

Python Support for Verifying NVMe SSDs

Author:

Haiyan Lin, Sr. Software Engineer,
SANBlaze

 White Paper

Controlling the SBExpress Interface

Using Python for NVMe SSD Testing

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Using Python to Verify NVMe SSDs 1

Table of Contents

Introduction .. 2

Running the SANBlaze APIs from the SANBlaze system ... 2

Running the SANBlaze APIs from your PC .. 3

SANBlaze sb_i2c Python Module .. 4

SANBlaze XML_API Python Module .. 5

Summary ... 6

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Using Python to Verify NVMe SSDs 2

Introduction

Many customers today are using the Python scripting language to achieve automation of their NVMe
test systems. SANBlaze now offers one Python package (sanblaze_apis) that does not require any
modification to your local python configuration for integration or operation. The Python package
provides a group of classes to control all functions of the SBExpress system including functions such as
Power Control, Power Measurement, Hot Plug, Surprise Removal, Graceful Removal, PCIe Speed
Training, Slot Information, NVMe command pass-through, namespace management, MI management,
and more.

The SANBlaze Python package “sanblaze_apis” is compatible with Python2 and Python3 and is available
for all SANBlaze SBExpress NVMe SSD test systems. Use of the SANBlaze “sanblaze_apis” Python
package is documented in full in a user guide available from SANBlaze.

This white paper provides an overview of setup and usage of the Python package available for use with
the SANBlaze SBExpress NVMe SSD test system.

Running the SANBlaze APIs from the SANBlaze system

By default, the “sanblaze-apis” are included starting with the V8.1 release or later. To access the
“sanblaze_apis” you just need to log into the system via an SSH session and switch your working
directory to “/virtualun/apis/” and import the class and instantiate objects with an optional slot
number or port/target/LUN number.

You can instantiate as many objects as required for the specific slot or target that you need to
communicate.

For example, following is the import and instantiate process in Python; it instantiates one object “s” with
slot 4 and default system number 1.

[root@vlun-111 apis]# python3

Python 3.8.1 (default, Jan 20 2020, 10:42:41)

[GCC 4.6.3 20120306 (Red Hat 4.6.3-2)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> from sanblaze_apis import SB_i2c

>>> s = SB_i2c(4)

>>> dir(s)

['__class__', '__delattr__', '__dict__', '__doc__', '__format__',

'__getattribute__', '__hash__', '__init__', '__module__', '__new__',

'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',

'__str__', '__subclasshook__', '__weakref__', 'bump_insertion_count',

'button_press', 'clear_present', 'clock_glitch', 'clock_off', 'clock_on',

'clock_status', 'get_back_panel_switch_configurations',
'get_current_link_rate', 'get_deviceID', 'get_eeprom', 'get_info',

'get_max_link_rate', 'get_present', 'get_target_link_rate', 'get_vendorID',

'password', 'perst_glitch', 'perst_off', 'perst_on', 'perst_status',

'power_calibrate', 'power_glitch', 'power_margin', 'power_measure',

'power_measure_whole_tester', 'power_off', 'power_on', 'power_status',

'sb_sdb', 'set_insertion_count', 'set_present', 'slot', 'system',

'tester_IP', 'train_link_speed', 'username']

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Using Python to Verify NVMe SSDs 3

Running the SANBlaze APIs from your PC

You also have the option to run the sanblaze_apis directly from your local laptop/PC as well if that
matches your python test infrastructure.

1) Copy the directory “/virtualun/apis/” (scp/ftp) from the SANBlaze system to your laptop (ex:
C:/SANBlaze/Api

2) Install the Python “paramiko” package on your laptop with instructions as follows.

For Python 2.7.x:

1) Install Python 2.7.x - Select the correct MSI for your architecture (32-bit or 64-bit).
2) Download get-pip.py (use Firefox/Chrome) or use the following command “curl

https://bootstrap.pypa.io/get-pip.py -o get-pip.py”, or refer to information in webpage
https://pip.pypa.io/en/stable/installing/ for detail) and put it in directory “c:\Python27\”.

