

Intelligent Transportation Systems (ITS)

Stacy Shetler & Shaun QuayleWashington County Traffic Engineering

October 14, 2020

Agenda for this morning

- Big Picture Define ITS
- Accomplishments
- Effectiveness Data and Use Cases
- Next Steps ITS Plan Update
- Q & A

Intelligent Transportation Systems

ITS is the integration & application of technology to:

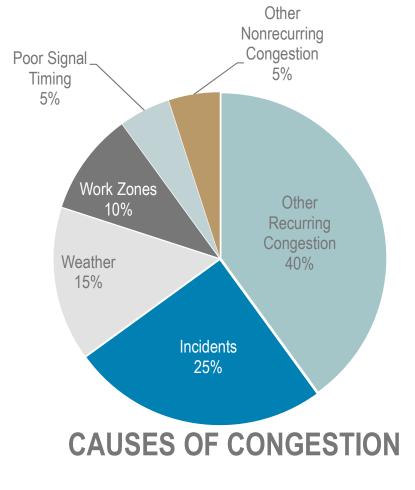
- Achieve safety and mobility goals of the transportation system.
- Enhance transportation system management and operations.

These technology's include:

- Computer hardware and software
- Communication infrastructure
- Electronics and sensors
- Safety systems

ITS Plan Goals

- Improve the <u>safety</u> and <u>security</u> of the transportation system
- Improve the <u>efficiency</u> of the transportation system
- Provide improved <u>traveler information</u>
- Deploy <u>functional</u> and <u>cost efficient</u> ITS infrastructure
- Integrate regional ITS projects with local and regional partners


Expectations for ITS

ITS can:

- Restore lost capacity by improving operations on the facility
- Manage congestion
- Provide traveler information, smart signal technology, smart work zones, improve incident clearance times

ITS can not:

- Increase roadway capacity
- Eliminate congestion

Expected Benefits

Traveler/freight benefits:

- Improved travel time reliability
- Reduced delay, fuel consumption, emissions, and crashes
- Comprehensive traveler info

Institutional benefits:

 Improved resource allocation, system efficiency, and data

Timeline of Implementation

Key Initiatives

- Modernizing systems and hardware
- Building a high-speed, reliable, and shareable communications network

 Automating data collection and system performance measures

Accomplishments from 2014-2019 (5 years):

- Better Management, Monitoring and Operation of the Transportation System
- 42/61 of the projects from the 2014 update were completed or partially completed
- \$17M of the proposed \$32M in projects from the 2014 update were delivered for \$5.6M

WORKING TOGETHER

- Leveraging other capital projects for ITS enhancements
- Partnering
 - Grants with ODOT (TIGER & ATCMTD),
 - Transportation Portland (TransPort)
 - Cooperative Telecommunications Infrastructure Consortium (CTIC)

WORKING TOGETHER

+

Other Regional Partners including Hillsboro, Beaverton, Tualatin, Sherwood, ODOT, and Tri-Met

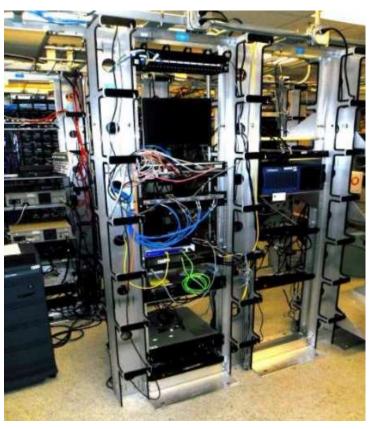
Installing fiber optic communications

- High band-width capable (1, 10 & 100 Gbps)
- Redundant and reliable system architecture
- Mutually beneficial
- Adding partners

Infrastructure deployed:

- Constructed or allowed access to >110 miles of fiber optic communication infrastructure
- Remote connection to <u>200</u> of 350 Traffic
 Signals owned and maintained by the County
- Installed <u>100</u> System Monitoring Cameras
- Installed <u>130</u> Travel Time Readers
- Modernized all 150 School Zone Flashers
- Automated all 9 Snow Zone Beacons

