FIGHTING THE UNBEARABLE LIGHTNESS OF NEGLECTING KIDNEY HEALTH: THE DECADE OF THE KIDNEY*

*The "Decade of the Kidney™" is a global initiative of the American Association of Kidney Patients (AAKP), launched in 2019.

Raymond Vanholder¹, Lieven Annemans², Aminu K. Bello³, Boris Bikbov⁴, Daniel Gallego⁵, Ron T. Gansevoort⁶, Norbert Lameire⁷, Valerie A. Luyckx⁸, Edita Noruisiene⁹, Tom Oostrom¹⁰, Christoph Wanner¹¹, Fokko Wieringa¹²

¹: President of the European Kidney Health Alliance (EKHA); Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium

²: Department of Public Health and Primary Care, Ghent University, Ghent, Belgium; Department of Public Health, Interuniversity Center for Health Economics Research (I-CHER), Free University of Brussels, Brussels, Belgium

³: Co-chair International Society of Nephrology Global Kidney Health Atlas; Division of Nephrology, Department of Medicine, University of Alberta, Canada

⁴: Istituto di Richerche Farmacologiche Mario Negri RICCS, Italy

⁵: President of the European Kidney Patient Federation (EKPF); President of the Spanish Kidney Patient Federation (ALCER)

⁶: Council Member of the European Renal Association – European Dialysis and Transplant Association (ERA-EDTA); Department of Nephrology, University Medical Center Groningen, University of Groningen, The Netherlands

© The Author(s) 2021. Published by Oxford University Press on behalf of ERA-EDTA. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://mc.manuscriptcentral.com/ckj
7: Past President of the European Kidney Health Alliance (EKHA); Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium

8: Executive Committee Member, International Society of Nephrology (ISN); Honorary Associate Professor, Department of Paediatrics and Child Health, University of Cape Town, South-Africa; Affiliate Lecturer, Renal Division, Brigham and Women’s Hospital, Boston, MA, USA

9: President of European Dialysis and Transplant Nurses Association - European Renal Care Association (EDTNA/ERCA)

10: Managing Director of the Dutch Kidney Foundation

11: President of the European Renal Association – European Dialysis and Transplant Association (ERA-EDTA); Nephrology Section, Department of Internal Medicine I, Würzburg University, Würzburg University Hospital, Germany

12: Chair Innovation Workgroup, European Kidney Health Alliance; IMEC Eindhoven, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands

Correspondence to: Raymond Vanholder; E-mail: Raymond.vanholder@ugent.be
ABSTRACT

A brief comprehensive overview is provided of the elements constituting the burden of kidney disease (chronic kidney disease and acute kidney injury). This publication can be used for advocacy emphasizing the importance and urgency of reducing this heavy and rapidly growing burden. Kidney diseases contribute to significant physical limitations, loss of quality of life, emotional and cognitive disorders, social isolation and premature death. Chronic kidney disease affects close to 100 million Europeans with 300 million being at risk, and is projected to become the fifth cause of worldwide death by 2040. Kidney disease also imposes financial burdens given the costs of accessing health care and inability to work. The extrapolated annual cost of all chronic kidney disease is at least as high as that for cancer or diabetes. In addition, dialysis treatment of kidney diseases imposes environmental burdens by necessitating high energy and water consumption and producing plastic waste. Acute kidney injury is associated with further increases of global morbidity, mortality and economic burden. Yet, investment in research for treatment of kidney disease lags behind that of other diseases. This publication is a call for European investment in research for kidney health. The innovations generated should mirror the successful EU actions against cancer over the last 30 years. It is also a plea to nephrology professionals, patients and their families, caregivers, and kidney health advocacy organizations, to draw during the Decade of the Kidney (2020-2030) the attention of authorities to realize changes in understanding, research and treatment of kidney disease.

Keywords: acute kidney injury, chronic kidney disease, dialysis, epidemiology, environment, health economy, kidney transplantation, mortality, non-communicable diseases, peritoneal dialysis
INTRODUCTION

The social and psychological impact of chronic kidney disease is seriously underestimated. The disease and its human and financial burdens are unknown to many, mainly due to unawareness, the intangible nature of how the kidneys function, and the difficulty of capturing public attention. Recently, a Belgian Member of the European Parliament, Hilde Vautmans, appropriately called chronic kidney disease “the most neglected common chronic disease”1.

