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Utah Attorney General Sean Reyes keynoted the conference “Effective Public
Prosecution and Defense: Essentials for Success,” in Lagos, Nigeria

The event was organized by Chief Anthony Idigbe, SAN, Senior Partner of the firm Punuka
Attorneys and Solicitors and held at the Lagos Business School. General Reyes spoke of his
experiences fighting human trafficking in the Americas, and led a discussion of the scope of the
issue and efforts to combat trafficking and other crimes in Nigeria. Utah Chief Federal Deputy &
General Counsel Parker Douglas led an exchange of ideas on prosecuting public corruption. Other
speakers included Markus Green, Assistant General Counsel of Pfizer, Inc., Fola Arthur-Worrey,
former Lagos State Director of Public Prosecution, and Bayero Davi, Kaduna State Director of
Public Prosecution.

Harris gets key committee assignments in Senate
By Carolyn Lochhead

WASHINGTON — California’s Sen.-elect, Kamala Harris, won committee assignments Monday
that place the Democrat on the front lines of immigration and climate change policy, two areas
that likely will put the state into the sharpest conflict with the Trump administration.

Harris is also poised to play a role in one of the only areas that so far shows potential for bipartisan
cooperation: infrastructure policy, which deals with roads, bridges, dams, airports and other such
projects.

She did not, however, win a seat on the Judiciary Committee, the panel for which she is perhaps
best suited as California’s soon-to-be former attorney general and a former San Francisco district
attorney. Senate party leaders, who divvy up the committee assignments, avoid naming two
members from the same state to any panel. California’s senior senator, Dianne Feinstein, has
served on the Judiciary Committee for 24 years and will assume the top Democratic spot on the
panel next year.

Sen. Patrick Leahy, D-Vt., was the leading Democrat on the committee for years but chose to take
the ranking post on the Appropriations Committee. That opened up the leadership role for
Feinstein, who will lead Democrats in coming battles over President-elect Donald Trump’s
Supreme Court nominations.

In the next Congress there will be a record 21 female senators, 16 of them Democrats, and four of
them newcomers. California Attorney General Kamala Harris will be Congress's first female
Indian-American member and she's already "promising to challenge Trump’s hard-line
immigration agenda.” Congress will also have its first Latina member, Catherine Cortez Masto,
who is the former attorney general of Nevada.

Senate leadership assigned Harris to four Senate committees in all. They are:



*Homeland Security and Government Affairs: The panel shares jurisdiction over some
immigration issues with the Judiciary Committee, which has primary oversight over immigration
law. Homeland Security oversees border security and other immigration issues. Harris has said she
intends to make defending immigrants and refugees a priority in the Senate.

*Environment and Public Works: Harris will fill the seat of the Californian she replaced, retiring
Democrat Barbara Boxer, the committee’s former chair and ranking member. This committee
oversees climate change and other environmental policies that the Trump administration and
Republican majorities in the Senate and House want to roll back. California will be waging a
particularly intense defense of its own climate policies, the most aggressive in the nation. As
California’s attorney general, Harris joined other states in defending President Obama’s Clean
Power Plan to reduce carbon dioxide emissions from power plants, a policy Republicans say they
hope to terminate.

This committee also oversees infrastructure policy, which appears to be one area holding potential
for bipartisan cooperation. Trump and Democratic nominee Hillary Clinton both promised during
the just-concluded campaign to modernize the nation’s infrastructure. After Trump won, House
Minority Leader Nancy Pelosi, D-San Francisco, and incoming Senate Minority Leader Chuck
Schumer, D-N.Y., both singled out infrastructure as an area of potential agreement with the new
administration.

Intelligence Committee: This assignment could put Harris in the middle of the intensifying
dispute over allegations of Russian-sponsored hacking in the presidential election. Senators in both
parties are calling for a special panel to deal with the issue, but GOP leaders are resisting, saying
they want to retain primary jurisdiction over the matter in the Senate and House Intelligence panels.

*Budget Committee: Republican vows to repeal the Affordable Care Act will give the Budget
Committee more prominence this year. California, with 3.8 million people enrolled under the
program known as Obamacare, stands to be among the biggest losers if the law is repealed. It could
potentially cost the state billions of dollars in federal subsidies to help individuals buy insurance
on the state’s insurance exchange and for the state’s expansion of Medi-Cal.

Harris will have no seniority as a Senate freshman, but committee assignments shape careers as
members gain years in office. Harris described her committee assignments in a written statement
as “key battlegrounds in the fight for the future of our country,” adding that she will “aggressively
fight for our families and the ideals of our nation.”

Harris will be sworn in Jan. 3.

Carolyn Lochhead is The San Francisco Chronicle’s Washington correspondent. Email:
clochhead@sfchronicle.com Twitter: @carolynlochhead

Senator-elect Cortez Masto announces committee assignments

WASHINGTON, DC (KOLO) - Senator-elect Catherine Cortez Masto (D-NV) has announced she
will be joining six committees upon beginning her term as Nevada’s next U.S. Senator.



Senator-elect Cortez Masto will serve on the following Senate committees: Banking, Housing and
Urban Affairs; Energy and Natural Resources; Rules and Administration; Commerce, Science, and
Transportation; Indian Affairs; and the Special Committee on Aging.

The committee memberships were ratified by the Senate Democratic Steering and Outreach
Committee and are subject to ratification by the full Senate Democratic Caucus once Congress
begins its 115th Session in January 2017.

“I am honored to be able to represent the great state of Nevada on these six committees, which
play an integral, distinct role in addressing the many issues affecting Nevadans every day,” said
Cortez Masto. “Each committee will provide unique opportunities to serve Nevada’s diverse
communities and enable me to use my expertise and experience as a former Attorney General.
From preserving our pristine lands and investing in clean energy to protecting Medicare and
ensuring our transportation infrastructure is state of the art, these committees will allow me to fight
for the issues that | campaigned on. I look forward to working with my Democratic and Republican
colleagues on each committee.”

Cortez Masto served as Nevada Attorney General from 2007 to 2015. In the Senate, she will
succeed outgoing Harry Reid (D-NV) who has held a seat in the U.S. Senate since 1987.

BACKGROUND ON COMMITTEES

Senate Committee on Banking, Housing, and Urban Affairs:

The Banking Committee oversees legislation in areas including, but not limited to: banking,
monetary policy, insurance, financial markets, securities, housing, community development and
mass transit, international trade and finance, and economic policy. The Banking Committee also
works to protect consumers in areas such as credit card, housing, and financial rates.

Senate Committee on Energy and Natural Resources:

The Energy Committee oversees legislation and policy relating to: energy resources and
development, including regulation, conservation, strategic petroleum reserves and appliance
standards; nuclear energy; Indian affairs; public lands and their renewable resources; surface
mining, Federal coal, oil, and gas, other mineral leasing; territories and insular possessions; and
water resources.

Senate Committee on Rules and Administration:

The Rules Committee oversees the rules and procedures within the Federal and Legislative
government branches. The Committee has jurisdiction over federal elections, including the
qualifications and credentials of Senators, contested elections, oversight of the Federal Election
Commission and the Election Assistance Commission. The Committee oversees Senate
procedures, rules, and buildings, and leads the planning of the Presidential Inauguration at the
Capitol through the Joint Congressional Committee on Inaugural Ceremonies.

Senate Committee on Commerce, Science, and Transportation:



The Commerce Committee’s jurisdiction includes an array of issues including, but not limited to:
communications, highways, aviation, rail, shipping, transportation security, merchant marine, the
Coast Guard, oceans, fisheries, weather, disasters, science, space, interstate commerce, tourism,
consumer issues, economic development, technology, competitiveness, product safety, and
insurance.

Senate Committee on Indian Affairs:

The Indian Affairs Committee oversees policy and legislation related to American Indians. These
issues include, but are not limited to, Indian education, economic development, land management,
trust responsibilities, health care, and claims against the United States. Additionally, all legislation
proposed by Members of the Senate that specifically pertains to American Indians, Native
Hawaiians, or Alaska Natives.

Senate Special Committee on Aging:

The Special Committee on Aging focuses on issues facing America’s seniors, specifically
Medicare, Social Security, and additional government programs for older Americans. While
having no official legislative authority, the Aging Committee conducts research and investigations
into policy matters affecting older citizens.

The National State Attorneys General Program at Columbia Law School is now
StateAG.org

We are pleased to announce the official launch of StateAG.org, an educational resource on the
office of state attorney general. Led by Director James E. Tierney — Lecturer-in-Law at Harvard
and Columbia Law Schools, former Maine Attorney General, and former Director of the National
State Attorneys General Program at Columbia Law School — StateAG.org examines the wide-
ranging impact and role of state attorneys general in U.S. law and policy.

The website contains:

A section on policy areas, providing resources on emerging and traditional areas in which state
AGs exercise jurisdiction;

An active blog;

Director Tierney's law school course syllabus;

An introduction to the office of state attorney general through our AG 101 portal;

Audiovisual materials;

And links to archived materials at the National State Attorneys General Program website.

In addition, through StateAG.org Initiatives, Director Tierney and his team work closely with state
AG staff throughout the country to build capacity and foster strategic alliances with other
government agencies and advocacy organizations in addressing the myriad of legal and policy
issues facing government actors. Current major initiatives include:

The role of state attorneys general in protecting diverse communities;
A consumer protection initiative in partnership with The Center for State Enforcement of Antitrust
and Consumer Protection Laws;



20th anniversary retrospective of the events leading up to the historic 46-state master settlement
with the tobacco industry.

We invite you to explore our website and share your comments and questions through our contact
form.

Copyright © 2016 StateAG.org, All rights reserved.
You are receiving this email because you subscribed to our list at StateAG.org or at the National
State Attorneys General Program at Columbia Law School.

Our mailing address is:
147 McGuinness Blvd. #2
Brooklyn, NY 11222

AG Rosenblum and Law Enforcement Profiling Task Force Unveil Legislation
Task Force Calls for More Officer Training and Better Data Collection

After 18 months of deliberation, Oregon Attorney General Ellen Rosenblum, chair of the Law
Enforcement Profiling Task Force, today joined task force members to unveil legislation for the
upcoming 2017 Oregon legislative session. The draft legislation would expand officer education
and training to include profiling prevention and understanding and overcoming implicit bias. In
addition, the proposed legislation would set up a statewide process to collect traffic and pedestrian
stop data, and improve police accountability by requiring the collection and publication of the data.
Publication will help policy makers and the public to better understand the nature of interactions
between law enforcement and Oregonians and will help address any evidence of bias.

The full legislative concept can be found here.

“I’m very proud of the work done by this task force, both by its individual members and as a
group,” said Attorney General Rosenblum. “We need to make sure both our new and veteran law
enforcement officers have appropriate training and education around profiling prevention. This
includes training to recognize and overcome our implicit biases. We also need to make sure we
have an appropriate process to collect better data on policing, and to keep that process publicly
accountable. 1 believe our proposed legislation reflects the best of the national discussion on state
legislative solutions to address the problem of profiling.”

The draft legislation also includes a strong statement that Oregon’s drug sentencing laws need to
be reformed. Members of the task force, including law enforcement, the ACLU of Oregon, and
defense attorneys, will continue to work on expanding the proposal, which has as its goal to
minimize the consequences to non-criminal drug users.

