

Transforming Transit in the Denver Region

Leveraging NWPR and ATN for Better

Accessibility

Peter Muller Project Development Director

Who is Vuba?

Technology agnostic ATN project developer staffed by

Engineers & planners

Transportation infrastructure program managers

Transportation infrastructure grant specialist

What is the Problem?

What mobility problems have you had in the last month?

Been stuck in traffic

Worried about the cost of gas and running a car

Gone out of your way to transport somebody else

Had somebody else go out of their way for you

Had to walk a long way

Had difficulty finding parking

Been in a traffic accident

Worried about pollution

Worried about climate change

If you used public transit, was it slow and/or inconvenient?

Yes	No
77%	23%
38%	62%
56%	44%
63%	37%
73%	27%
38%	61%
4%	96%
92%	8%
96%	4%
62%	31%

7% Did not use transit

What is the Problem?

Good Transit

Many accessible stations

High average speed

Good Capacity

Low cost per passenger mile

But

Adding a station adds a stop

Increasing capacity increases costs

With Conventional Intra-City Transit the Goals Conflict

Inter-City Transit Has Few Stations

ATN: A Superior Alternative

(Automated Transit Networks)

Many Inter-connected stations

All Trips Nonstop or Express

Good Capacity

Low Cost

In Addition

Personalized, On-Demand Service

Proven Technology

Network Effect & Scalability

A Transformative Solution

Resulting in

Better local mobility

Better rail connectivity

Economic growth

Environmental and community benefits

AUTOMATED TRANSIT NETWORKS (ATN)

ATN

Small, driverless, electric vehicles

Operating on dedicated guideways (at-grade or elevated)