Chronic kidney disease mostly develops slowly without initial symptoms, and becomes progressively more debilitating at later stages, with little chances for reversal. In the most advanced stages (kidney failure; previously known as end-stage kidney disease), kidney replacement therapy (dialysis or transplantation) is the usual approach to support quality of life and keep the individual alive. Patients can also opt for comprehensive conservative care, assuring their quality of life but without kidney replacement. Kidney function can also suddenly decline (acute kidney injury)2-3, which is strongly interconnected with chronic kidney disease. Patients with chronic kidney disease are more prone to develop acute kidney injury than the general population. Acute kidney injury in turn can worsen the course of chronic kidney disease or become the reason of subsequent incident chronic kidney disease4.

This position paper is a call to action prepared by the European Kidney Health Alliance (EKHA), a non-governmental organization advocating for kidney patients at the level of the European Union (EU) and members state healthcare systems5, and several other stakeholders including patients (see acknowledgements). The aim is to draw the attention of the authorities and the public to the urgent need to reduce the collective burden of kidney disease. In contrast to other fields in medicine, such as cardiology and oncology, limited progress has been made with respect to developing novel therapeutics for kidney disease in the last 3 decades. This inertia must urgently be overcome to generate overdue and long-awaited progress.

This call to action provides data to inform policy makers, administrators, regulators and payers. Media and society press, in parallel, can use this text to inform about the multiple burdens associated with kidney disease and the urgent need to acknowledge and address
these. However, education is not sufficient and should be coupled, first with prioritization of diagnosis, and, second, with streamlining of care trajectories through a collaborative effort between authorities and stakeholders. Where appropriate, we will make comparisons with other major health advocacy domains, to emphasize the need for gearing up financial and intellectual investment in kidney health.

A devastating disease

Individuals with chronic kidney disease suffer from countless limitations and symptoms which progressively impact their physical, mental and social functioning (video track with patient testimonies in). Current dialysis and transplant options were rarely developed with a primary focus on the needs and preferences of patients and their care providers.

While kidney disease may have no specific symptoms in a number of patients (especially at early stages), it contributes to many challenges in others (table 1). Most of these, e.g. fatigue, sleep disorders and itching, are not fatal but they worsen progressively and heavily impact global functioning. Comfort is only rarely restored with treatment. Associated complications like cardiovascular disease and infection trigger multiple hospitalizations and surgical interventions, not exceptionally twenty or more per disease course of one patient. Many patients must take more than 15-20 pills every day. Physical appearance is negatively impacted by scars in the extremities and abdomen from vascular or peritoneal accesses for dialysis treatment. Immunosuppression following transplantation causes hair loss, gum hypertrophy and weight gain. Uncertainty about the future of their dialysis access or kidney graft, as well as restrictions of mobility and social life facilitate development of depression. Pain is common, due to complications (bone fractures, nerve lesions, gangrene, infections) but also to therapy (surgery, transcutaneous puncture every other day for hemodialysis access). Hemodialysis is frequently associated with hypotension, muscle cramps, thirst, anemia, mental changes, headache, vomiting and feeling drained; peritoneal dialysis with loss of appetite but nevertheless weight gain; in transplantation, immunosuppression causes muscle weakness, hirsutism, gout, tremors and mood swings. Hemodialysis also necessitates a number of time consuming treatments per week for several hours, with additional loss of time due to transport to and from in-center treatment.
Children and adolescents with kidney disease encounter growth retardation, and limitations in mobility and social and educational development which hamper psychological development. This may be worsened by time spent on dialysis which mostly takes place in the midst of adult fellow patients. Among older patients, frailty and muscle wasting (sarcopenia) are common.

Unemployment is frequent among adults with chronic diseases. For individuals with advanced chronic kidney disease and those living with dialysis or transplants, who frequently suffer from several simultaneous comorbidities, unemployment rates of up to 75% have been reported. This situation not only affects buying power but also lifestyle, self-image and mental health.

In summary, chronic kidney disease causes major and largely underestimated distress, which often resists to treatment, affects all age strata, modifies physical and emotional quality of life and limits socio-economic possibilities.