The task force was established in 2015 by House Bill 2002 to help eliminate the practice of law
enforcement profiling. In December, 2015 the task force delivered seven recommendations to the
Oregon legislature on ways to better detect and combat law enforcement profiling. In the report,
the task force also asked the Oregon legislature to extend the task force until 2017 to further
develop legislative concepts.



Under HB 2002, the law defines profiling as law enforcement targeting of a person on suspicion
of violating a provision of law based solely on the real or perceived factor of a person’s age, race,
ethnicity, color, national origin, language, gender, gender identity, sexual orientation, political
affiliation, religion, homelessness or disability.

"Police profiling is toxic to our communities—especially people of color, immigrants and
refugees, and LGBTQ people—who are physically abused and incarcerated at higher rates," said
task force member Kayse Jama, Executive Director of Unite Oregon. "Profiling also creates
distrust that makes the jobs of law enforcement less safe and more difficult. Today, we are
proposing training, resources, and accountability needed to put an end to police profiling here in
Oregon. Even after this legislation is passed, we will continue our efforts to ensure that the data
collected is used to improve community safety while law enforcement who engage in profiling are
held accountable for their actions.”

“Oregon Sheriffs and Chiefs remain committed to providing fair, just and equitable policing to all
Oregon communities,” said task force member Jason Myers, Marion County Sheriff.

NORTH DAKOTA FILES LAWSUIT CHALLENGING NEW
DEPARTMENT OF INTERIOR COAL MINING RULE

BISMARCK, ND - Attorney General Wayne Stenehjem filed a lawsuit today with the ND Public
Service Commission against the U.S. Department of Interior Office of Surface Mining
Reclamation and Enforcement (OSM) over OSM’s so-called “Stream Protection Rule” under the
Surface Mining Control and Reclamation Act of 1977 (SMCRA). The case was filed in the United
States District Court for the District of Columbia.

“This is the epitome of a midnight regulation,” Stenehjem said. “This case involves a last-ditch
effort by the outgoing Administration to encroach on the clear authority granted to the State of
North Dakota and the Public Service Commission.”

In its Complaint, North Dakota contends that the new OSM rule, which places numerous onerous
restrictions on surface coal mining and reclamation activities, violates federal law and the United
States Constitution.

“The North Dakota Public Service Commission has overseen coal mining and reclamation in the
state for decades,” said Public Service Commissioner Randy Christmann. “In the most recent
evaluation of our program, the OSM said that North Dakota has an effective program with no
issues in need of corrective action. But with this rule, the Obama administration would infringe on
our authority and effectively stop much of the coal mining in North Dakota.”

“We have worked for months to try to change this rule, which was clearly designed to address
issues specific to other areas of the country,” said Public Service Commission Chair Julie
Fedorchak. “The agency ignored all of our input and went ahead with a one size-fits-all rule that
will be extremely destructive to North Dakota industry while addressing no identified problem in
our state.”



The new rule directly infringes on North Dakota’s exclusive authority to regulate surface mining
and reclamation activities within its borders and unlawfully expands the federal government’s
authority beyond the limits established by law. Congress and the courts have repeatedly affirmed
that the States have primacy for developing, authorizing, issuing, and enforcing regulations for
surface mining and reclamations operations. These new federal requirements would be very
harmful to North Dakota’s economy. This rule is similar to the federal government’s attempts to
redefine the term ‘waters of the United States’ to seize jurisdiction over swaths of State lands and
waters.

“North Dakota led the fight against that effort by securing a nationwide stay of the rule, and we
will fight against this rule as well. 1 hope the Congress and the new Administration will look
closely at this rule and quickly exercise their authority to repeal it.” Stenehjem said. North Dakota
is seeking to have the rule vacated and the DOI and OSM enjoined from enforcing it.

U.S. Supreme Court Hands Montana A Victory In Water-Use Lawsuit With
Wyoming

A Special Master appointed by the Supreme Court of the United States ruled Tuesday in State of
Montana v. State of Wyoming that the state of Montana is entitled to specific declaration of its
water compact rights, to recovery of damages in the form of water from the State of Wyoming, as
well as that Montana has the right to fill the Tongue River Reservoir to the pre-1950 levels. The
Court’s decision is the latest development in the nine year legal battle surrounding water use under
the Yellowstone River Compact, passed by Congress in 1950.

The dispute originated out of concern by the state of Montana that the State of Wyoming did not
recognize Montana’s water rights under the Yellowstone River Compact. Earlier this year, the
United States Supreme Court issued an order that recognizes Montana suffered damages as the
result of Wyoming’s failure to abide by terms of the Yellowstone River Compact with respect to
waters of the Tongue River. Special Master Barton Thompson, appointed by the United States
Supreme Court to preside over the case, ruled in 2014 that the State of Montana is entitled to
protection of pre-1950 water rights, if the State of Wyoming was properly notified during lean
water years.

“Today’s decision is a big win for the State of Montana and its water users,” said Montana Attorney
General Tim Fox. “I am pleased that the Special Master recognized the State of Montana’s right
to assert its Compact rights, and has ruled that Montana is entitled to a specific judicial declaration
of its rights.”

Either party can appeal the Special Master’s opinion to the full Court if they choose.

State Wins Longstanding Dispute with Oil Producers Worth $500 Million

(Anchorage, AK) — The Alaska Supreme Court’s decision today in Chevron v. State upheld
production taxes paid in 2005 and 2006 by Chevron, ConocoPhillips, ExxonMobil and Forest Qil.



The Court’s decision ensures that the State retains approximately $500 million in taxes and interest
that the companies claimed should be refunded to them.

“This is a great result for the State,” said Attorney General Lindemuth. “Not only from a fiscal
point of view, but it also recognizes the expertise of Department of Revenue in interpreting tax
laws.”

The producers’ lawsuit arose out of the Department of Revenue (DOR’s) decision to group several
oil fields together in determining the tax rate on the oil produced from these fields. Under the tax
regime at the time, called the economic limit factor or “ELF,” the production tax rate depended on
the size of the oil field. Large fields were taxed more heavily and small fields taxed more lightly
under the assumption that small fields required the same costly infrastructure as large fields and
thus were more expensive to produce from. But if multiple fields were “economically
interdependent” and shared common production facilities, the ELF statute permitted DOR to
aggregate the production from multiple fields in determining their tax rate. In 2005 DOR decided
to aggregate several smaller fields with the larger Prudhoe Bay field because the fields, which used
the same production facilities, were highly integrated.

The oil producers sued the State, arguing that DOR could not lawfully aggregate the fields without
first undertaking a rulemaking process under the Administrative Procedure Act. The Court
determined that a rulemaking was not required because DOR’s decision to aggregate the fields in
determining their tax rate was “a commonsense interpretation of the statute.”

If the State had lost, it may have been required to refund an estimated $500 million in taxes and
interest to the oil producers.

CONTACT: Assistant Attorney General Dario Borghesan at (907) 269-5100 or
dario.borghesan@alaska.gov.

The Great A.l. Awakening
How Google used artificial intelligence to transform Google Translate, one of its more popular
services — and how machine learning is poised to reinvent computing itself.

BY GIDEON LEWIS-KRAUSDEC. 14, 2016
Prologue: You Are What You Have Read

Late one Friday night in early November, Jun Rekimoto, a distinguished professor of human-
computer interaction at the University of Tokyo, was online preparing for a lecture when he began
to notice some peculiar posts rolling in on social media. Apparently Google Translate, the
company’s popular machine-translation service, had suddenly and almost immeasurably
improved. Rekimoto visited Translate himself and began to experiment with it. He was astonished.
He had to go to sleep, but Translate refused to relax its grip on his imagination.

Rekimoto wrote up his initial findings in a blog post. First, he compared a few sentences from two
published versions of “The Great Gatsby,” Takashi Nozaki’s 1957 translation and Haruki
Murakami’s more recent iteration, with what this new Google Translate was able to produce.



Murakami’s translation is written “in very polished Japanese,” Rekimoto explained to me later via
email, but the prose is distinctively “Murakami-style.” By contrast, Google’s translation — despite
some “small unnaturalness” — reads to him as “more transparent.”

The second half of Rekimoto’s post examined the service in the other direction, from Japanese to
English. He dashed off his own Japanese interpretation of the opening to Hemingway’s “The
Snows of Kilimanjaro,” then ran that passage back through Google into English. He published this
version alongside Hemingway’s original, and proceeded to invite his readers to guess which was
the work of a machine.

NO. 1:

Kilimanjaro is a snow-covered mountain 19,710 feet high, and is said to be the highest mountain
in Africa. Its western summit is called the Masai “Ngaje Ngai,” the House of God. Close to the
western summit there is the dried and frozen carcass of a leopard. No one has explained what the
leopard was seeking at that altitude.

NO. 2:

Kilimanjaro is a mountain of 19,710 feet covered with snow and is said to be the highest mountain
in Africa. The summit of the west is called “Ngaje Ngai” in Masai, the house of God. Near the top
of the west there is a dry and frozen dead body of leopard. No one has ever explained what leopard
wanted at that altitude.

Even to a native English speaker, the missing article on the leopard is the only real giveaway that
No. 2 was the output of an automaton. Their closeness was a source of wonder to Rekimoto, who
was well acquainted with the capabilities of the previous service. Only 24 hours earlier, Google
would have translated the same Japanese passage as follows:

Kilimanjaro is 19,710 feet of the mountain covered with snow, and it is said that the highest
mountain in Africa. Top of the west, “Ngaje Ngai” in the Maasai language, has been referred to as
the house of God. The top close to the west, there is a dry, frozen carcass of a leopard. Whether
the leopard had what the demand at that altitude, there is no that nobody explained.

Rekimoto promoted his discovery to his hundred thousand or so followers on Twitter, and over
the next few hours thousands of people broadcast their own experiments with the machine-
translation service. Some were successful, others meant mostly for comic effect. As dawn broke
over Tokyo, Google Translate was the No. 1 trend on Japanese Twitter, just above some cult anime
series and the long-awaited new single from a girl-idol supergroup. Everybody wondered: How
had Google Translate become so uncannily artful?

Four days later, a couple of hundred journalists, entrepreneurs and advertisers from all over the
world gathered in Google’s London engineering office for a special announcement. Guests were
greeted with Translate-branded fortune cookies. Their paper slips had a foreign phrase on one side
— mine was in Norwegian — and on the other, an invitation to download the Translate app. Tables
were set with trays of doughnuts and smoothies, each labeled with a placard that advertised its



flavor in German (zitrone), Portuguese (baunilha) or Spanish (manzana). After a while, everyone
was ushered into a plush, dark theater.

Sadig Khan, the mayor of London, stood to make a few opening remarks. A friend, he began, had
recently told him he reminded him of Google. “Why, because I know all the answers?” the mayor
asked. “No,” the friend replied, “because you’re always trying to finish my sentences.” The crowd
tittered politely. Khan concluded by introducing Google’s chief executive, Sundar Pichai, who
took the stage.

Pichai was in London in part to inaugurate Google’s new building there, the cornerstone of a new
“knowledge quarter” under construction at King’s Cross, and in part to unveil the completion of
the initial phase of a company transformation he announced last year. The Google of the future,
Pichai had said on several occasions, was going to be “A.I. first.” What that meant in theory was
complicated and had welcomed much speculation. What it meant in practice, with any luck, was
that soon the company’s products would no longer represent the fruits of traditional computer
programming, exactly, but “machine learning.”