Offline stations

Onboard switching

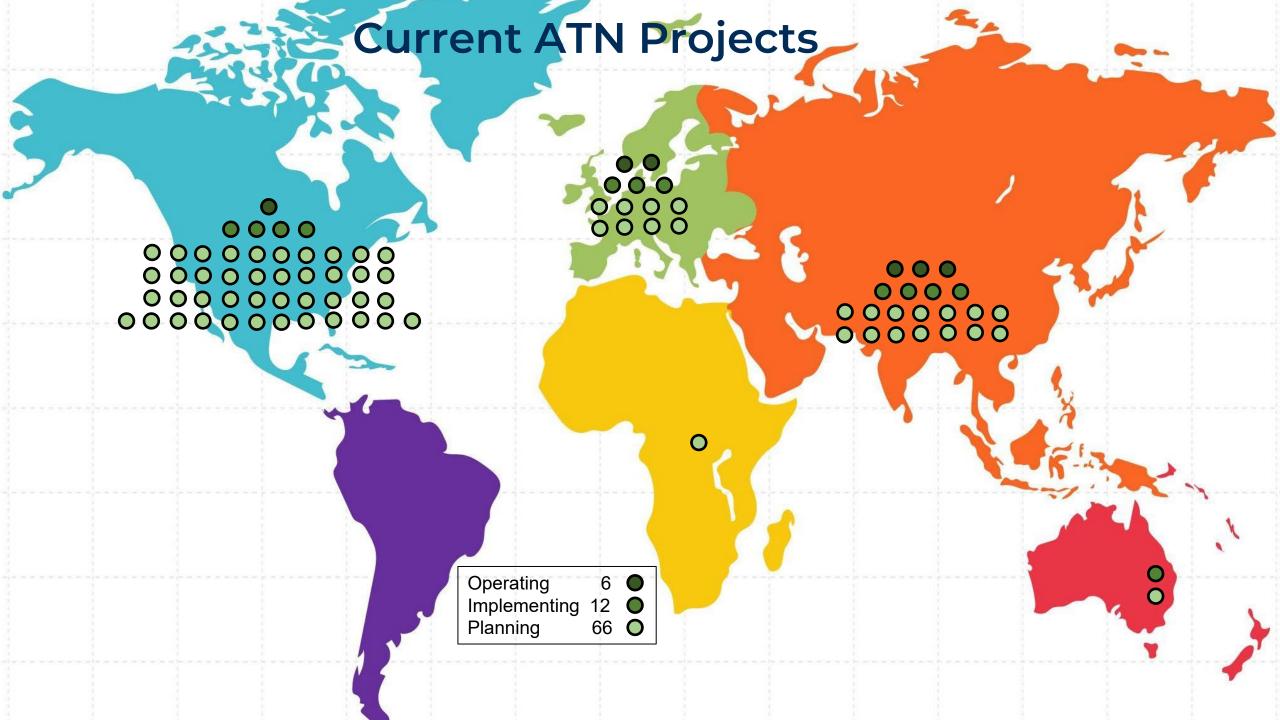
How It Works

Step 2

A driverless electric vehicle is staged at or arrives at a station within a minute or less.

Step 1
Use a smartphone
app or kiosk to
request a ride.

Step 3Ride quickly above street traffic on an elevated guideway.



ATN 1975 - 2023

https://youtu.be/UPT7Emc_0-E

How stations work

https://youtu.be/AqWH31QtSRg

Technology attributes

4 – 22 Passenger driverless electric vehicles

Up to 19,000 pphpd

Up to 45 mph top speed

Elevated guideways

Many offline stations

Short walking distances

Short waiting times

ADA compliant

No in-system transfers

Express trips at high average speed

Seated travel

Safe and secure

Technology options

Dromos

Zhongtang Skytrain

2getthere PRT

4 – 8 seat vehicles accommodate wheelchairs, luggage, etc.

Dedicated guideways ensure safe, reliable travel

ASCE APM Standards

Lightweight vehicles require small, unobtrusive & inexpensive guideways

Onboard switching enables short headways/high capacity

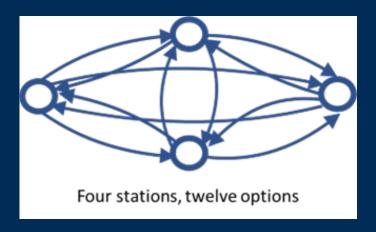
Offline stations facilitate nonstop trips

Small Vehicles

Facilitate non-stop or express trips

Many vehicles – short waiting times

The Network Effect

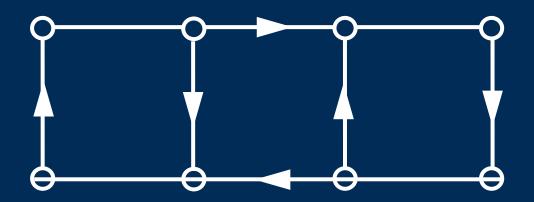

Adding stations increases trip options

Doubling stations quadruples options

In practice doubling stations increases options 2.6X

Increased options increases ridership & revenues

Does not work for buses and trains



Interconnected One-way Loops

2X the stations

1.5X the cost

Safety & All-Weather Reliability

All systems combined – over 200 M injury-free passenger miles

5,000X safer than BRT

5X more reliable than BRT

Advanced Ridesharing

Maximizes occupancy

Minimizes stopping

Tiered Fares

Premium – pay for the vehicle for your group, ride nonstop

Standard – must share rides & make some intermediate tops

Economy – school children, disadvantaged

Sustainable

Smaller infrastructure

Reduced cost, space and visual impacts

Reduced energy per passenger mile

Fleet more adaptable to demand

Potential to reduce bus & automobile trips

Attractive alternative to cars

Significantly lower impacts and emissions

Whose life could we Improve?