Far more frequent than assumed

Most lay people without direct exposure assume that kidney disease is limited to dialysis and transplantation. In fact, however, this group only constitutes the tip of the iceberg. The approximate ratio of individuals with chronic kidney disease not yet requiring dialysis or transplantation compared to those receiving dialysis or transplanted, is greater than 100 to 1. This ratio is higher in countries where access to dialysis or transplantation is limited by reliance on out of pocket payments, which restricts access for most who need it. In addition, chronic kidney disease is not a stand-alone condition but is part of a cluster of non-communicable and communicable diseases (figure 1), which during their evolution are frequently complicated by or further complicate kidney disease. The most well-known causes of chronic kidney disease are hypertension, cardio-vascular disease and diabetes, but cancer, liver and auto-immune diseases as well as various infections and pre-eclampsia are also linked to chronic kidney disease. People living with chronic diseases represent one third of the European adult population and contribute to a large majority of annual European fatalities. People surviving long enough with chronic disease have an increasing risk of developing either chronic kidney disease or acute kidney injury.
Chronic kidney disease is estimated to affect 700 to 850 million people worldwide, exceeding diabetes, chronic obstructive pulmonary disease and depression16,19,20. The 2017 Global Burden of Disease Study estimated prevalence of chronic kidney disease around 100 million Europeans with chronic kidney disease (among them 55.7 million people in EU-28 countries)16. In accordance to this, the Global Kidney Health Atlas of the International Society of Nephrology indicated its prevalence at 10.1\% for Western Europe (equaling the global average), and 13.3\% for Central and Eastern Europe21. However, although screening can easily be accomplished by two simple tests (serum creatinine and urinary albumin), a large majority of those affected remain unaware of their condition22-24, also precluding prevention of progression and complications which is far more cost-effective than treating more advanced stages. In addition, even in presence of objectivated pathological parameters conform with chronic kidney disease (decreased kidney filtration or increased urinary albumin), the condition id often overlooked by or underestimated by treating physicians.

The number of individuals with chronic kidney disease will continue to rise, mainly because of ageing of the population, but also due to intrinsic and not yet well-defined factors. With age, the incidence and prevalence of chronic kidney disease increase exponentially25,26, which is mirrored by the year-by-year increase of age in the dialysis population27. Also the risk of acute kidney injury increases with age and frailty, and older patients surviving acute kidney injury show a higher risk for progression to chronic kidney disease and often require maintenance dialysis in subsequent months or years28. Next to ageing, also nutrition, unhealthy lifestyles and environmental factors contribute29,30.

The numbers will further increase as advances in health care of underlying diseases successfully prolong survival and longevity thereby allowing chronic kidney disease to manifest. Some new therapies e.g. immunotherapy for cancer or cardiac interventions also carry inherent risks of kidney injury31,32. Increasing availability of kidney replacement therapy in lower income countries, will further increase the global population of people living with kidney failure, although these populations in lower income countries tend to be 1 or 2 decades younger than their European counterparts33.

Briefly, a large section of the general population is at risk of chronic kidney disease. However, the large majority of both lay and medical population is unaware of this risk.
Participation in screening, prevention and early treatment is inadequate and should urgently be improved, especially in high-risk populations.

A killer disease

Worldwide, chronic kidney disease mortality for 2017 was estimated by the Global Burden of Disease Study at 1.2 million (more than HIV and tuberculosis and equal to traffic accidents) and a further 1.4 million deaths from cardiovascular disease, were attributed to reduced kidney function\(^\text{16}\). Annual mortality of chronic kidney disease in Europe is estimated at close to 130,000\(^\text{16}\). Kidney disease rose to become the 10\(^{\text{th}}\) leading global cause of death in 2019, and the 8\(^{\text{th}}\) leading cause of death in high-income countries\(^\text{34}\), and, concerning, is projected to become the fifth leading cause of death by 2040, above all cancer types, Alzheimer, diabetes, HIV and tuberculosis\(^\text{35}\). Over the last 20 years mortality from chronic kidney disease has not improved, in contrast to most other chronic diseases\(^\text{16}\). The rise in chronic kidney disease as a cause of death may reflect the rising prevalence of chronic kidney disease globally related to population aging as well as improving access to diagnosis in lower income settings, but worringly may also reflect the relative lack of progress in innovation which is holding kidney disease back compared with other chronic diseases.

Increased mortality is not limited to advanced chronic kidney disease but starts rising progressively when kidney filtration function falls below 50\% of normal but also with normal filtration in the presence of albuminuria\(^\text{7,36}\). Additionally, presence of chronic kidney disease further increases mortality risk associated with other diseases like cardio-vascular disease or diabetes\(^\text{37}\). Premature death for most individuals with chronic kidney disease not yet in need of dialysis or transplantation is mainly due to high-risk comorbidities (cardio-vascular disease, cancer and infectious disease)\(^\text{7,8,38,39}\). Those reaching kidney replacement therapy, especially people living on dialysis, have similar or even worse survival chances than most people diagnosed with cancer\(^\text{40,41}\) (figure 2). Compared to mortality rates of frequent malignancies, 5-year mortality of hemodialysis patients is only exceeded by 5-year mortality of pancreas and lung cancer. Mortality from kidney failure also exceeds that of acute myocardial infarction, diabetes, chronic heart failure, and stroke\(^\text{41}\). Expected remaining lifetime for advanced chronic kidney disease vs. the general population is more than halved across all age strata\(^\text{41}\). For 20 to 24-year-old dialysis patients, life expectancy is decreased by
approximately 70% (~40 years), not a surprise if one considers that dialysis replaces only a small fraction of the normal function of the kidneys. For individuals of the same age with a kidney graft the approximate reduction in life expectancy is by 25% (~15 years less)\(^4\).