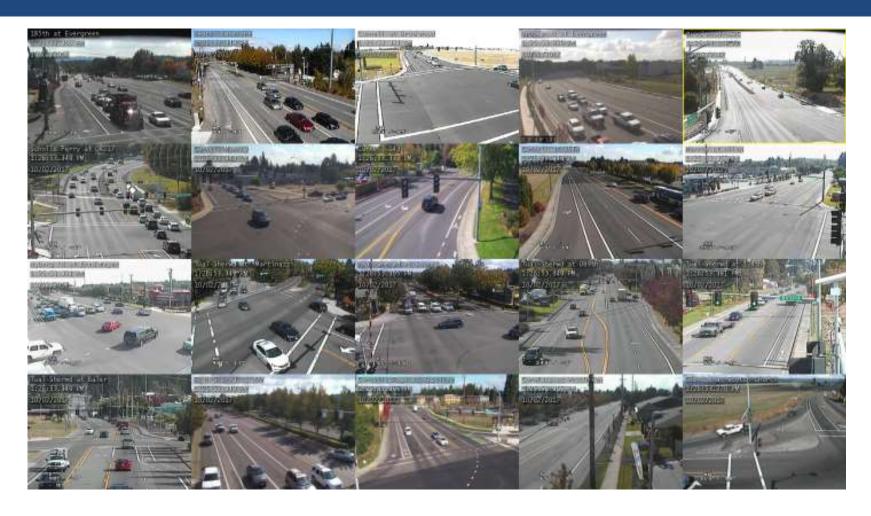
Effectiveness



TRAFFIC CONTROL & OPERATIONS

TRAFFIC OPERATIONS CENTER (TOC)

TRAFFIC SIGNAL MAINTENANCE


Traffic signals are monitored remotely

- Diagnose issues as they occur
- Reduces response time by making changes remotely
- Integrated into Regional Management System

REMOTE MONITORING & CONTROL

INCIDENT MANAGEMENT AND RESPONSE

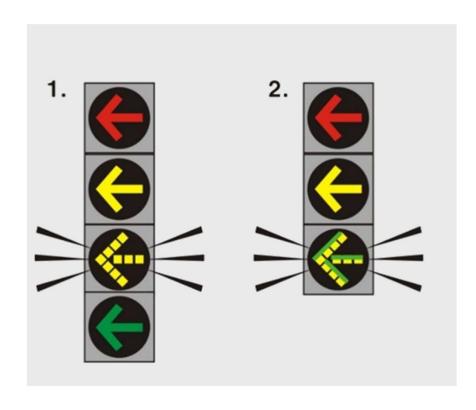
EVENT MANAGEMENT

Event traffic can be managed remotely using the connected traffic signal system

- Police used to stand in the intersection and direct traffic
- Now, we monitor traffic conditions after the event make signal timing adjustments remotely

WORK ZONE SAFETY AND EFFICIENCY

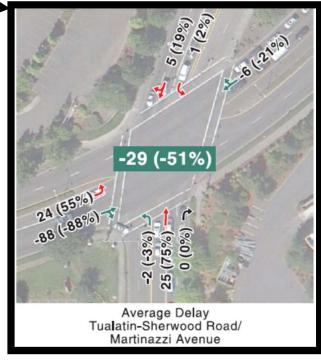
Temporary Construction Detection


- Cornelius Pass Widening
- Nike Construction 158th
- Cornell Rd Pavement Overlay

SIGNAL OPERATIONS



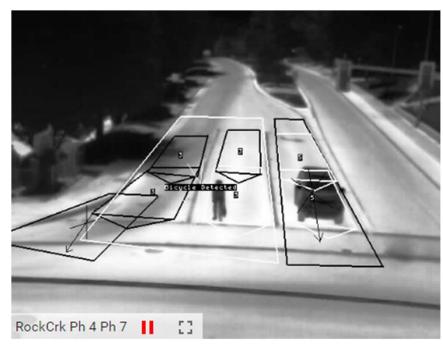
Flashing Yellow Arrow (permissive left turns)


- Reduced stops by ~18%
- Reduced delay by ~35%
- Reduced fuel consumption by ~13%