A rarefied department within the company, Google Brain, was founded five years ago on this very
principle: that artificial “neural networks” that acquaint themselves with the world via trial and
error, as toddlers do, might in turn develop something like human flexibility. This notion is not
new — a version of it dates to the earliest stages of modern computing, in the 1940s — but for
much of its history most computer scientists saw it as vaguely disreputable, even mystical. Since
2011, though, Google Brain has demonstrated that this approach to artificial intelligence could
solve many problems that confounded decades of conventional efforts. Speech recognition didn’t
work very well until Brain undertook an effort to revamp it; the application of machine learning
made its performance on Google’s mobile platform, Android, almost as good as human
transcription. The same was true of image recognition. Less than a year ago, Brain for the first
time commenced with the gut renovation of an entire consumer product, and its momentous results
were being celebrated tonight.

Translate made its debut in 2006 and since then has become one of Google’s most reliable and
popular assets; it serves more than 500 million monthly users in need of 140 billion words per day
in a different language. It exists not only as its own stand-alone app but also as an integrated feature
within Gmail, Chrome and many other Google offerings, where we take it as a push-button given
— a frictionless, natural part of our digital commerce. It was only with the refugee crisis, Pichai
explained from the lectern, that the company came to reckon with Translate’s geopolitical
importance: On the screen behind him appeared a graph whose steep curve indicated a recent
fivefold increase in translations between Arabic and German. (It was also close to Pichai’s own
heart. He grew up in India, a land divided by dozens of languages.) The team had been steadily
adding new languages and features, but gains in quality over the last four years had slowed
considerably.

Until today. As of the previous weekend, Translate had been converted to an A.l.-based system
for much of its traffic, not just in the United States but in Europe and Asia as well: The rollout
included translations between English and Spanish, French, Portuguese, German, Chinese,
Japanese, Korean and Turkish. The rest of Translate’s hundred-odd languages were to come, with



the aim of eight per month, by the end of next year. The new incarnation, to the pleasant surprise
of Google’s own engineers, had been completed in only nine months. The A.l. system had
demonstrated overnight improvements roughly equal to the total gains the old one had accrued
over its entire lifetime.

Pichai has an affection for the obscure literary reference; he told me a month earlier, in his office
in Mountain View, Calif., that Translate in part exists because not everyone can be like the
physicist Robert Oppenheimer, who learned Sanskrit to read the Bhagavad Gita in the original. In
London, the slide on the monitors behind him flicked to a Borges quote: “Uno no es lo que es por
lo que escribe, sino por lo que ha leido.”

Grinning, Pichai read aloud an awkward English version of the sentence that had been rendered
by the old Translate system: “One is not what is for what he writes, but for what he has read.”

To the right of that was a new A.l.-rendered version: “You are not what you write, but what you
have read.”

It was a fitting remark: The new Google Translate was run on the first machines that had, in a
sense, ever learned to read anything at all.

Google’s decision to reorganize itself around A.l. was the first major manifestation of what has
become an industrywide machine-learning delirium. Over the past four years, six companies in
particular — Google, Facebook, Apple, Amazon, Microsoft and the Chinese firm Baidu — have
touched off an arms race for A.l. talent, particularly within universities. Corporate promises of
resources and freedom have thinned out top academic departments. It has become widely known
in Silicon Valley that Mark Zuckerberg, chief executive of Facebook, personally oversees, with
phone calls and video-chat blandishments, his company’s overtures to the most desirable graduate
students. Starting salaries of seven figures are not unheard-of. Attendance at the field’s most
important academic conference has nearly quadrupled. What is at stake is not just one more
piecemeal innovation but control over what very well could represent an entirely new
computational platform: pervasive, ambient artificial intelligence.

What is at stake is not just one more piecemeal innovation but control over what very well could
represent an entirely new computational platform.

The phrase “artificial intelligence” is invoked as if its meaning were self-evident, but it has always
been a source of confusion and controversy. Imagine if you went back to the 1970s, stopped
someone on the street, pulled out a smartphone and showed her Google Maps. Once you managed
to convince her you weren’t some oddly dressed wizard, and that what you withdrew from your
pocket wasn’t a black-arts amulet but merely a tiny computer more powerful than that onboard the
Apollo shuttle, Google Maps would almost certainly seem to her a persuasive example of “artificial
intelligence.” In a very real sense, it is. It can do things any map-literate human can manage, like
get you from your hotel to the airport — though it can do so much more quickly and reliably. It
can also do things that humans simply and obviously cannot: It can evaluate the traffic, plan the
best route and reorient itself when you take the wrong exit.



Practically nobody today, however, would bestow upon Google Maps the honorific “A.L.,” so
sentimental and sparing are we in our use of the word “intelligence.” Artificial intelligence, we
believe, must be something that distinguishes HAL from whatever it is a loom or wheelbarrow can
do. The minute we can automate a task, we downgrade the relevant skill involved to one of mere
mechanism. Today Google Maps seems, in the pejorative sense of the term, robotic: It simply
accepts an explicit demand (the need to get from one place to another) and tries to satisfy that
demand as efficiently as possible. The goal posts for “artificial intelligence” are thus constantly
receding.

When he has an opportunity to make careful distinctions, Pichai differentiates between the current
applications of A.l. and the ultimate goal of “artificial general intelligence.” Artificial general
intelligence will not involve dutiful adherence to explicit instructions, but instead will demonstrate
a facility with the implicit, the interpretive. It will be a general tool, designed for general purposes
in a general context. Pichai believes his company’s future depends on something like this. Imagine
if you could tell Google Maps, “I’d like to go to the airport, but I need to stop off on the way to
buy a present for my nephew.” A more generally intelligent version of that service — a ubiquitous
assistant, of the sort that Scarlett Johansson memorably disembodied three years ago in the Spike
Jonze film “Her”— would know all sorts of things that, say, a close friend or an earnest intern
might know: your nephew’s age, and how much you ordinarily like to spend on gifts for children,
and where to find an open store. But a truly intelligent Maps could also conceivably know all sorts
of things a close friend wouldn’t, like what has only recently come into fashion among
preschoolers in your nephew’s school — or more important, what its users actually want. If an
intelligent machine were able to discern some intricate if murky regularity in data about what we
have done in the past, it might be able to extrapolate about our subsequent desires, even if we don’t
entirely know them ourselves.

The new wave of A.l.-enhanced assistants — Apple’s Siri, Facebook’s M, Amazon’s Echo — are
all creatures of machine learning, built with similar intentions. The corporate dreams for machine
learning, however, aren’t exhausted by the goal of consumer clairvoyance. A medical-imaging
subsidiary of Samsung announced this year that its new ultrasound devices could detect breast
cancer. Management consultants are falling all over themselves to prep executives for the widening
industrial applications of computers that program themselves. DeepMind, a 2014 Google
acquisition, defeated the reigning human grandmaster of the ancient board game Go, despite
predictions that such an achievement would take another 10 years.

In a famous 1950 essay, Alan Turing proposed a test for an artificial general intelligence: a
computer that could, over the course of five minutes of text exchange, successfully deceive a real
human interlocutor. Once a machine can translate fluently between two natural languages, the
foundation has been laid for a machine that might one day “understand” human language well
enough to engage in plausible conversation. Google Brain’s members, who pushed and helped
oversee the Translate project, believe that such a machine would be on its way to serving as a
generally intelligent all-encompassing personal digital assistant.

What follows here is the story of how a team of Google researchers and engineers — at first one
or two, then three or four, and finally more than a hundred — made considerable progress in that
direction. It’s an uncommon story in many ways, not least of all because it defies many of the



Silicon Valley stereotypes we’ve grown accustomed to. It does not feature people who think that
everything will be unrecognizably different tomorrow or the next day because of some restless
tinkerer in his garage. It is neither a story about people who think technology will solve all our
problems nor one about people who think technology is ineluctably bound to create apocalyptic
new ones. It is not about disruption, at least not in the way that word tends to be used.

It is, in fact, three overlapping stories that converge in Google Translate’s successful
metamorphosis to A.l. — a technical story, an institutional story and a story about the evolution
of ideas. The technical story is about one team on one product at one company, and the process by
which they refined, tested and introduced a brand-new version of an old product in only about a
quarter of the time anyone, themselves included, might reasonably have expected. The institutional
story is about the employees of a small but influential artificial-intelligence group within that
company, and the process by which their intuitive faith in some old, unproven and broadly
unpalatable notions about computing upended every other company within a large radius. The
story of ideas is about the cognitive scientists, psychologists and wayward engineers who long
toiled in obscurity, and the process by which their ostensibly irrational convictions ultimately
inspired a paradigm shift in our understanding not only of technology but also, in theory, of
consciousness itself.

It’s an uncommon story in many ways, not least of all because it defies many of the Silicon Valley
stereotypes we’ve grown accustomed to.

The first story, the story of Google Translate, takes place in Mountain View over nine months, and
it explains the transformation of machine translation. The second story, the story of Google Brain
and its many competitors, takes place in Silicon Valley over five years, and it explains the
transformation of that entire community. The third story, the story of deep learning, takes place in
a variety of far-flung laboratories — in Scotland, Switzerland, Japan and most of all Canada —
over seven decades, and it might very well contribute to the revision of our self-image as first and
foremost beings who think.

All three are stories about artificial intelligence. The seven-decade story is about what we might
conceivably expect or want from it. The five-year story is about what it might do in the near future.
The nine-month story is about what it can do right this minute. These three stories are themselves
just proof of concept. All of this is only the beginning.

Part I: Learning Machine
1. The Birth of Brain

Jeff Dean, though his title is senior fellow, is the de facto head of Google Brain. Dean is a sinewy,
energy-efficient man with a long, narrow face, deep-set eyes and an earnest, soapbox-derby sort
of enthusiasm. The son of a medical anthropologist and a public-health epidemiologist, Dean grew
up all over the world — Minnesota, Hawaii, Boston, Arkansas, Geneva, Uganda, Somalia, Atlanta
— and, while in high school and college, wrote software used by the World Health Organization.
He has been with Google since 1999, as employee 25ish, and has had a hand in the core software
systems beneath nearly every significant undertaking since then. A beloved artifact of company
culture is Jeff Dean Facts, written in the style of the Chuck Norris Facts meme: “Jeff Dean’s PIN



is the last four digits of pi.” “When Alexander Graham Bell invented the telephone, he saw a
missed call from Jeff Dean.” “Jeff Dean got promoted to Level 11 in a system where the maximum
level is 10.” (This last one is, in fact, true.)

One day in early 2011, Dean walked into one of the Google campus’s “microkitchens” — the
“Googley” word for the shared break spaces on most floors of the Mountain View complex’s
buildings — and ran into Andrew Ng, a young Stanford computer-science professor who was
working for the company as a consultant. Ng told him about Project Marvin, an internal effort
(named after the celebrated A.l. pioneer Marvin Minsky) he had recently helped establish to
experiment with “neural networks,” pliant digital lattices based loosely on the architecture of the
brain. Dean himself had worked on a primitive version of the technology as an undergraduate at
the University of Minnesota in 1990, during one of the method’s brief windows of mainstream
acceptability. Now, over the previous five years, the number of academics working on neural
networks had begun to grow again, from a handful to a few dozen. Ng told Dean that Project
Marvin, which was being underwritten by Google’s secretive X lab, had already achieved some
promising results.