Briefly, an unacceptably high number of individuals die because of chronic kidney disease, and their survival chances are far below those of people without kidney failure, and comparable to or worse than people with other chronic diseases. These estimates do not include the burden of acute kidney injury, which in Europe alone is associated with an overall in-hospital mortality of more than 23\(^%\)\(^4\). In the setting of intensive care, mortality from acute kidney injury ranges up to 65\(^%\)\(^4\), depending on its severity\(^4\), and evolves into chronic kidney disease in about one third of its survivors\(^4\).

These data corroborate the ominous impact of kidney disease on the lives of affected patients. More importantly, this negative effect is continuing to worsen over time.

Chronic kidney disease burden in the EU

Chronic kidney disease affected more than 55 million people living in the EU and caused almost 130,000 deaths only in 2019 (table 2). In addition, prevalence was similar to that of most other types of chronic disease including diabetes, cancer and cardiovascular disease (figure 3, panel A). Considering age-standardized rates over 29 years, that take into account changes in both age and population structure, mortality of chronic kidney disease has increased in contrast to a large array of other communicable and non-communicable diseases (figure 3, panel B). Importantly these data do not include acute kidney injury which contributes additional mortality.

Expensive to treat

Kidney replacement therapy (dialysis or transplantation) comes at a high societal cost and the share of global healthcare cost spent on kidney replacement therapy is proportionally 10-20 times higher than the number of patients treated\(^4\). Costs will rise further due to the projected growth in patient numbers\(^4\).

The most used kidney replacement option, in-center hemodialysis, engenders the highest costs per patient\(^4\) and in Europe, yearly reimbursement per country reaches up to 80,000
€/patient49,50. Although in countries with a lower gross domestic product (GDP), dialysis consumes less in absolute amounts, a larger percentage of general health care budget is spent50, likely at the expense of other, more cost-effective health investments like screening and prevention51. Kidney transplantation is manifestly more cost-effective than dialysis at least in high-income countries52, but not everybody is an eligible transplant candidate, and the transplantation rate is lagging behind in several European countries53. Costs of home dialysis (peritoneal dialysis and home hemodialysis) are intermediate between in-center hemodialysis and kidney transplantation but these options are also underexploited in Europe54, in spite of patient preference55,56 and better quality of life57. Many European countries even offer no specific financial regulations for home hemodialysis50.

Individuals with chronic kidney disease who are not on dialysis or living with a functioning kidney transplant also represent a substantial source of expenditures, which largely is related to their higher number58,59. Costs per patient increase as chronic kidney disease becomes more severe60,61. Chronic kidney disease independently augments cost of many other chronic diseases by a factor of 2 or more37,62.

Finding data of aggregated cost for comparisons with other diseases is extremely difficult. Whereas aggregated costs in Europe are available for cancer and diabetes mellitus63,64, a similar assessment for chronic kidney disease necessitates extrapolation of data from several studies, taking into account costs of dialysis, transplantation, chronic kidney disease that is not dialyzed or transplanted, and indirect costs (hospitalization, primary care, mental care, transport etc.)50,53,58,65-68 (supplemental data). Adding these up, overall costs for chronic kidney disease are at least in the same range if not higher as those for cancer and diabetes (figure 4). Inclusion of costs related to acute kidney injury would further substantially increase these estimated costs69,70. These data do also not include costs of productivity loss due to premature death, sick leave and unemployment and indirect costs due to services provided by family and friends.

Transnational health-economic assessments based on different studies from different countries, that were necessary for the current comparison, might be skewed due to differences in population, environment, definitions and timing. However, a German study59 enables a comparison between expenditure for chronic kidney disease and that for cancer...
on a single-country basis. Here also, both expenditures were similar (25.5 billion € per year for cancer vs. 24.2 for chronic kidney disease), although the study did not include early chronic kidney disease stages and transplantation. These data thus corroborate our findings.