REAL-TIME ADAPTIVE TIMING

Tualatin-Sherwood Road Teton to I-5 Traffic Adaptive System (PM Peak Hour)

REAL-TIME ADAPTIVE TIMING



Cornell Road – Brookwood to Butler Adaptive Traffic System (AM Peak Hour)

BICYCLE AND PEDESTRIAN DETECTION



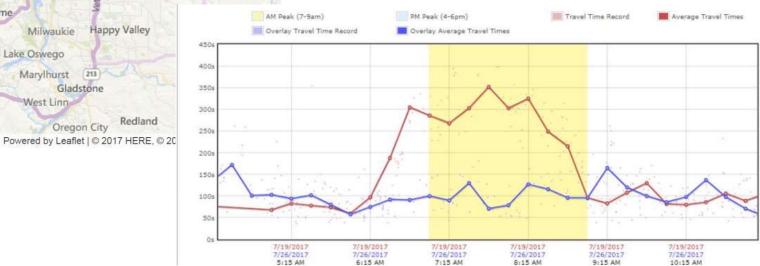
PERFORMANCE MEASURES

Milwaukie

West Linn

Marylhurst (213) Gladstone

Oregon City

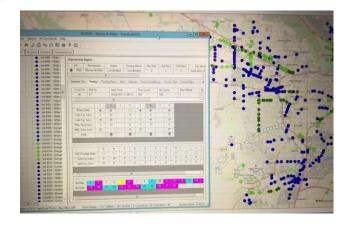

Lake Oswego

Scholls Ferry at 121st Ave to Scholls Ferry at Nimbus Ave

Trip Distance(mi): 63 (1:03) Expected Travel Time(s): Number of Trips: 104527 Mean/Median Speed(mph): 19.7 / 23.2 102.3 (1:42) / 87 (1:27) Mean/Median Travel Time(s): 60.5 Standard Deviation: 15th Percentile Travel Time(s): 52 85th Percentile Travel Time(s): 148 (2:28) 95th Percentile Travel Time(s): 228 (3:48)

Note: You may adjust the location of the devices by clicking and dragging the markers on the map to the right. This will update the route and distance/time taken calculated.

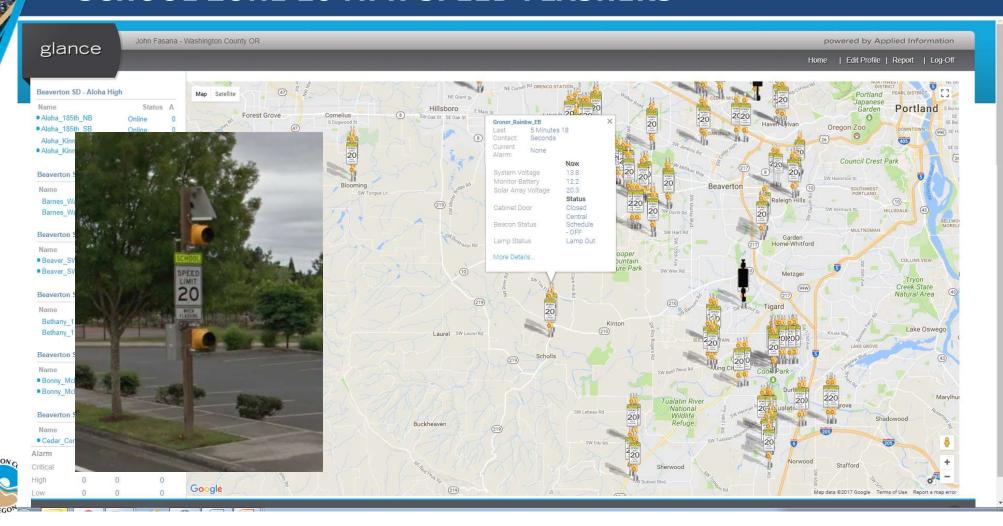
TRAVELER INFORMATION



TRAVELER INFORMATION

CONNECTED VEHICLES

TTS Receives
County's RealTime Traffic Signal
Information


TTS Predictive Algorithm Applied TTS Streams
County Signal Data
to vehicle Dash

RURAL & SAFETY SYSTEMS

SCHOOL ZONE 20 MPH SPEED FLASHERS

RURAL FLOOD MONITORING SYSTEM

RURAL FLOOD MONITORING SYSTEM

« Prev | Next » Taylor Way Gate

[Refresh]