Dean was intrigued enough to lend his “20 percent” — the portion of work hours every Google
employee is expected to contribute to programs outside his or her core job — to the project. Pretty
soon, he suggested to Ng that they bring in another colleague with a neuroscience background,
Greg Corrado. (In graduate school, Corrado was taught briefly about the technology, but strictly
as a historical curiosity. “It was good I was paying attention in class that day,” he joked to me.) In
late spring they brought in one of Ng’s best graduate students, Quoc Le, as the project’s first intern.
By then, a number of the Google engineers had taken to referring to Project Marvin by another
name: Google Brain.

Since the term “artificial intelligence” was first coined, at a kind of constitutional convention of
the mind at Dartmouth in the summer of 1956, a majority of researchers have long thought the best
approach to creating A.l. would be to write a very big, comprehensive program that laid out both
the rules of logical reasoning and sufficient knowledge of the world. If you wanted to translate
from English to Japanese, for example, you would program into the computer all of the
grammatical rules of English, and then the entirety of definitions contained in the Oxford English
Dictionary, and then all of the grammatical rules of Japanese, as well as all of the words in the
Japanese dictionary, and only after all of that feed it a sentence in a source language and ask it to
tabulate a corresponding sentence in the target language. You would give the machine a language
map that was, as Borges would have had it, the size of the territory. This perspective is usually
called “symbolic A.I.” — because its definition of cognition is based on symbolic logic — or,
disparagingly, “good old-fashioned A.L.”

There are two main problems with the old-fashioned approach. The first is that it’s awfully time-
consuming on the human end. The second is that it only really works in domains where rules and
definitions are very clear: in mathematics, for example, or chess. Translation, however, is an
example of a field where this approach fails horribly, because words cannot be reduced to their
dictionary definitions, and because languages tend to have as many exceptions as they have rules.
More often than not, a system like this is liable to translate “minister of agriculture” as “priest of



farming.” Still, for math and chess it worked great, and the proponents of symbolic A.I. took it for
granted that no activities signaled “general intelligence” better than math and chess.

There were, however, limits to what this system could do. In the 1980s, a robotics researcher at
Carnegie Mellon pointed out that it was easy to get computers to do adult things but nearly
impossible to get them to do things a 1-year-old could do, like hold a ball or identify a cat. By the
1990s, despite punishing advancements in computer chess, we still weren’t remotely close to
artificial general intelligence.

There has always been another vision for A.l. — a dissenting view — in which the computers
would learn from the ground up (from data) rather than from the top down (from rules). This notion
dates to the early 1940s, when it occurred to researchers that the best model for flexible automated
intelligence was the brain itself. A brain, after all, is just a bunch of widgets, called neurons, that
either pass along an electrical charge to their neighbors or don’t. What’s important are less the
individual neurons themselves than the manifold connections among them. This structure, in its
simplicity, has afforded the brain a wealth of adaptive advantages. The brain can operate in
circumstances in which information is poor or missing; it can withstand significant damage without
total loss of control; it can store a huge amount of knowledge in a very efficient way; it can isolate
distinct patterns but retain the messiness necessary to handle ambiguity.

There was no reason you couldn’t try to mimic this structure in electronic form, and in 1943 it was
shown that arrangements of simple artificial neurons could carry out basic logical functions. They
could also, at least in theory, learn the way we do. With life experience, depending on a particular
person’s trials and errors, the synaptic connections among pairs of neurons get stronger or weaker.
An artificial neural network could do something similar, by gradually altering, on a guided trial-
and-error basis, the numerical relationships among artificial neurons. It wouldn’t need to be
preprogrammed with fixed rules. It would, instead, rewire itself to reflect patterns in the data it
absorbed.

This attitude toward artificial intelligence was evolutionary rather than creationist. If you wanted
a flexible mechanism, you wanted one that could adapt to its environment. If you wanted
something that could adapt, you didn’t want to begin with the indoctrination of the rules of chess.
You wanted to begin with very basic abilities — sensory perception and motor control — in the
hope that advanced skills would emerge organically. Humans don’t learn to understand language
by memorizing dictionaries and grammar books, so why should we possibly expect our computers
to do so?

Google Brain was the first major commercial institution to invest in the possibilities embodied by
this way of thinking about A.l. Dean, Corrado and Ng began their work as a part-time,
collaborative experiment, but they made immediate progress. They took architectural inspiration
for their models from recent theoretical outlines — as well as ideas that had been on the shelf since
the 1980s and 1990s — and drew upon both the company’s peerless reserves of data and its
massive computing infrastructure. They instructed the networks on enormous banks of “labeled”
data — speech files with correct transcriptions, for example — and the computers improved their
responses to better match reality.



“The portion of evolution in which animals developed eyes was a big development,” Dean told me
one day, with customary understatement. We were sitting, as usual, in a whiteboarded meeting
room, on which he had drawn a crowded, snaking timeline of Google Brain and its relation to
inflection points in the recent history of neural networks. “Now computers have eyes. We can build
them around the capabilities that now exist to understand photos. Robots will be drastically
transformed. They’ll be able to operate in an unknown environment, on much different problems.”
These capacities they were building may have seemed primitive, but their implications were
profound.

In its first year or so of existence, Brain’s experiments in the development of a machine with the
talents of a 1-year-old had, as Dean said, worked to great effect. Its speech-recognition team
swapped out part of their old system for a neural network and encountered, in pretty much one fell
swoop, the best quality improvements anyone had seen in 20 years. Their system’s object-
recognition abilities improved by an order of magnitude. This was not because Brain’s personnel
had generated a sheaf of outrageous new ideas in just a year. It was because Google had finally
devoted the resources — in computers and, increasingly, personnel — to fill in outlines that had
been around for a long time.

A great preponderance of these extant and neglected notions had been proposed or refined by a
peripatetic English polymath named Geoffrey Hinton. In the second year of Brain’s existence,
Hinton was recruited to Brain as Andrew Ng left. (Ng now leads the 1,300-person A.l. team at
Baidu.) Hinton wanted to leave his post at the University of Toronto for only three months, so for
arcane contractual reasons he had to be hired as an intern. At intern training, the orientation leader
would say something like, “Type in your LDAP” — a user login — and he would flag a helper to
ask, “What’s an LDAP?” All the smart 25-year-olds in attendance, who had only ever known deep
learning as the sine qua non of artificial intelligence, snickered: “Who is that old guy? Why doesn’t
he get it?”

“At lunchtime,” Hinton said, “someone in the queue yelled: ‘Professor Hinton! I took your course!
What are you doing here?’ After that, it was all right.”

A few months later, Hinton and two of his students demonstrated truly astonishing gains in a big
image-recognition contest, run by an open-source collective called ImageNet, that asks computers
not only to identify a monkey but also to distinguish between spider monkeys and howler monkeys,
and among God knows how many different breeds of cat. Google soon approached Hinton and his
students with an offer. They accepted. “I thought they were interested in our I.P.,” he said. “Turns
out they were interested in us.”

Hinton comes from one of those old British families emblazoned like the Darwins at eccentric
angles across the intellectual landscape, where regardless of titular preoccupation a person is
expected to make sideline contributions to minor problems in astronomy or fluid dynamics. His
great-great-grandfather was George Boole, whose foundational work in symbolic logic underpins
the computer; another great-great-grandfather was a celebrated surgeon, his father a venturesome
entomologist, his father’s cousin a Los Alamos researcher; the list goes on. He trained at
Cambridge and Edinburgh, then taught at Carnegie Mellon before he ended up at Toronto, where
he still spends half his time. (His work has long been supported by the largess of the Canadian



government.) | visited him in his office at Google there. He has tousled yellowed-pewter hair
combed forward in a mature Noel Gallagher style and wore a baggy striped dress shirt that
persisted in coming untucked, and oval eyeglasses that slid down to the tip of a prominent nose.
He speaks with a driving if shambolic wit, and says things like, “Computers will understand
sarcasm before Americans do.”

Hinton had been working on neural networks since his undergraduate days at Cambridge in the
late 1960s, and he is seen as the intellectual primogenitor of the contemporary field. For most of
that time, whenever he spoke about machine learning, people looked at him as though he were
talking about the Ptolemaic spheres or bloodletting by leeches. Neural networks were taken as a
disproven folly, largely on the basis of one overhyped project: the Perceptron, an artificial neural
network that Frank Rosenblatt, a Cornell psychologist, developed in the late 1950s. The New York
Times reported that the machine’s sponsor, the United States Navy, expected it would “be able to
walk, talk, see, write, reproduce itself and be conscious of its existence.” It went on to do
approximately none of those things. Marvin Minsky, the dean of artificial intelligence in America,
had worked on neural networks for his 1954 Princeton thesis, but he’d since grown tired of the
inflated claims that Rosenblatt — who was a contemporary at Bronx Science — made for the
neural paradigm. (He was also competing for Defense Department funding.) Along with an M.L.T.
colleague, Minsky published a book that proved that there were painfully simple problems the
Perceptron could never solve.

Minsky’s criticism of the Perceptron extended only to networks of one “layer,” i.e., one layer of
artificial neurons between what’s fed to the machine and what you expect from it — and later in
life, he expounded ideas very similar to contemporary deep learning. But Hinton already knew at
the time that complex tasks could be carried out if you had recourse to multiple layers. The simplest
description of a neural network is that it’s a machine that makes classifications or predictions based
on its ability to discover patterns in data. With one layer, you could find only simple patterns; with
more than one, you could look for patterns of patterns. Take the case of image recognition, which
tends to rely on a contraption called a “convolutional neural net.” (These were elaborated in a
seminal 1998 paper whose lead author, a Frenchman named Yann LeCun, did his postdoctoral
research in Toronto under Hinton and now directs a huge A.l. endeavor at Facebook.) The first
layer of the network learns to identify the very basic visual trope of an “edge,” meaning a nothing
(an off-pixel) followed by a something (an on-pixel) or vice versa. Each successive layer of the
network looks for a pattern in the previous layer. A pattern of edges might be a circle or a rectangle.
A pattern of circles or rectangles might be a face. And so on. This more or less parallels the way
information is put together in increasingly abstract ways as it travels from the photoreceptors in
the retina back and up through the visual cortex. At each conceptual step, detail that isn’t
immediately relevant is thrown away. If several edges and circles come together to make a face,
you don’t care exactly where the face is found in the visual field; you just care that it’s a face.

A demonstration from 1993 showing an early version of the researcher Yann LeCun's
convolutional neural network, which by the late 1990s was processing 10 to 20 percent of all
checks in the United States. A similar technology now drives most state-of-the-art image-
recognition systems. Video posted on YouTube by Yann LeCun



The issue with multilayered, “deep” neural networks was that the trial-and-error part got
extraordinarily complicated. In a single layer, it’s easy. Imagine that you’re playing with a child.
You tell the child, “Pick up the green ball and put it into Box A.” The child picks up a green ball
and puts it into Box B. You say, “Try again to put the green ball in Box A.” The child tries Box
A. Bravo.