It is thus fair to assume that costs for kidney care are at least in the same range as those for cancer or diabetes. Unfortunately, aggregated European data for chronic kidney disease healthcare costs are lacking. Therefore, the creation of a registry of individual incidence and prevalence data for dialysis and transplantation covering all EU countries, also tracking costs and quality of care are needed. In addition, a comprehensive tracking system of prevalence of not dialyzed or transplanted chronic kidney disease and associated costs is desirable, especially for the later stages.

These costs could be reduced by promoting prevention and less costly therapeutic strategies (generic drugs, home dialysis), and reimbursement systems for real costs but also by pursuing more fair and transparent price setting of drugs and technical equipment.

Gaps in delivery of kidney care across Europe

The International Society of Nephrology (ISN) survey on country-level capacity for kidney care services was published in 2017 and 2019 as the first and second edition of the Global Kidney Health Atlas (ISN-GKHA). The Atlas highlighted significant barriers regarding delivery of optimal kidney care across countries and regions. Europe as a continent generally performed better than other parts of the world. However, there was a significant variability in workforce distribution (figure 5, supplemental figures 1 and 2) and other essential services, in particular significant limitations in surveillance systems and advocacy tools for both acute kidney injury and chronic kidney disease (figure 5). In addition, significant gaps were noted in the ability to fund services for patients with chronic kidney disease and provision of dialysis and transplantation, especially in Central and Eastern Europe (supplemental figures 3 and 4). Equitable funding services are pivotal to reduce the major health consequences of kidney disease.
An environmental challenge

All treatments for chronic kidney disease leave a considerable CO₂ footprint and cause substantial pollution due to frequent therapeutic interventions, hospitalizations, use of consumables, intake of large numbers of drugs requiring energy for production, and transport of goods and people. In addition, dialysis generates lots of plastic waste and consumes enormous amounts of water, corresponding to more than 169 billion liters per year worldwide. Only 35% of water consumption is used for dialysis per se whereas 65% is reverse osmosis reject water that goes directly to the drain despite being perfectly drinkable.

Climate changes in turn impact kidney health, by promoting risk factors for acute kidney injury (dehydration due to drought and heatwaves, infectious and parasitic diseases after floods (leptospirosis, dysentery, malaria), extension of the spreading areas of tropical diseases (dengue, malaria)), and problems with interruption of dialysis, as storms, floods and hurricanes gain in frequency and severity.

Thus, the ecologic burden of kidney disease is substantial while disturbed ecology in turn threatens kidney health. All of these aspects are in urgent need of solutions.

The COVID-19 crisis: stressing the need to focus on kidney disease

The current COVID-19 pandemic is emblematic of the failure or at least delay in global recognition of the importance of kidney disease. Initially, COVID-19 was seen as a pulmonary and infectious problem, while other chronic diseases remained under the radar for some time. The initial other conditions which came into focus as risk factors for severe disease were cardiovascular disease, diabetes and hypertension, all of which are prime causes of chronic kidney disease. The recognition that kidney disease (acute and chronic) is a leading risk factor for death came later. Ultimately, it appears that the population with chronic kidney disease, especially those living with dialysis or transplants, are among the highest risk groups for hospitalization and mortality. Large scale European data only became available late after the end of the first wave, explaining why for early data Europe had to rely on the US Centers of Disease Control (CDC) and China, as the CDC of the EU (ECDC) do not report on chronic diseases.
In view of the frequent cytokine storm in critically ill COVID-19 patients85, a substantial number of acute kidney injury cases were to be expected, but insight into the real epidemiology and the negative prognostic impact of acute kidney injury lagged behind, with again the first data coming from outside Europe86,87. The world was scaling up access to ventilators and developing triage guidelines for access to intensive care, but remained unprepared for the rapid demand for acute dialysis facilities88.

In addition, a large number of significantly invalidating problems affecting the patients with kidney disease often went unnoticed outside nephrology circles: 1) decreased transplantation rates from both deceased and living donors, due to a necessary focus shift of ICUs to COVID-care or with the intent to decrease infectious risk89,90, increased the risk of transplant candidates dying on the waiting list; 2) shortage of dialysis supplies and protective material88; 3) postponement of arterio-venous fistula creation and peritoneal dialysis catheter insertions as non-essential interventions91; 4) severe COVID-19 outbreaks in the closed communities of in-center hemodialysis units92, while patients on home dialysis were relatively protected93; and 5) heavy workload and infection risk for personnel in nephrology units with the potential of causing burn-out94.