Current Status :

Current Alarms:

Power Status :

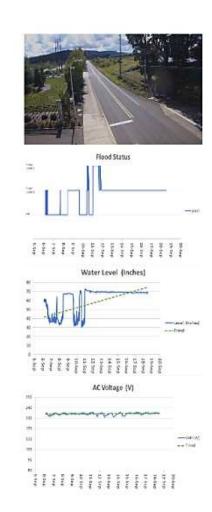
OK OK

Current Device Status : Timezone :

-7 Hours

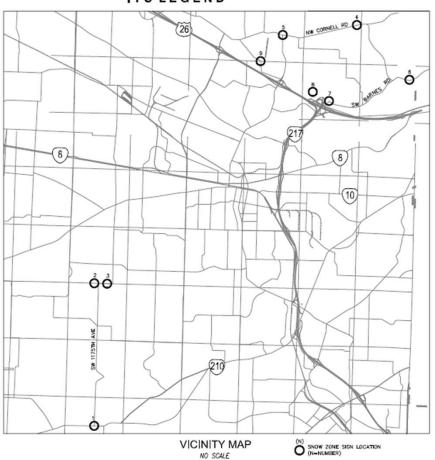
Online

Time Since Last Contact:


10 Minutes 47 Seconds 9/18/2019 1:09:52 PM

	Now	Min	Max	Avg
AC Voltage (V)	133.3	133.3	135.6	134.8
Monitor Battery (V)	13.6	13.6	13.9	13.8
Water Level (Inches)	69.806	67.822	69.806	68.911

	Status
Gate Status	Open
Cabinet Door	Closed
Flood Status	Flood Level 1
	Inputs
More Details	1


	Status		
Gate Flasher	•	Off	
	Output		

SNOW ZONE SIGN AUTOMATION

LOCATION	INTERSECTION	SHEET
1	SW 175th Ave & SW Scholls Ferry Rd	2
2	SW 175th Ave & SW Rigert Rd	3
3	SW 175th Ave & SW Rigert Rd	3
4	NW Comell Rd & NW 87th Ave	4
5	NW Comell Rd & NW Cedar Hills Blvd	5
6	SW Bames Rd & W Bumside Rd	6
7	SW Barnes Rd & SW Bartic Ave	7
8	SW Bames Rd & Peterkort Medical CTR	8
9	SW Barnes Rd & NW 118th Ave	9
	DETAILS	10-12

SNOW ZONE SIGN AUTOMATION

« Prev | Next » SZ_Crnl_87_WB

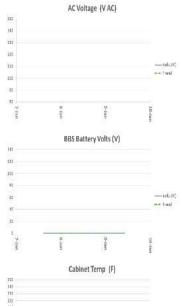
[Refresh]

Current Status : Online

Current Alarms:

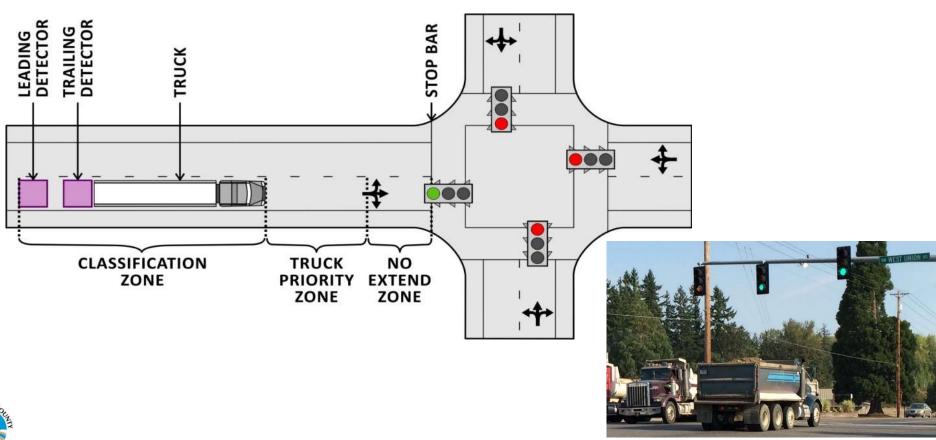
Power Status : OK
Current Device Status : OK
Timezone : -8 Hours