Now imagine you tell the child, “Pick up a green ball, go through the door marked 3 and put the
green ball into Box A.” The child takes a red ball, goes through the door marked 2 and puts the
red ball into Box B. How do you begin to correct the child? You cannot just repeat your initial
instructions, because the child does not know at which point he went wrong. In real life, you might
start by holding up the red ball and the green ball and saying, “Red ball, green ball.” The whole
point of machine learning, however, is to avoid that kind of explicit mentoring. Hinton and a few
others went on to invent a solution (or rather, reinvent an older one) to this layered-error problem,
over the halting course of the late 1970s and 1980s, and interest among computer scientists in
neural networks was briefly revived. “People got very excited about it,” he said. “But we oversold
it.” Computer scientists quickly went back to thinking that people like Hinton were weirdos and
mystics.

These ideas remained popular, however, among philosophers and psychologists, who called it
“connectionism” or “parallel distributed processing.” “This idea,” Hinton told me, “of a few people
keeping a torch burning, it’s a nice myth. It was true within artificial intelligence. But within
psychology lots of people believed in the approach but just couldn’t do it.” Neither could Hinton,
despite the generosity of the Canadian government. “There just wasn’t enough computer power or
enough data. People on our side kept saying, ‘Yeah, but if I had a really big one, it would work.’ It
wasn’t a very persuasive argument.”

‘The portion of evolution in which animals developed eyes was a big development. Now
computers have eyes.’
3. A Deep Explanation of Deep Learning

When Pichai said that Google would henceforth be “A.I. first,” he was not just making a claim
about his company’s business strategy; he was throwing in his company’s lot with this long-
unworkable idea. Pichai’s allocation of resources ensured that people like Dean could ensure that
people like Hinton would have, at long last, enough computers and enough data to make a
persuasive argument. An average brain has something on the order of 100 billion neurons. Each
neuron is connected to up to 10,000 other neurons, which means that the number of synapses is
between 100 trillion and 1,000 trillion. For a simple artificial neural network of the sort proposed
in the 1940s, the attempt to even try to replicate this was unimaginable. We’re still far from the
construction of a network of that size, but Google Brain’s investment allowed for the creation of
artificial neural networks comparable to the brains of mice.

To understand why scale is so important, however, you have to start to understand some of the
more technical details of what, exactly, machine intelligences are doing with the data they
consume. A lot of our ambient fears about A.IL. rest on the idea that they’re just vacuuming up
knowledge like a sociopathic prodigy in a library, and that an artificial intelligence constructed to
make paper clips might someday decide to treat humans like ants or lettuce. This just isn’t how



they work. All they’re doing is shuffling information around in search of commonalities — basic
patterns, at first, and then more complex ones — and for the moment, at least, the greatest danger
is that the information we’re feeding them is biased in the first place.

If that brief explanation seems sufficiently reassuring, the reassured nontechnical reader is invited
to skip forward to the next section, which is about cats. If not, then read on. (This section is also,
luckily, about cats.)

Imagine you want to program a cat-recognizer on the old symbolic-A.l. model. You stay up for
days preloading the machine with an exhaustive, explicit definition of “cat.” You tell it that a cat
has four legs and pointy ears and whiskers and a tail, and so on. All this information is stored in a
special place in memory called Cat. Now you show it a picture. First, the machine has to separate
out the various distinct elements of the image. Then it has to take these elements and apply the
rules stored in its memory. If(legs=4) and if(ears=pointy) and if(whiskers=yes) and if(tail=yes)
and if(expression=supercilious), then(cat=yes). But what if you showed this cat-recognizer a
Scottish Fold, a heart-rending breed with a prized genetic defect that leads to droopy doubled-over
ears? Our symbolic A.L. gets to (ears=pointy) and shakes its head solemnly, “Not cat.” It is
hyperliteral, or “brittle.” Even the thickest toddler shows much greater inferential acuity.

Now imagine that instead of hard-wiring the machine with a set of rules for classification stored
in one location of the computer’s memory, you try the same thing on a neural network. There is
no special place that can hold the definition of “cat.”” There is just a giant blob of interconnected
switches, like forks in a path. On one side of the blob, you present the inputs (the pictures); on the
other side, you present the corresponding outputs (the labels). Then you just tell it to work out for
itself, via the individual calibration of all of these interconnected switches, whatever path the data
should take so that the inputs are mapped to the correct outputs. The training is the process by
which a labyrinthine series of elaborate tunnels are excavated through the blob, tunnels that
connect any given input to its proper output. The more training data you have, the greater the
number and intricacy of the tunnels that can be dug. Once the training is complete, the middle of
the blob has enough tunnels that it can make reliable predictions about how to handle data it has
never seen before. This is called “supervised learning.”

The reason that the network requires so many neurons and so much data is that it functions, in a
way, like a sort of giant machine democracy. Imagine you want to train a computer to differentiate
among five different items. Your network is made up of millions and millions of neuronal “voters,”
each of whom has been given five different cards: one for cat, one for dog, one for spider monkey,
one for spoon and one for defibrillator. You show your electorate a photo and ask, “Is this a cat, a
dog, a spider monkey, a spoon or a defibrillator?” All the neurons that voted the same way collect
in groups, and the network foreman peers down from above and identifies the majority
classification: “A dog?”

You say: “No, maestro, it’s a cat. Try again.”
Now the network foreman goes back to identify which voters threw their weight behind “cat” and

which didn’t. The ones that got “cat” right get their votes counted double next time — at least
when they’re voting for “cat.” They have to prove independently whether they’re also good at



picking out dogs and defibrillators, but one thing that makes a neural network so flexible is that
each individual unit can contribute differently to different desired outcomes. What’s important is
not the individual vote, exactly, but the pattern of votes. If Joe, Frank and Mary all vote together,
it’s a dog; but if Joe, Kate and Jessica vote together, it’s a cat; and if Kate, Jessica and Frank vote
together, it’s a defibrillator. The neural network just needs to register enough of a regularly
discernible signal somewhere to say, “Odds are, this particular arrangement of pixels represents
something these humans keep calling ‘cats.”” The more “voters” you have, and the more times
you make them vote, the more keenly the network can register even very weak signals. If you have
only Joe, Frank and Mary, you can maybe use them only to differentiate among a cat, a dog and a
defibrillator. If you have millions of different voters that can associate in billions of different ways,
you can learn to classify data with incredible granularity. Your trained voter assembly will be able
to look at an unlabeled picture and identify it more or less accurately.

Part of the reason there was so much resistance to these ideas in computer-science departments is
that because the output is just a prediction based on patterns of patterns, it’s not going to be perfect,
and the machine will never be able to define for you what, exactly, a cat is. It just knows them
when it sees them. This wooliness, however, is the point. The neuronal “voters” will recognize a
happy cat dozing in the sun and an angry cat glaring out from the shadows of an untidy litter box,
as long as they have been exposed to millions of diverse cat scenes. You just need lots and lots of
the voters — in order to make sure that some part of your network picks up on even very weak
regularities, on Scottish Folds with droopy ears, for example — and enough labeled data to make
sure your network has seen the widest possible variance in phenomena.

It is important to note, however, that the fact that neural networks are probabilistic in nature means
that they’re not suitable for all tasks. It’s no great tragedy if they mislabel 1 percent of cats as dogs,
or send you to the wrong movie on occasion, but in something like a self-driving car we all want
greater assurances. This isn’t the only caveat. Supervised learning is a trial-and-error process based
on labeled data. The machines might be doing the learning, but there remains a strong human
element in the initial categorization of the inputs. If your data had a picture of a man and a woman
in suits that someone had labeled “woman with her boss,” that relationship would be encoded into
all future pattern recognition. Labeled data is thus fallible the way that human labelers are fallible.
If a machine was asked to identify creditworthy candidates for loans, it might use data like felony
convictions, but if felony convictions were unfair in the first place — if they were based on, say,
discriminatory drug laws — then the loan recommendations would perforce also be fallible.

Image-recognition networks like our cat-identifier are only one of many varieties of deep learning,
but they are disproportionately invoked as teaching examples because each layer does something
at least vaguely recognizable to humans — picking out edges first, then circles, then faces. This
means there’s a safeguard against error. For instance, an early oddity in Google’s image-
recognition software meant that it could not always identify a barbell in isolation, even though the
team had trained it on an image set that included a lot of exercise categories. A visualization tool
showed them the machine had learned not the concept of “dumbbell” but the concept of
“dumbbell+arm,” because all the dumbbells in the training set were attached to arms. They threw
into the training mix some photos of solo barbells. The problem was solved. Not everything is so
easy.



Google Brain’s investment allowed for the creation of artificial neural networks comparable to the
brains of mice.
4. The Cat Paper

Over the course of its first year or two, Brain’s efforts to cultivate in machines the skills of a 1-
year-old were auspicious enough that the team was graduated out of the X lab and into the broader
research organization. (The head of Google X once noted that Brain had paid for the entirety of
X’s costs.) They still had fewer than 10 people and only a vague sense for what might ultimately
come of it all. But even then they were thinking ahead to what ought to happen next. First a human
mind learns to recognize a ball and rests easily with the accomplishment for a moment, but sooner
or later, it wants to ask for the ball. And then it wades into language.

The first step in that direction was the cat paper, which made Brain famous.

What the cat paper demonstrated was that a neural network with more than a billion “synaptic”
connections — a hundred times larger than any publicized neural network to that point, yet still
many orders of magnitude smaller than our brains — could observe raw, unlabeled data and pick
out for itself a high-order human concept. The Brain researchers had shown the network millions
of still frames from YouTube videos, and out of the welter of the pure sensorium the network had
isolated a stable pattern any toddler or chipmunk would recognize without a moment’s hesitation
as the face of a cat. The machine had not been programmed with the foreknowledge of a cat; it
reached directly into the world and seized the idea for itself. (The researchers discovered this with
the neural-network equivalent of something like an M.R.1., which showed them that a ghostly cat
face caused the artificial neurons to “vote” with the greatest collective enthusiasm.) Most machine
learning to that point had been limited by the quantities of labeled data. The cat paper showed that
machines could also deal with raw unlabeled data, perhaps even data of which humans had no
established foreknowledge. This seemed like a major advance not only in cat-recognition studies
but also in overall artificial intelligence.

The lead author on the cat paper was Quoc Le. Le is short and willowy and soft-spoken, with a
quick, enigmatic smile and shiny black penny loafers. He grew up outside Hue, Vietnam. His
parents were rice farmers, and he did not have electricity at home. His mathematical abilities were
obvious from an early age, and he was sent to study at a magnet school for science. In the late
1990s, while still in school, he tried to build a chatbot to talk to. He thought, How hard could this
be?

“But actually,” he told me in a whispery deadpan, “it’s very hard.”

He left the rice paddies on a scholarship to a university in Canberra, Australia, where he worked
on A.l. tasks like computer vision. The dominant method of the time, which involved feeding the
machine definitions for things like edges, felt to him like cheating. Le didn’t know then, or knew
only dimly, that there were at least a few dozen computer scientists elsewhere in the world who
couldn’t help imagining, as he did, that machines could learn from scratch. In 2006, Le took a
position at the Max Planck Institute for Biological Cybernetics in the medieval German university
town of Tibingen. In a reading group there, he encountered two new papers by Geoffrey Hinton.



People who entered the discipline during the long diaspora all have conversion stories, and when
Le read those papers, he felt the scales fall away from his eyes.