An additional difficulty was created by the almost systematic exclusion of patients with chronic kidney disease from trials of drug therapies and vaccinations for COVID-19, forcing the nephrology community into off-label use, while remaining in the dark about therapeutic efficacy82,95,96. This is illustrative of a more global concern as individuals with chronic kidney disease are in general excluded from clinical studies. This is likely one of the reasons for the disappointing progress in fighting chronic kidney disease. The COVID-19 vaccine being almost exclusively available in higher income settings is also a matter of major concern97.

Briefly, the population with kidney disease was one of the most heavily affected risk groups by COVID-19, but the identification of this risk was delayed, partly due to insufficient awareness, attention and data capture.

Low investment in innovation

In view of the high burden of kidney disease and the paradoxical low investment in innovation98, a common effort to find novel solutions is a primary need for all concerned.
However, the basic concept of hemodialysis has surprisingly barely changed since the original prototype developed by Willem (Pim) Kolff in 1942. Likewise, all other kidney replacement options, as well as the pharmacological approaches to delay progression to kidney failure, have not progressed at the same pace as those for diseases like cancer, HIV, cardio-vascular disease or diabetes. The advent of sodium-glucose transporter-2 (SGLT2) inhibitors has been the first innovation to delay progression of chronic kidney disease in decades99,100, but many other therapies to modulate kidney function remain insufficiently explored.

It would be interesting to compare the EU efforts through research programs like Horizon 2020 or Horizon Europe which address kidney health as primary target to those addressing other diseases. Concerningly, kidney health does not even figure in the list of priority areas for EU health research and innovation101 (supplemental table). Indirect information offers reason for concern. In response to an editorial stressing the importance of research investment in accordance to patient needs102, global investment in HIV was more than 30 times higher than that for chronic diseases (including chronic kidney disease), despite the huge contrast in disability adjusted life years lost which were almost 20 times lower for HIV103. A UK analysis comparing research expenditure for cancer, coronary heart disease, Alzheimer and stroke versus their cost, showed a marked discrepancy, with more support for cancer compared to the other disorders104. According to the US National Institute of Health (NIH), despite much recent efforts (see below), kidney health still receives less research support than many other disorders105. It is clear that we do not suggest that there should be less investment in other diseases than chronic kidney disease, but we are convinced that more investment in chronic kidney disease is urgent.

In conclusion, in the case of kidney disease there is an imperative need to match cost and burden of disease to research and innovation investment. We also stress the need for transparency in European research funding allocation to allow comparison of investment in different diseases. In view of the current budgetary constraints, we also advocate that if therapies are the result of publicly funded research and innovation, those should not incur unreasonable societal costs or be bought and shelved98. Between 2005 and 2018, costs for oncologic drugs more than tripled63, although the price does not appear to be related to clinical benefit106. Especially the skyrocketing price of orphan drugs, has recently been a
major matter of concern107. More transparency and consistency of oversight is required to achieve fair pricing and equitable access to innovative therapies108.

Need for a change of paradigm

The most pressing actions required and the most alarming facts about kidney disease are summarized in table 3. All stakeholders (organizations, patients and professionals) should intensify advocacy about the urgent need to reduce the burden of kidney disease among broad layers of society, including administrators, regulators, policy makers, health care workers and the general population. Patients play a critical role by communicating their difficulties, distress and concerns and by defending their case.

In addition, in view of the staggering inertia in developing new therapeutic options for kidney disease (chronic and acute), we plead for a conceptual change in the paradigms regarding kidney therapies and research. The EU has a unique opportunity to play a leading and structuring role, motivating harmonized approaches among the member states. This approach is the only way to avoid complete dependency on other continents when it comes to therapeutic innovations.

In the US, joint action between the American Association of Kidney Patients (AAKP), the authorities and the nephrology professionals culminated in the Kidney Health Initiative (KHI), a public-private partnership to stimulate innovative drug and device development for kidney health.47,109 One of the outcomes was the signing in July 2019 of an executive order to fundamentally change clinical kidney care110, and also the call for innovation by the American Association for Kidney Patients (AAKP) during a “Decade of the KidneyTM”111.

Kidney disease and especially dialysis and transplantation have, next to health, important implications for economy, safety, ecology, education, research and innovation, which all are important EU competences112. Kidney health is linked to all EU-supported Sustainable Development Goals (SDGs) of the World Health Organization113-115. Consistent with the aims of the SDGs, the EU and the nephrology community have a responsibility to make people’s lives better. We advocate that the European Commission and Parliament and the EU member states take a leading role in fighting kidney disease, mirroring the successful EU achievements over the last 30 years in cancer116, especially because of the many parallels
between both conditions, as illustrated in this text. Unfortunate as it is, COVID-19 may serve as an eye-opener that a change of paradigm is needed.