3) Open an Administrator command prompt and run "c:\Python27\python.exe get-pip.py".
4) From the same admin prompt, run "c:\Python27\Scripts\pip install paramiko"

For Python 3.8.x:

1) Install Python 3.8.x - Select the correct MSI for your architecture (32-bit or 64-bit).
2) Download get-pip.py (use Firefox/Chrome) or use the following command “curl

https://bootstrap.pypa.io/get-pip.py -o get-pip.py”, or refer to information in webpage
https://pip.pypa.io/en/stable/installing/ for detail) and put it in directory
“c:\Users\YourName\AppData\Local\Programs\Python\ Python38\”.

3) Open an Administrator command prompt and run " c:\Users\hlin\AppData\Local\Programs
\Python\Python38\python.exe get-pip.py".

4) From the same admin prompt, run " c:\Users\hlin\AppData\Local\Programs\Python\Python38\
Scripts\pip install paramiko".

After the Python “paramiko” package installation is complete, you can import this class and instantiate
objects with optional slot number, optional system number, remote tester IP, access username and
password.

For example, following is the import and instantiate process from a laptop to the SANBlaze system
remotely controlled in the lab. It instantiates one object “s” with slot 4, default system number 1, tester
IP = “192.168.100.111” with user name = “root” and password = “SANBlaze”.

>>> from sanblaze_apis import SB_i2c

>>> s = SB_i2c(4, 1, "192.168.100.111", "root", “SANBlaze”)

>>> dir(s)

['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',

'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__',

'__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__',

'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',

'__str__', '__subclasshook__', '__weakref__', 'bump_insertion_count',

'button_press', 'clear_present', 'clock_glitch', 'clock_off', 'clock_on',

'clock_status', 'get_back_panel_switch_configurations',

'get_current_link_rate', 'get_deviceID', 'get_eeprom', 'get_info',

'get_max_link_rate', 'get_present', 'get_target_link_rate', 'get_vendorID',

'password', 'perst_glitch', 'perst_off', 'perst_on', 'perst_status',

'power_calibrate', 'power_glitch', 'power_margin', 'power_measure',

https://bootstrap.pypa.io/get-pip.py%20-o%20get-pip.py
https://pip.pypa.io/en/stable/installing/
https://bootstrap.pypa.io/get-pip.py%20-o%20get-pip.py
https://pip.pypa.io/en/stable/installing/

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Using Python to Verify NVMe SSDs 4

'power_measure_whole_tester', 'power_off', 'power_on', 'power_status',

'sb_sdb', 'set_insertion_count', 'set_present', 'slot', 'ssh', 'system',

'tester_IP', 'train_link_speed', 'username']

With this object “s” above then you have the full control of slot 4. User can find help information for
each API as follows:

>>> help(s.get_info)

Help on method get_info in module sanblaze_apis:

get_info(self) method of sanblaze_apis.SB_i2c instance

 Get slot information such as drive bay, tester SN/revision, i2c

addresses, link width/speed, power/LEDs status, PEX port/bus number,MRL

(Mechanical Retention Latch) sensor state, DUT on the bus or not and so on.

>>> help(s.power_glitch)

Help on method power_glitch in module sanblaze_apis:

power_glitch(self, glitch_hold_us=100000) method of sanblaze_apis.SB_i2c

instance

 Glitch the power for specific time on the slot

SANBlaze sb_i2c Python Module

The SANBlaze sb_i2c Python module defines one SB_i2c class which has the following APIs for power
control/measurement/glitch, hot plug, PCIe speed training, clock/PERST glitch and so on.

• button_press(self)

• power_measure(self)

• get_info(self)

• get_eeprom(self)

• power_status(self)

• power_on(self)

• power_off(self)

• power_glitch(self, glitch_hold_us=100000)

• power_margin(self, voltage_margin_mv=11000)

• clock_status(self)

• clock_on(self)

• clock_off(self)

• clock_glitch(self, glitch_hold_us=100000)

• perst_status(self)

• perst_on(self)

• perst_off(self)

• perst_glitch(self, glitch_hold_us=100000)

• train_link_speed(self, link_speed)

• get_max_link_rate(self)

• get_target_link_rate(self)

• get_current_link_rate(self)

• power_calibrate(self)