“There was a big debate,” he told me. “A very big debate.” We were in a small interior conference
room, a narrow, high-ceilinged space outfitted with only a small table and two whiteboards. He
looked to the curve he’d drawn on the whiteboard behind him and back again, then softly confided,
“I’ve never seen such a big debate.”

He remembers standing up at the reading group and saying, “This is the future.” It was, he said,
an “unpopular decision at the time.” A former adviser from Australia, with whom he had stayed
close, couldn’t quite understand Le’s decision. “Why are you doing this?” he asked Le in an email.

“I didn’t have a good answer back then,” Le said. “I was just curious. There was a successful
paradigm, but to be honest | was just curious about the new paradigm. In 2006, there was very
little activity.” He went to join Ng at Stanford and began to pursue Hinton’s ideas. “By the end of
2010, I was pretty convinced something was going to happen.”

What happened, soon afterward, was that Le went to Brain as its first intern, where he carried on
with his dissertation work — an extension of which ultimately became the cat paper. On a simple
level, Le wanted to see if the computer could be trained to identify on its own the information that
was absolutely essential to a given image. He fed the neural network a still he had taken from
YouTube. He then told the neural network to throw away some of the information contained in the
image, though he didn’t specify what it should or shouldn’t throw away. The machine threw away
some of the information, initially at random. Then he said: “Just kidding! Now recreate the initial
image you were shown based only on the information you retained.” It was as if he were asking
the machine to find a way to “summarize” the image, and then expand back to the original from
the summary. If the summary was based on irrelevant data — like the color of the sky rather than
the presence of whiskers — the machine couldn’t perform a competent reconstruction. Its reaction
would be akin to that of a distant ancestor whose takeaway from his brief exposure to saber-tooth
tigers was that they made a restful swooshing sound when they moved. Le’s neural network, unlike
that ancestor, got to try again, and again and again and again. Each time it mathematically “chose”
to prioritize different pieces of information and performed incrementally better. A neural network,
however, was a black box. It divined patterns, but the patterns it identified didn’t always make
intuitive sense to a human observer. The same network that hit on our concept of cat also became
enthusiastic about a pattern that looked like some sort of furniture-animal compound, like a cross
between an ottoman and a goat.

Le didn’t see himself in those heady cat years as a language guy, but he felt an urge to connect the
dots to his early chatbot. After the cat paper, he realized that if you could ask a network to
summarize a photo, you could perhaps also ask it to summarize a sentence. This problem
preoccupied Le, along with a Brain colleague named Tomas Mikolov, for the next two years.

In that time, the Brain team outgrew several offices around him. For a while they were on a floor
they shared with executives. They got an email at one point from the administrator asking that they
please stop allowing people to sleep on the couch in front of Larry Page and Sergey Brin’s suite.
It unsettled incoming V.1.P.s. They were then allocated part of a research building across the street,



where their exchanges in the microkitchen wouldn’t be squandered on polite chitchat with the
suits. That interim also saw dedicated attempts on the part of Google’s competitors to catch up.
(As Le told me about his close collaboration with Tomas Mikolov, he kept repeating Mikolov’s
name over and over, in an incantatory way that sounded poignant. Le had never seemed so solemn.
I finally couldn’t help myself and began to ask, “Is he ... ?”” Le nodded. “At Facebook,” he replied.)

They spent this period trying to come up with neural-network architectures that could
accommaodate not only simple photo classifications, which were static, but also complex structures
that unfolded over time, like language or music. Many of these were first proposed in the 1990s,
and Le and his colleagues went back to those long-ignored contributions to see what they could
glean. They knew that once you established a facility with basic linguistic prediction, you could
then go on to do all sorts of other intelligent things — like predict a suitable reply to an email, for
example, or predict the flow of a sensible conversation. You could sidle up to the sort of prowess
that would, from the outside at least, look a lot like thinking.

Part Il: Language Machine
5. The Linguistic Turn

The hundred or so current members of Brain — it often feels less like a department within a
colossal corporate hierarchy than it does a club or a scholastic society or an intergalactic cantina
— came in the intervening years to count among the freest and most widely admired employees
in the entire Google organization. They are now quartered in a tiered two-story eggshell building,
with large windows tinted a menacing charcoal gray, on the leafy northwestern fringe of the
company’s main Mountain View campus. Their microkitchen has a foosball table | never saw
used; a Rock Band setup I never saw used; and a Go kit | saw used on a few occasions. (I did once
see a young Brain research associate introducing his colleagues to ripe jackfruit, carving up the
enormous spiky orb like a turkey.)

When I began spending time at Brain’s offices, in June, there were some rows of empty desks, but
most of them were labeled with Post-it notes that said things like “Jesse, 6/27.” Now those are all
occupied. When 1 first visited, parking was not an issue. The closest spaces were those reserved
for expectant mothers or Teslas, but there was ample space in the rest of the lot. By October, if |
showed up later than 9:30, | had to find a spot across the street.

Brain’s growth made Dean slightly nervous about how the company was going to handle the
demand. He wanted to avoid what at Google is known as a “success disaster” — a situation in
which the company’s capabilities in theory outpaced its ability to implement a product in practice.
At a certain point he did some back-of-the-envelope calculations, which he presented to the
executives one day in a two-slide presentation.

“If everyone in the future speaks to their Android phone for three minutes a day,” he told them,
“this is how many machines we’ll need.” They would need to double or triple their global
computational footprint.



“That,” he observed with a little theatrical gulp and widened eyes, “sounded scary. You’d have to”
— he hesitated to imagine the consequences — “build new buildings.”

There was, however, another option: just design, mass-produce and install in dispersed data centers
a new kind of chip to make everything faster. These chips would be called T.P.U.s, or “tensor
processing units,” and their value proposition — counterintuitively — is that they are deliberately
less precise than normal chips. Rather than compute 12.246 times 54.392, they will give you the
perfunctory answer to 12 times 54. On a mathematical level, rather than a metaphorical one, a
neural network is just a structured series of hundreds or thousands or tens of thousands of matrix
multiplications carried out in succession, and it’s much more important that these processes be fast
than that they be exact. “Normally,” Dean said, “special-purpose hardware is a bad idea. It usually
works to speed up one thing. But because of the generality of neural networks, you can leverage
this special-purpose hardware for a lot of other things.”

Just as the chip-design process was nearly complete, Le and two colleagues finally demonstrated
that neural networks might be configured to handle the structure of language. He drew upon an
idea, called “word embeddings,” that had been around for more than 10 years. When you
summarize images, you can divine a picture of what each stage of the summary looks like — an
edge, a circle, etc. When you summarize language in a similar way, you essentially produce
multidimensional maps of the distances, based on common usage, between one word and every
single other word in the language. The machine is not “analyzing” the data the way that we might,
with linguistic rules that identify some of them as nouns and others as verbs. Instead, it is shifting
and twisting and warping the words around in the map. In two dimensions, you cannot make this
map useful. You want, for example, “cat” to be in the rough vicinity of “dog,” but you also want
“cat” to be near “tail” and near “supercilious” and near “meme,” because you want to try to capture
all of the different relationships — both strong and weak — that the word “cat” has to other words.
It can be related to all these other words simultaneously only if it is related to each of them in a
different dimension. You can’t easily make a 160,000-dimensional map, but it turns out you can
represent a language pretty well in a mere thousand or so dimensions — in other words, a universe
in which each word is designated by a list of a thousand numbers. Le gave me a good-natured hard
time for my continual requests for a mental picture of these maps. “Gideon,” he would say, with
the blunt regular demurral of Bartleby, “I do not generally like trying to visualize thousand-
dimensional vectors in three-dimensional space.”

Still, certain dimensions in the space, it turned out, did seem to represent legible human categories,
like gender or relative size. If you took the thousand numbers that meant “king” and literally just
subtracted the thousand numbers that meant “queen,” you got the same numerical result as if you
subtracted the numbers for “woman” from the numbers for “man.” And if you took the entire space
of the English language and the entire space of French, you could, at least in theory, train a network
to learn how to take a sentence in one space and propose an equivalent in the other. You just had
to give it millions and millions of English sentences as inputs on one side and their desired French
outputs on the other, and over time it would recognize the relevant patterns in words the way that
an image classifier recognized the relevant patterns in pixels. You could then give it a sentence in
English and ask it to predict the best French analogue.



The major difference between words and pixels, however, is that all of the pixels in an image are
there at once, whereas words appear in a progression over time. You needed a way for the network
to “hold in mind” the progression of a chronological sequence — the complete pathway from the
first word to the last. In a period of about a week, in September 2014, three papers came out —
one by Le and two others by academics in Canada and Germany — that at last provided all the
theoretical tools necessary to do this sort of thing. That research allowed for open-ended projects
like Brain’s Magenta, an investigation into how machines might generate art and music. It also
cleared the way toward an instrumental task like machine translation. Hinton told me he thought
at the time that this follow-up work would take at least five more years.

It’s no great tragedy if neural networks mislabel 1 percent of cats as dogs, but in something like a
self-driving car we all want greater assurances.
6. The Ambush

Le’s paper showed that neural translation was plausible, but he had used only a relatively small
public data set. (Small for Google, that is — it was actually the biggest public data set in the world.
A decade of the old Translate had gathered production data that was between a hundred and a
thousand times bigger.) More important, Le’s model didn’t work very well for sentences longer
than about seven words.

Mike Schuster, who then was a staff research scientist at Brain, picked up the baton. He knew that
if Google didn’t find a way to scale these theoretical insights up to a production level, someone
else would. The project took him the next two years. “You think,” Schuster says, “to translate
something, you just get the data, run the experiments and you’re done, but it doesn’t work like
that.”

Schuster is a taut, focused, ageless being with a tanned, piston-shaped head, narrow shoulders,
long camo cargo shorts tied below the knee and neon-green Nike Flyknits. He looks as if he woke
up in the lotus position, reached for his small, rimless, elliptical glasses, accepted calories in the
form of a modest portion of preserved acorn and completed a relaxed desert decathlon on the way
to the office; in reality, he told me, it’s only an 18-mile bike ride each way. Schuster grew up in
Duisburg, in the former West Germany’s blast-furnace district, and studied electrical engineering
before moving to Kyoto to work on early neural networks. In the 1990s, he ran experiments with
a neural-networking machine as big as a conference room; it cost millions of dollars and had to be
trained for weeks to do something you could now do on your desktop in less than an hour. He
published a paper in 1997 that was barely cited for a decade and a half; this year it has been cited
around 150 times. He is not humorless, but he does often wear an expression of some asperity,
which | took as his signature combination of German restraint and Japanese restraint.

The issues Schuster had to deal with were tangled. For one thing, Le’s code was custom-written,
and it wasn’t compatible with the new open-source machine-learning platform Google was then
developing, TensorFlow. Dean directed to Schuster two other engineers, Yonghui Wu and Zhifeng
Chen, in the fall of 2015. It took them two months just to replicate Le’s results on the new system.
Le was around, but even he couldn’t always make heads or tails of what they had done.



As Schuster put it, “Some of the stuff was not done in full consciousness. They didn’t know
themselves why they worked.”