ACKNOWLEDGEMENTS

The authors represent the following international organizations related to kidney health:

- European Kidney Health Alliance (EKHA) (RV, NL, FW)
- European Kidney Patient Federation (EKPF (DG)
- European Renal Association – European Dialysis and Transplant Association (ERA-EDTA) (CW, RG)
- European Dialysis and Transplantation Nurses Association – European Renal Care Association (EDTNA-ERCA) (EN)
- Dutch Kidney Foundation (DKF) (TO)
- International Society of Nephrology (ISN) (AB, VL)

We thank Sophanny Tiv, Kidney Health Research Group, University of Alberta, Canada, for help with the figures and Nico Starink, student at the University of British Columbia, Vancouver, Canada and Eveline Scheres, Transition Manager European Kidney Health Alliance and Buiten de Lijnen, The Netherlands for their inspiring suggestions.

CONFLICT OF INTEREST STATEMENT

CW: Honoraria for AstraZeneca, Bayer, Boehringer Ingelheim, GSK, Lilly and MSD. RV: Advisor to B. Braun Avitum AG, Baxter Healthcare, Kibow, Jafron, Debiotech, Fresenius Medical Care and the Dutch Kidney Foundation. All other authors declared no conflict of interest.
Table 1. Most important problems perceived by individuals with chronic kidney disease

Health-related quality of life (HRQOL)
- Frequent hospitalization and surgery
- Polypharmacy
- Physical appearance
- Uncertainty about future
- Time consuming therapies
- Immune deficiency
- Anemia

Functional
- Depression
- Anxiety
- Thirst
- Cognitive and physical dysfunction
- Frustration
- Restrained mobility
- Disturbed social life
- Burden to others
- Sexual dysfunction
- Frailty and sarcopenia
- Insomnia / Sleeplessness

Symptoms
- Pain
- Fatigue
- Sensory disturbances
- Lack of energy
- Muscle weakness
- Cramps
- Loss of appetite
- Taste and sleep disturbances
- Pruritus (itching)
- Restless legs
- Symptoms related to dialysis or transplantation

Health behavior & perception
- Social exclusion
- Dietary restraints and fluid intake restriction
- Incapacity for sport
- Transportation problems
- Limited travel possibilities
- Concerns about treatment unit (cleanliness, communication, quality of care)
- Unemployment, missed school
- Therapeutic costs
Table 2. Principal metrics of chronic kidney disease burden in the EU

<table>
<thead>
<tr>
<th>Metric</th>
<th>2019 values</th>
<th>Change between 1990 and 2019, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2019 values in all-ages rate</td>
<td>Change in all-ages rate</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>Rate, per 100,000 population</td>
</tr>
<tr>
<td>Prevalence</td>
<td>55,660,588 (52,242,530 to 59,161,862)</td>
<td>10,814.2 (10,150.1 to 11,494.4)</td>
</tr>
<tr>
<td>Mortality</td>
<td>126,377 (108,161 to 136,681)</td>
<td>24.6 (21.0 to 26.6)</td>
</tr>
</tbody>
</table>

All metrics presented as mean and 95% uncertainty interval. Change in all-ages rate considers differences between population size in 1990 and 2019, while change in age-standardized rate considers both differences in population size and population age structure. Source: Global Burden of Disease Study. Data available at: https://vizhub.healthdata.org/gbd-compare/.
Table 3. The most important actions required and the most imminent threats

ACTIONS REQUIRED

- Create awareness about kidney health
- Create harmonized pan-European early screening, diagnosis and prevention programs for kidney disease
- Include kidney health among EU health priorities and in all EU health communications
- Create registries for incidence and prevalence of dialysis and transplantation covering all EU countries
- Increase EU research investment in kidney disease to a level proportional to disease burden and cost
- Policy change towards sustainable kidney replacement options (home dialysis, transplantation)

MOST IMMINENT THREATS

- 10% of the general population suffers from chronic kidney disease and 30% is at risk
- Kidney disease impacts all levels of quality of life and imposes a major economic burden
- Complications of kidney disease kill most people before they reach dialysis or transplantation
- The 5-year survival of dialysis is lower than that of most cancers
- Only 20% of individuals on dialysis are waitlisted for kidney transplantation
- Mortality rates are increasing alarmingly and will continue to increase in the coming decades
CAPTIONS TO FIGURES

Figure 1: Relationship between other diseases and chronic kidney disease. The arrows indicate the direction of the interaction. With some diseases, the link is bidirectional. Several of these conditions have also mutual links on their own (e.g. diabetes mellitus and cardio-vascular disease) but this is not represented.