Time Since Last Contact : 7 Minutes 13 Seconds 2/19/2020 2:00:20 PM

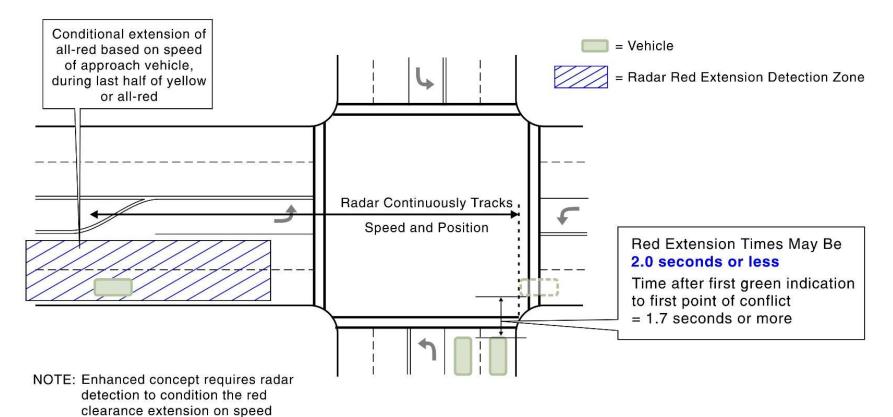

	Now	Min	Max	Avg
AC Voltage (V AC)	122.9	120.3	123.7	122.3
Cabinet Temp (F)	32	32	32	32
BBS Battery (V)	28.2	28.1	28.7	28.5
Monitor Batt (V)	14.5	14.4	15.2	14.9

Status	

[More Details]


	S	tatus
Warning Flashers	•	Off
	Output	

GREEN EXTENSION FOR TRUCKS AND TRANSIT



RED LIGHT RUNNING MITIGATION

of approaching vehicles.

"Speed-based Advanced" Radar Extension

DYNAMIC CURVE WARNING SYSTEM

Use Case Summary

- Utilizing technology to improve mobility, safety, and efficient work flow/maintenance
- Integrating technology into projects
 (MSTIP, development & other ITS funding sources)
- Building strong partnerships to share information & resources
 - **Laying the foundation** for next wave of transportation technology

ITS Plan Update 2020

This effort updates *only* the chapters of the plan that require changes:

Executive Summary

Chapter 1: Introduction and Summary

Chapter 2: Updated Current and Programmed Transportation Conditions

Chapter 3: User Needs Assessment Regional ITS Architecture

Chapter 4: Regional ITS Architecture

Chapter 5: ITS Deployment Plan

We've also added

Accomplishments Story between 2014 and 2019

Goals of the ITS Plan Update

WASHINGTON COUNTY'S ITS PROGRAM SEEKS TO ACHIEVE AS OUTCOMES:

ENHANCED SAFETY FOR ALL TRAVEL MODES

PEOPLE, GOODS, AND SERVICES

EQUITABLE ACCESS TO THE WASHINGTON COUNTY TRANSPORTATION SYSTEM

REDUCTION IN VEHICLE EMISSIONS, CONGESTION, AND USER FRUSTRATION

ENHANCED TRAVELER INFORMATION

Strategies of the ITS Plan Update

Continue Building

Connectivity

 Fiber backbone & high capacity linkages to the Traffic Operations Center for traffic signals and ITS devices

Partnerships with local agencies

Expand on Initiatives

Bicycle & Pedestrian

detection, differentiation & adaptive response

Resiliency

- back up power
- Redundant communications

Automation

data to information

ITS Plan Update – Next Steps

- Update project list
 - 43 new updated projects, 10 Local Agency projects
 - \$63M total cost estimate
- Finish draft documents
- Schedule Public outreach (online open house)
- Move towards Board adoption
 - Spring/Summer of 2021

Q & A