This February, Google’s research organization — the loose division of the company, roughly a
thousand employees in all, dedicated to the forward-looking and the unclassifiable — convened
their leads at an offsite retreat at the Westin St. Francis, on Union Square, a luxury hotel slightly
less splendid than Google’s own San Francisco shop a mile or so to the east. The morning was
reserved for rounds of “lightning talks,” quick updates to cover the research waterfront, and the
afternoon was idled away in cross-departmental “facilitated discussions.” The hope was that the
retreat might provide an occasion for the unpredictable, oblique, Bell Labs-ish exchanges that kept
a mature company prolific.

At lunchtime, Corrado and Dean paired up in search of Macduff Hughes, director of Google
Translate. Hughes was eating alone, and the two Brain members took positions at either side. As
Corrado put it, “We ambushed him.”

“0.K.,” Corrado said to the wary Hughes, holding his breath for effect. “We have something to
tell you.”

They told Hughes that 2016 seemed like a good time to consider an overhaul of Google Translate
— the code of hundreds of engineers over 10 years — with a neural network. The old system
worked the way all machine translation has worked for about 30 years: It sequestered each
successive sentence fragment, looked up those words in a large statistically derived vocabulary
table, then applied a battery of post-processing rules to affix proper endings and rearrange it all to
make sense. The approach is called “phrase-based statistical machine translation,” because by the
time the system gets to the next phrase, it doesn’t know what the last one was. This is why
Translate’s output sometimes looked like a shaken bag of fridge magnets. Brain’s replacement
would, if it came together, read and render entire sentences at one draft. It would capture context
— and something akin to meaning.

The stakes may have seemed low: Translate generates minimal revenue, and it probably always
will. For most Anglophone users, even a radical upgrade in the service’s performance would hardly
be hailed as anything more than an expected incremental bump. But there was a case to be made
that human-quality machine translation is not only a short-term necessity but also a development
very likely, in the long term, to prove transformational. In the immediate future, it’s vital to the
company’s business strategy. Google estimates that 50 percent of the internet is in English, which
perhaps 20 percent of the world’s population speaks. If Google was going to compete in China —
where a majority of market share in search-engine traffic belonged to its competitor Baidu — or
India, decent machine translation would be an indispensable part of the infrastructure. Baidu itself
had published a pathbreaking paper about the possibility of neural machine translation in July
2015.

“You think to translate something, you just get the data, run the experiments and you’re done, but
it doesn’t work like that.’

And in the more distant, speculative future, machine translation was perhaps the first step toward
a general computational facility with human language. This would represent a major inflection



point — perhaps the major inflection point — in the development of something that felt like true
artificial intelligence.

Most people in Silicon Valley were aware of machine learning as a fast-approaching horizon, so
Hughes had seen this ambush coming. He remained skeptical. A modest, sturdily built man of
early middle age with mussed auburn hair graying at the temples, Hughes is a classic line engineer,
the sort of craftsman who wouldn’t have been out of place at a drafting table at 1970s Boeing. His
jeans pockets often look burdened with curious tools of ungainly dimension, as if he were porting
around measuring tapes or thermocouples, and unlike many of the younger people who work for
him, he has a wardrobe unreliant on company gear. He knew that various people in various places
at Google and elsewhere had been trying to make neural translation work — not in a lab but at
production scale — for years, to little avail.

Hughes listened to their case and, at the end, said cautiously that it sounded to him as if maybe
they could pull it off in three years.

Dean thought otherwise. “We can do it by the end of the year, if we put our minds to it.” One
reason people liked and admired Dean so much was that he had a long record of successfully
putting his mind to it. Another was that he wasn’t at all embarrassed to say sincere things like “if
we put our minds to it.”

Hughes was sure the conversion wasn’t going to happen any time soon, but he didn’t personally
care to be the reason. “Let’s prepare for 2016,” he went back and told his team. “I’m not going to
be the one to say Jeff Dean can’t deliver speed.”

A month later, they were finally able to run a side-by-side experiment to compare Schuster’s new
system with Hughes’s old one. Schuster wanted to run it for English-French, but Hughes advised
him to try something else. “English-French,” he said, “is so good that the improvement won’t be
obvious.”

It was a challenge Schuster couldn’t resist. The benchmark metric to evaluate machine translation
is called a BLEU score, which compares a machine translation with an average of many reliable
human translations. At the time, the best BLEU scores for English-French were in the high 20s.
An improvement of one point was considered very good; an improvement of two was considered
outstanding.

The neural system, on the English-French language pair, showed an improvement over the old
system of seven points.

Hughes told Schuster’s team they hadn’t had even half as strong an improvement in their own
system in the last four years.

To be sure this wasn’t some fluke in the metric, they also turned to their pool of human contractors
to do a side-by-side comparison. The user-perception scores, in which sample sentences were
graded from zero to six, showed an average improvement of 0.4 — roughly equivalent to the
aggregate gains of the old system over its entire lifetime of development.



In mid-March, Hughes sent his team an email. All projects on the old system were to be suspended
immediately.

7. Theory Becomes Product

Until then, the neural-translation team had been only three people — Schuster, Wu and Chen —
but with Hughes’s support, the broader team began to coalesce. They met under Schuster’s
command on Wednesdays at 2 p.m. in a corner room of the Brain building called Quartz Lake.
The meeting was generally attended by a rotating cast of more than a dozen people. When Hughes
or Corrado were there, they were usually the only native English speakers. The engineers spoke
Chinese, Vietnamese, Polish, Russian, Arabic, German and Japanese, though they mostly spoke
in their own efficient pidgin and in math. It is not always totally clear, at Google, who is running
a meeting, but in Schuster’s case there was no ambiguity.

The steps they needed to take, even then, were not wholly clear. “This story is a lot about
uncertainty — uncertainty throughout the whole process,” Schuster told me at one point. “The
software, the data, the hardware, the people. It was like” — he extended his long, gracile arms,
slightly bent at the elbows, from his narrow shoulders — “swimming in a big sea of mud, and you
can only see this far.” He held out his hand eight inches in front of his chest. “There’s a goal
somewhere, and maybe it’s there.”

Most of Google’s conference rooms have videochat monitors, which when idle display extremely
high-resolution oversaturated public Google+ photos of a sylvan dreamscape or the northern lights
or the Reichstag. Schuster gestured toward one of the panels, which showed a crystalline still of
the Washington Monument at night.

“The view from outside is that everyone has binoculars and can see ahead so far.”

The theoretical work to get them to this point had already been painstaking and drawn-out, but the
attempt to turn it into a viable product — the part that academic scientists might dismiss as “mere”
engineering — was no less difficult. For one thing, they needed to make sure that they were
training on good data. Google’s billions of words of training “reading” were mostly made up of
complete sentences of moderate complexity, like the sort of thing you might find in Hemingway.
Some of this is in the public domain: The original Rosetta Stone of statistical machine translation
was millions of pages of the complete bilingual records of the Canadian Parliament. Much of it,
however, was culled from 10 years of collected data, including human translations that were
crowdsourced from enthusiastic respondents. The team had in their storehouse about 97 million
unique English “words.” But once they removed the emoticons, and the misspellings, and the
redundancies, they had a working vocabulary of only around 160,000.

Then you had to refocus on what users actually wanted to translate, which frequently had very
little to do with reasonable language as it is employed. Many people, Google had found, don’t look
to the service to translate full, complex sentences; they translate weird little shards of language. If
you wanted the network to be able to handle the stream of user queries, you had to be sure to orient
it in that direction. The network was very sensitive to the data it was trained on. As Hughes put it



to me at one point: “The neural-translation system is learning everything it can. It’s like a toddler.
‘Oh, Daddy says that word when he’s mad!” ” He laughed. “You have to be careful.”

More than anything, though, they needed to make sure that the whole thing was fast and reliable
enough that their users wouldn’t notice. In February, the translation of a 10-word sentence took 10
seconds. They could never introduce anything that slow. The Translate team began to conduct
latency experiments on a small percentage of users, in the form of faked delays, to identify
tolerance. They found that a translation that took twice as long, or even five times as long, wouldn’t
be registered. An eightfold slowdown would. They didn’t need to make sure this was true across
all languages. In the case of a high-traffic language, like French or Chinese, they could
countenance virtually no slowdown. For something more obscure, they knew that users wouldn’t
be so scared off by a slight delay if they were getting better quality. They just wanted to prevent
people from giving up and switching over to some competitor’s service.

Schuster, for his part, admitted he just didn’t know if they ever could make it fast enough. He
remembers a conversation in the microkitchen during which he turned to Chen and said, “There
must be something we don’t know to make it fast enough, but I don’t know what it could be.”

He did know, though, that they needed more computers — “G.P.U.s,” graphics processors
reconfigured for neural networks — for training.

Hughes went to Schuster to ask what he thought. “Should we ask for a thousand G.P.U.s?”
Schuster said, “Why not 2,000?”

In the more distant, speculative future, machine translation was perhaps the first step toward a
general computational facility with human language.
Ten days later, they had the additional 2,000 processors.

By April, the original lineup of three had become more than 30 people — some of them, like Le,
on the Brain side, and many from Translate. In May, Hughes assigned a kind of provisional owner
to each language pair, and they all checked their results into a big shared spreadsheet of
performance evaluations. At any given time, at least 20 people were running their own independent
weeklong experiments and dealing with whatever unexpected problems came up. One day a model,
for no apparent reason, started taking all the numbers it came across in a sentence and discarding
them. There were months when it was all touch and go. “People were almost yelling,” Schuster
said.

By late spring, the various pieces were coming together. The team introduced something called a
“word-piece model,” a “coverage penalty,” “length normalization.” Each part improved the results,
Schuster says, by maybe a few percentage points, but in aggregate they had significant effects.
Once the model was standardized, it would be only a single multilingual model that would improve
over time, rather than the 150 different models that Translate currently used. Still, the paradox —
that a tool built to further generalize, via learning machines, the process of automation required
such an extraordinary amount of concerted human ingenuity and effort — was not lost on them.
So much of what they did was just gut. How many neurons per layer did you use? 1,024 or 512?



How many layers? How many sentences did you run through at a time? How long did you train
for?

“We did hundreds of experiments,” Schuster told me, “until we knew that we could stop the
training after one week. You’re always saying: When do we stop? How do I know I’'m done? You
never know you’re done. The machine-learning mechanism is never perfect. You need to train,
and at some point you have to stop. That’s the very painful nature of this whole system. It’s hard
for some people. It’s a little bit an art — where you put your brush to make it nice. It comes from
just doing it. Some people are better, some worse.”

By May, the Brain team understood that the only way they were ever going to make the system
fast enough to implement as a product was if they could run it on T.P.U.s, the special-purpose
chips that Dean had called for. As Chen put it: “We did not even know if the code would work.
But we did know that without T.P.U.s, it definitely wasn’t going to work.” He remembers going
to Dean one on one to plead, “Please reserve something for us.” Dean had reserved them. The
T.P.U.s, however, didn’t work right out of the box. Wu spent two months sitting next to someone
from the hardware team in an attempt to figure out why. They weren’t just debugging the model;
they were debugging the chip. The neural-translation project would be proof of concept for the
whole infrastructural investment.

One Wednesday in June, the meeting in Quartz Lake began with murmurs about a Baidu paper
that had recently appeared on the discipline’s chief online forum. Schuster brought the room to
order. “Yes, Baidu came out with a paper. It feels like someone looking through our shoulder —
similar architecture, similar results.” The company’s BLEU scores were essentially what Google
achieved in its internal tests in February and March. Le didn’t seem ruffled; his conclusion seemed
to be that it was a sign Google was on the right track. “It is very similar to our system,” he said
with quiet approval.