The Next Generation of Public Transportation

Many interconnected stations

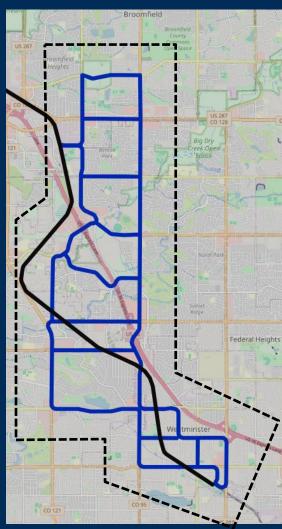
High average speed

Good capacity

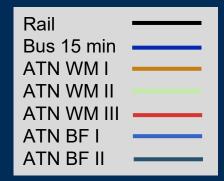
Low cost per passenger mile

Acceptable

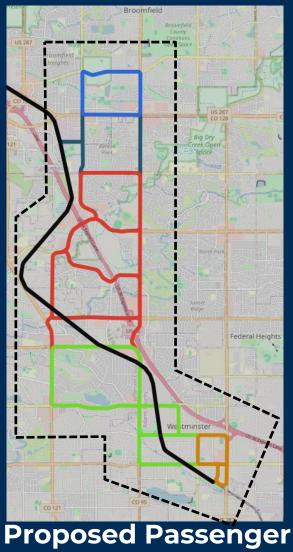
	Commuter	Light	Bus Rapid	Automated	Automated
	Rail	Rail	Transit	People Mover	Transit Network
Many stations		<u> </u>	•	<u> </u>	
High average speed	•		9		•
Good capacity	•	•	•	•	•
Low cost per pax mile			<u></u>		


Rail/BRT Bus Study Area

Broomfield/Westminster



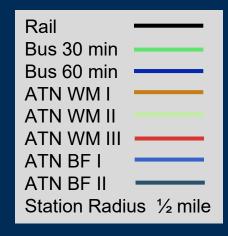
Bus & ATN Layouts

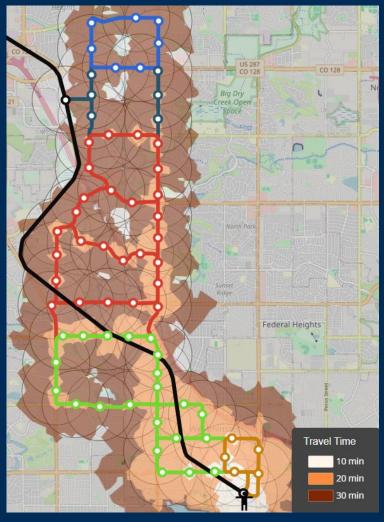


Proposed Passenger Rail + 15 Min Bus

30 Miles

71 Stops/Stations


Proposed Passenger Rail + ATN


Broomfield 116th **Travel Time** 20 min Westminster - 72nd 30 min

Proposed Passenger Rail + 15 Min Bus

Mobility Comparison

Waiting
+
Riding
+
Walking

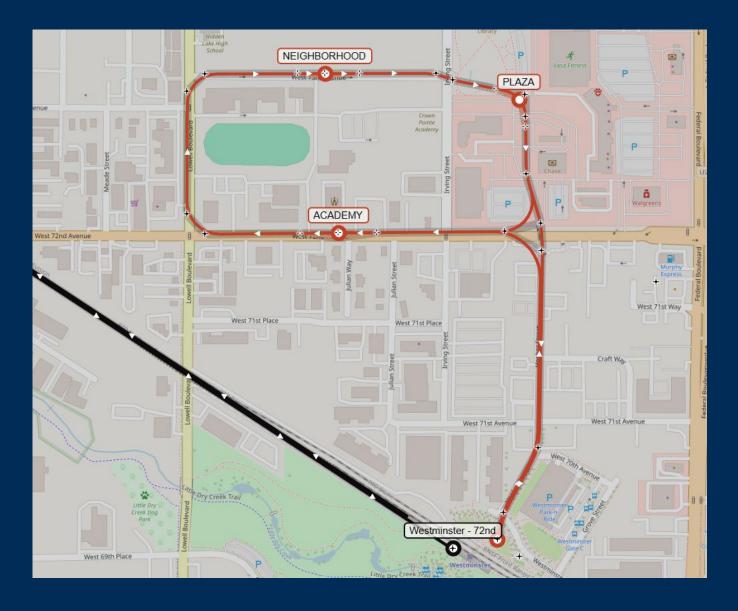
Proposed Passenger Rail + ATN

Bus / ATN Comparison

	BUS ¹	ATN ²
Route Miles	30	30
Average wait times	7 min	1 min
Average speed	20 mph	35 mph
Annual Trips	812,250	11,600,000
Annual Capital + O&M Costs	\$6.4 M	\$57.3 M
Cost per trip	\$8	\$5

