praveen, K. "Management of a child with multiple trauma." *Indian Journal of Critical
593 Care Medicine*. April-June, 2004 Vol. 8 (2): 78-84.

594 37. Schweer, L. "Pediatric Trauma Resuscitation: Initial Fluid Management." *Journal of
595 Infusion Nursing*: March/April 2008 Vol. 31(2): 104-111.

596 38. Seid T, Ramaiah R, Grabinsky A. "Pre-hospital care of pediatric patients with trauma."
597 *Int J Crit Illn Inj Sci*. 2012 Sep;2(3):114-20.

598 39. Seidel JS, Hornbein M, Yoshiyama K, Kuznets D, Finklestein JZ, St Geme JW., Jr.
599 "Emergency medical services and the pediatric patient: Are the needs being met?" *Pediatrics*.
600 1984;73:769-72.

601 40. Seidel JS. "Emergency medical services and the pediatric patient: Are the needs being met?
602 II. Training and equipping emergency medical services providers for pediatric emergencies."
603 *Pediatrics*. 1986;78:808-12.

604 41. Simma, Burkhard MD; Burger, Rene MD; Falk, Markus MSC; Sacher, Peter MD; Fanconi,
605 Sergio MD. A prospective, randomized, and controlled study of fluid management in children
606 with severe head injury: Lactated Ringer's solution versus hypertonic saline. *Pediatric Critical
607 Care* 1998 Vol. 26 (7): 1265-1270.

608 42. Spinella PC, Borgman MA, Et. Al "Pediatric trauma in an austere combat environment."
609 *Crit Care Med*. 2008 Jul;36(7 Suppl):S293-6.

610 43. Stevens, S. "The Impact of Training and Experience on EMS Providers' Feelings Toward
611 Pediatric Emergencies in a Rural State." *Pediatric Emergency Care*. January 2005 Vol. 21(1):
612 12-17.

613 44. The American Academy of Pediatrics. "Equipment for Ambulances." Policy Statement,
614 2009.

615 45. "Theater Shooting Victims Are 4 Months Old To Adults." *KMGH-TV*. 20 July 2012.

616 46. Thompson T, Lyle K, Mullins SH, Dick R, Graham J. A state survey of emergency
617 department preparedness for the care of children in a mass casualty event. *Am J Disaster Med*.
618 2009 Jul-Aug;4(4):227-32.

619 47. US Department of Homeland Security (DHS). FY 2013 Homeland Security Grant Program
620 (HSGP) Funding Opportunity Announcement (FOA).

621 48. Wallis LA, Carley S. "Comparison of paediatric major incident primary triage tools."
622 *Emerg Med J*. 2006 Jun;23(6):475-8.

623 49. Watkins N. "Paediatric prehospital analgesia in Auckland." *Emerg Med Australas*. 2006
624 Feb;18(1):51-6.

625 50. Wedmore, I. et al. "A Special Report on the Chitosan-based Hemostatic Dressing:
626 Experience in Current Combat Operations." *Journal of Trauma-Injury Infection & Critical Care*.
627 March 2006 Vol. 60 (3): 655-658.

628 51. Weiss et al. Proposal for the management of the unexpected difficult pediatric airway.
629 Pediatr Anesth, May 2010 20:5 454-464.

630 52. Wilson KL, Schenarts PJ, Bacchetta MD, Rai PR, Nakayama DK. Pediatric trauma
631 experience in a combat support hospital in eastern Afghanistan over 10 months, 2010 to 2011.
632 Am Surg. 2013 Mar;79(3):257-60.

DRAFT