The Google team knew that they could have published their results earlier and perhaps beaten their
competitors, but as Schuster put it: “Launching is more important than publishing. People say,
‘Oh, I did something first,” but who cares, in the end?”

This did, however, make it imperative that they get their own service out first and better. Hughes
had a fantasy that they wouldn’t even inform their users of the switch. They would just wait and
see if social media lit up with suspicions about the vast improvements.

“We don’t want to say it’s a new system yet,” he told me at 5:36 p.m. two days after Labor Day,
one minute before they rolled out Chinese-to-English to 10 percent of their users, without telling
anyone. “We want to make sure it works. The ideal is that it’s exploding on Twitter: ‘Have you
seen how awesome Google Translate got?’ ”

8. A Celebration

The only two reliable measures of time in the seasonless Silicon Valley are the rotations of seasonal
fruit in the microkitchens — from the pluots of midsummer to the Asian pears and Fuyu
persimmons of early fall — and the zigzag of technological progress. On an almost uncomfortably



warm Monday afternoon in late September, the team’s paper was at last released. It had an almost
comical 31 authors. The next day, the members of Brain and Translate gathered to throw
themselves a little celebratory reception in the Translate microkitchen. The rooms in the Brain
building, perhaps in homage to the long winters of their diaspora, are named after Alaskan locales;
the Translate building’s theme is Hawaiian.

The Hawaiian microkitchen has a slightly grainy beach photograph on one wall, a small lei-
garlanded thatched-hut service counter with a stuffed parrot at the center and ceiling fixtures fitted
to resemble paper lanterns. Two sparse histograms of bamboo poles line the sides, like the posts
of an ill-defended tropical fort. Beyond the bamboo poles, glass walls and doors open onto rows
of identical gray desks on either side. That morning had seen the arrival of new hooded sweatshirts
to honor 10 years of Translate, and many team members went over to the party from their desks in
their new gear. They were in part celebrating the fact that their decade of collective work was, as
of that day, en route to retirement. At another institution, these new hoodies might thus have
become a costume of bereavement, but the engineers and computer scientists from both teams all
seemed pleased.

‘It was like swimming in a big sea of mud, and you can only see this far.” Schuster held out his
hand eight inches in front of his chest.

Google’s neural translation was at last working. By the time of the party, the company’s Chinese-
English test had already processed 18 million queries. One engineer on the Translate team was
running around with his phone out, trying to translate entire sentences from Chinese to English
using Baidu’s alternative. He crowed with glee to anybody who would listen. “If you put in more
than two characters at once, it times out!” (Baidu says this problem has never been reported by
users.)

When word began to spread, over the following weeks, that Google had introduced neural
translation for Chinese to English, some people speculated that it was because that was the only
language pair for which the company had decent results. Everybody at the party knew that the
reality of their achievement would be clear in November. By then, however, many of them would
be on to other projects.

Hughes cleared his throat and stepped in front of the tiki bar. He wore a faded green polo with a
rumpled collar, lightly patterned across the midsection with dark bands of drying sweat. There had
been last-minute problems, and then last-last-minute problems, including a very big measurement
error in the paper and a weird punctuation-related bug in the system. But everything was resolved
— or at least sufficiently resolved for the moment. The guests quieted. Hughes ran efficient and
productive meetings, with a low tolerance for maundering or side conversation, but he was given
pause by the gravity of the occasion. He acknowledged that he was, perhaps, stretching a metaphor,
but it was important to him to underline the fact, he began, that the neural translation project itself
represented a “collaboration between groups that spoke different languages.”

Their neural-translation project, he continued, represented a “step function forward” — that is, a
discontinuous advance, a vertical leap rather than a smooth curve. The relevant translation had
been not just between the two teams but from theory into reality. He raised a plastic demi-flute of
expensive-looking Champagne.



“To communication,” he said, “and cooperation!”

The engineers assembled looked around at one another and gave themselves over to little
circumspect whoops and applause.

Jeff Dean stood near the center of the microkitchen, his hands in his pockets, shoulders hunched
slightly inward, with Corrado and Schuster. Dean saw that there was some diffuse preference that
he contribute to the observance of the occasion, and he did so in a characteristically understated
manner, with a light, rapid, concise addendum.

What they had shown, Dean said, was that they could do two major things at once: “Do the research
and get it in front of, I dunno, half a billion people.”

Everyone laughed, not because it was an exaggeration but because it wasn’t.
Epilogue: Machines Without Ghosts

Perhaps the most famous historic critique of artificial intelligence, or the claims made on its behalf,
implicates the question of translation. The Chinese Room argument was proposed in 1980 by the
Berkeley philosopher John Searle. In Searle’s thought experiment, a monolingual English speaker
sits alone in a cell. An unseen jailer passes him, through a slot in the door, slips of paper marked
with Chinese characters. The prisoner has been given a set of tables and rules in English for the
composition of replies. He becomes so adept with these instructions that his answers are soon
“absolutely indistinguishable from those of Chinese speakers.” Should the unlucky prisoner be
said to “understand” Chinese? Searle thought the answer was obviously not. This metaphor for a
computer, Searle later wrote, exploded the claim that “the appropriately programmed digital
computer with the right inputs and outputs would thereby have a mind in exactly the sense that
human beings have minds.”

For the Google Brain team, though, or for nearly everyone else who works in machine learning in
Silicon Valley, that view is entirely beside the point. This doesn’t mean they’re just ignoring the
philosophical question. It means they have a fundamentally different view of the mind. Unlike
Searle, they don’t assume that “consciousness” is some special, numinously glowing mental
attribute — what the philosopher Gilbert Ryle called the “ghost in the machine.” They just believe
instead that the complex assortment of skills we call “consciousness” has randomly emerged from
the coordinated activity of many different simple mechanisms. The implication is that our facility
with what we consider the higher registers of thought are no different in kind from what we’re
tempted to perceive as the lower registers. Logical reasoning, on this account, is seen as a lucky
adaptation; so is the ability to throw and catch a ball. Artificial intelligence is not about building a
mind; it’s about the improvement of tools to solve problems. As Corrado said to me on my very
first day at Google, “It’s not about what a machine ‘knows’ or ‘understands’ but what it ‘does,’
and — more importantly — what it doesn’t do yet.”

Where you come down on “knowing” versus “doing” has real cultural and social implications. At
the party, Schuster came over to me to express his frustration with the paper’s media reception.



“Did you see the first press?” he asked me. He paraphrased a headline from that morning, blocking
it word by word with his hand as he recited it: GOOGLE SAYS A.l. TRANSLATION IS
INDISTINGUISHABLE FROM HUMANS’. Over the final weeks of the paper’s composition, the
team had struggled with this; Schuster often repeated that the message of the paper was “It’s much
better than it was before, but not as good as humans.” He had hoped it would be clear that their
efforts weren’t about replacing people but helping them.

And yet the rise of machine learning makes it more difficult for us to carve out a special place for
us. If you believe, with Searle, that there is something special about human “insight,” you can draw
a clear line that separates the human from the automated. If you agree with Searle’s antagonists,
you can’t. It is understandable why so many people cling fast to the former view. Ata 2015 M.L.T.
conference about the roots of artificial intelligence, Noam Chomsky was asked what he thought of
machine learning. He pooh-poohed the whole enterprise as mere statistical prediction, a glorified
weather forecast. Even if neural translation attained perfect functionality, it would reveal nothing
profound about the underlying nature of language. It could never tell you if a pronoun took the
dative or the accusative case. This kind of prediction makes for a good tool to accomplish our ends,
but it doesn’t succeed by the standards of furthering our understanding of why things happen the
way they do. A machine can already detect tumors in medical scans better than human radiologists,
but the machine can’t tell you what’s causing the cancer.

Then again, can the radiologist?

Medical diagnosis is one field most immediately, and perhaps unpredictably, threatened by
machine learning. Radiologists are extensively trained and extremely well paid, and we think of
their skill as one of professional insight — the highest register of thought. In the past year alone,
researchers have shown not only that neural networks can find tumors in medical images much
earlier than their human counterparts but also that machines can even make such diagnoses from
the texts of pathology reports. What radiologists do turns out to be something much closer to
predictive pattern-matching than logical analysis. They’re not telling you what caused the cancer;
they’re just telling you it’s there.

Once you’ve built a robust pattern-matching apparatus for one purpose, it can be tweaked in the
service of others. One Translate engineer took a network he put together to judge artwork and used
it to drive an autonomous radio-controlled car. A network built to recognize a cat can be turned
around and trained on CT scans — and on infinitely more examples than even the best doctor could
ever review. A neural network built to translate could work through millions of pages of documents
of legal discovery in the tiniest fraction of the time it would take the most expensively credentialed
lawyer. The kinds of jobs taken by automatons will no longer be just repetitive tasks that were
once — unfairly, it ought to be emphasized — associated with the supposed lower intelligence of
the uneducated classes. We’re not only talking about three and a half million truck drivers who
may soon lack careers. We’re talking about inventory managers, economists, financial advisers,
real estate agents. What Brain did over nine months is just one example of how quickly a small
group at a large company can automate a task nobody ever would have associated with machines.

The most important thing happening in Silicon Valley right now is not disruption. Rather, it’s
institution-building — and the consolidation of power — on a scale and at a pace that are both



probably unprecedented in human history. Brain has interns; it has residents; it has “ninja” classes
to train people in other departments. Everywhere there are bins of free bike helmets, and free green
umbrellas for the two days a year it rains, and little fruit salads, and nap pods, and shared treadmill
desks, and massage chairs, and random cartons of high-end pastries, and places for baby-clothes
donations, and two-story climbing walls with scheduled instructors, and reading groups and policy
talks and variegated support networks. The recipients of these major investments in human
cultivation — for they’re far more than perks for proles in some digital salt mine — have at hand
the power of complexly coordinated servers distributed across 13 data centers on four continents,
data centers that draw enough electricity to light up large cities.

But even enormous institutions like Google will be subject to this wave of automation; once
machines can learn from human speech, even the comfortable job of the programmer is threatened.
As the party in the tiki bar was winding down, a Translate engineer brought over his laptop to
show Hughes something. The screen swirled and pulsed with a vivid, kaleidoscopic animation of
brightly colored spheres in long looping orbits that periodically collapsed into nebulae before
dispersing once more.

Hughes recognized what it was right away, but I had to look closely before | saw all the names —
of people and files. It was an animation of the history of 10 years of changes to the Translate code
base, every single buzzing and blooming contribution by every last team member. Hughes reached
over gently to skip forward, from 2006 to 2008 to 2015, stopping every once in a while to pause
and remember some distant campaign, some ancient triumph or catastrophe that now hurried by to
be absorbed elsewhere or to burst on its own. Hughes pointed out how often Jeff Dean’s name
expanded here and there in glowing spheres.

Hughes called over Corrado, and they stood transfixed. To break the spell of melancholic nostalgia,
Corrado, looking a little wounded, looked up and said, “So when do we get to delete it?”

“Don’t worry about it,” Hughes said. “The new code base is going to grow. Everything grows.”
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