1 RTD-Denver Routes in Service Area

2 Based on PRT Consulting data.


Parameters

4 Stations 2 Miles Wait time 1 min Ride time 2 mins Capital cost ~ \$35 M

Demonstrates

Local implementation/use
Ridership revenue forecasting
Capital & O&M costing
Reliability
Safety

ATN Demonstration

Path Forward

Obtain support from

Broomfield

Westminster

Front Range Passenger Rail

Progressive unsolicited proposal

Feasibility study

Preliminary design

Technology procurement

DBFOM PPP

Small demo construction +

safety certification

Verify in public service

Expand

Pre-Feasibility Study

Public input

Layout viability

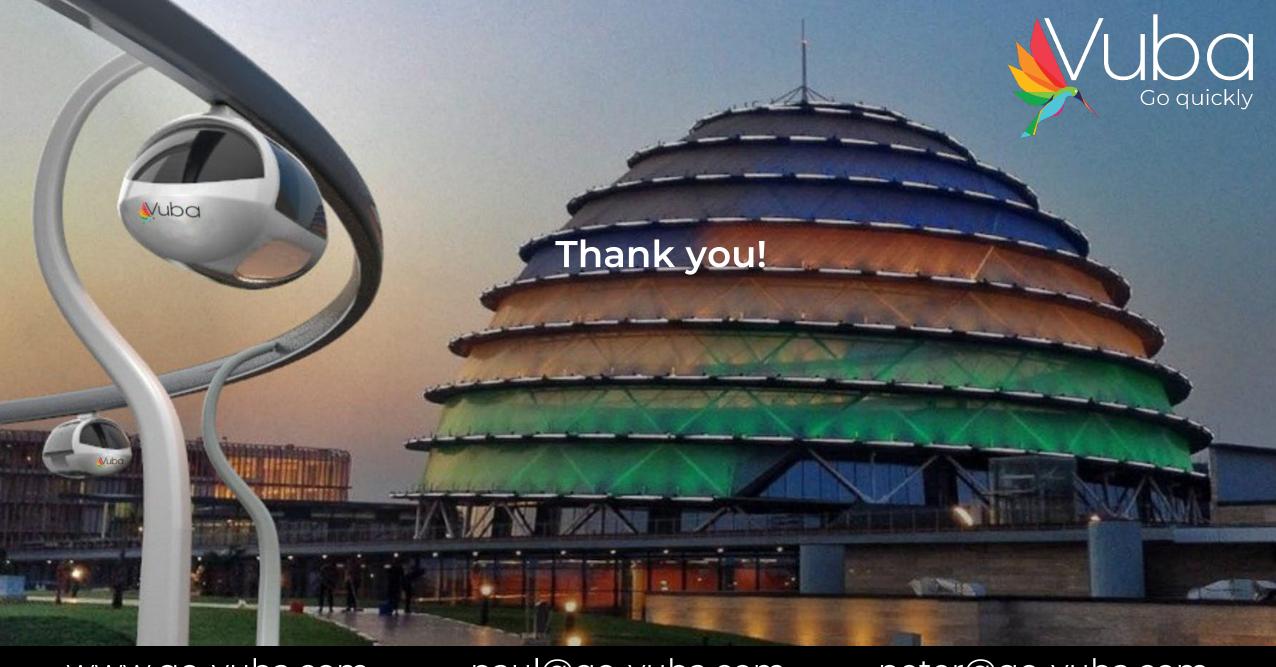
Ridership revenues

Benefit/cost

Funding/financial viability

Risks

Questions?



Which do you prefer overall?

15 Minute bus? 56%

ATN? 44%

www.go-vuba.com

paul@go-vuba.com

peter@go-vuba.com