• power_measure_whole_tester(self)

• get_deviceID(self)

• get_vendorID(self)

• get_present(self)

• clear_present(self)

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Using Python to Verify NVMe SSDs 5

• set_present(self)

• bump_insertion_count(self)

• set_insertion_count(self, init_count)

• get_back_panel_switch_configurations(self)

• sb_sdb(self, register_address, writing_data=None, single_byte=False,

binary_display=False, show_Atlas_temperature=False,

show_link_errors=False, reset_link_errors=False, verbose=False,

apply_all_slots=False)

• ident_on(self)

• ident_off(self)

The constructor of this SB_i2c class is “__init__(self, slot=0, system=1, tester_IP=None,
username='root', password='SANBLaze')”.

For example, you can get slot information such as drive bay, appliance SN and revision, i2c addresses,
link width and speed, power and LEDs status, PEX port and bus number, MRL (Mechanical Retention
Latch) sensor state, DUT on the bus or not, and so on with the API “get_info”. This API call will retrieve
slot 4 information from the SBExpress system 1 (default is 1 if not specified when you instantiate the
object) as follows with the object “s” instantiated above.

>>> s.get_info()

INFO: System 1 SBExpress-RM SN=920A8110006 Rev=R03 i2c=/dev/i2c-4

MI_i2c=/dev/i2c-5 VLUN_Port=0

 INFO: driveslot=04

 INFO: DriveBay=04

 INFO: PEXi2cAddr=0x5d

 INFO: PEXStation=0x02

 INFO: PEXPort=0x09

 INFO: PRIMARY_BUS=0x05

 INFO: SECONDARY_BUS=0x0f

 INFO: LNK_CUR_SPEED=0x03

 INFO: LNK_CUR_WIDTH=0x04

 INFO: PRESENCE=0x01

 INFO: MRL_SENSOR_STATE=0x00

 INFO: ATTN_LED=0x01

 INFO: POWER_LED=0x00

 INFO: POWER=0x01

 INFO: In waitForStatus Submitting -n 1 -d 4 -i -G 125823 to queue at

/tmp/NVMe/i2c_in

SANBlaze XML_API Python Module

The SANBlaze XML_API Python class defines the APIs for all NVMe commands for pass- through,
decoding, and for use with the VLUN system management. The XML_API runs in the exact same manner
either locally on the test system or remotely from a PC/laptop. Here is an example of how you can
instantiate one object and find help for each API:

>>> t=XML_API(tester_IP="192.168.100.111", port=0, target=107, lun=1)

>>> help(t.zone_management_send)

Help on method zone_management_send in module sanblaze_apis:

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Using Python to Verify NVMe SSDs 6

zone_management_send(start_LBA=0, send_action=3) method of

sanblaze_apis.XML_API instance

The zone_management_send() function performs an action on one or more zones.

• start_LBA = the lowest LBA of the zone the command operates on (Recommend to put hex
number like 0x00)

• send_action = zone send action (Recommend to put hex number like 0x104 to reset all zones)
and they are defined as follows:

 Bits Description

 08 Select All: If the bit is cleared to '0', then the start_LBA field

specifies the lowest logical block of the zone. If the bit is set to '1', then the

SLBA field shall be ignored.

 07:00

 00h Reserved

 01h Close Zone: Close one or more zones.

 02h Finish Zone: Finish one or more zones.

 03h Open Zone: Open one or more zones.

 04h Reset Zone: Reset one or more zones.

 05h Offline Zone: Offline one or more zones.

 06h-0Fh Reserved

 10h Set Zone Descriptor Extension: Attach Zone Descriptor Extension data

to a zone in the ZSE:Empty state and transition the zone to the ZSC:Closed state.

 11h to FFh Reserved

For a comprehensive list of API commands, please contact SANBlaze.

Summary

SANBlaze now provides – in addition to an easy to use GUI interface and its extensive SBExpress
automated test scripts – a way to programmatically control these interfaces and low-level commands
through a common Python API interface for ease of integration into your existing Python test
infrastructure. With the ability to run alongside your current test infrastructure, this will allow easy
migration to the SANBlaze test platform and allow you to greatly enhance your test coverage and
results.