Figure 2: Percent 5-year survival of kidney replacement treatment modalities (red bars) (hemodialysis, peritoneal dialysis, transplantation after deceased donation and transplantation after living donation) or 5 years after the diagnosis of cancer (blue bars). Only malignancies with an incidence in excess of 3% of all cancers are illustrated. Orange bar: all cancers aggregated. Based on 2016 data40,41.

Figure 4: Comparison of aggregated annual healthcare costs for Europe of cancer (light blue), diabetes mellitus (brown) and chronic kidney disease. Costs of chronic kidney disease are a composite of early chronic kidney disease (stages 1-2 not on dialysis or living with a functioning transplant - grey), more advanced stages of chronic kidney disease (stages 3-5 not on dialysis or living with a functioning transplant - orange), transplantation (red) and dialysis (dark blue). Sources and approaches for calculation: see supplemental data.

Figure 5: Country-level scorecard on availability of kidney care services across Europe comparing data from the International Society of Nephrology Global Kidney Health Atlas for the year 2019. Central and Eastern Europe (above) and Western Europe (below). Available services: green; unavailable services: red; N/A: not available. Funding for medications: public funding that is free at the point of delivery exclusive of private medical insurance or other sources. Advocacy group: organizations or foundations advocating the case of kidney disease at national or regional level. Nephrology workforce: total number of nephrologists and trainees in nephrology in a country per million population. Source: Global Kidney Health Atlas – https://www.theisn.org/initiatives/global-kidney-health-atlas/.
REFERENCES

1. https://www.youtube.com/watch?v=fP-cmDZy7ac.
21. https://www.theisn.org/focus/ckd?gclid=CjwKCAjwsanSBRAOEiwALzomX_3BfsC4QPZXcsISHUVOSM-90j2_FXANANQs6ng2Dgiel_T5inLBoC0zYQAy6D_BwE#health-atlas.

http://mc.manuscriptcentral.com/ckj

http://mc.manuscriptcentral.com/ckj

84. https://www.cdc.gov/mmwr/volumes/69/wr/mm6913e2.htm.

96. https://britishrenal.us13.list-manage.com/track/click?u=ba16832efb8ed279407c624e8&id=8b21384214&e=7c5781d482.

Cardiovascular disease
Infectious disease
Pre-eclampsia
Pregnancy
Liver disease
Diabetes mellitus
Hypertension
Obesity
Auto-immune disease
Cancer

CKD

111x255mm (300 x 300 DPI)
Prevalence of selected diseases in 2019 (million persons)

Cirrhosis and other chronic liver disorders
Mental disorders
Neoplasms
Cardiovascular disease
Chronic kidney disease
Chronic respiratory disease
Alzheimer’s disease and other dementias
Neonatal disorders
HIV/AIDS

Change in age-standardised mortality rate between 1990 and 2019 (%)

Chronic kidney disease +10.5%
Alzheimer’s disease and other dementias
Neoplasms
Chronic respiratory disease
Diabetes mellitus
Cirrhosis and other chronic liver disorders
Cardiovascular disease
Neonatal disorders
HIV/AIDS

0 30 60 90
Prevalence of selected diseases in 2019 (million persons)

A

B

Cirrhosis and other chronic liver disorders
Mental disorders
Neoplasms
Cardiovascular disease
Chronic kidney disease
Chronic respiratory disease
Alzheimer’s disease and other dementias
Neonatal disorders
HIV/AIDS

Downloaded from https://academic.oup.com/ckj/advance-article/doi/10.1093/ckj/sfab070/6243030 by guest on 23 April 2021
No dialysis/transplant
Early stage chronic kidney disease

No dialysis/transplant
Advanced stage chronic kidney disease

Transplantation

Dialysis

Yearly cost (billions of euros)

Cancer Diabetes Chronic kidney disease
Country level scorecard on kidney care services, 2019

<table>
<thead>
<tr>
<th>Countries</th>
<th>Dialysis, transplantation or conservative care</th>
<th>Funding for medications</th>
<th>Availability and distribution of registry</th>
<th>Advocacy group</th>
<th>Nephrology workforce (PMP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hemodialysis</td>
<td>Peritoneal dialysis</td>
<td>Kidney transplantation</td>
<td>Conservative care</td>
<td>Dialysis medications</td>
</tr>
<tr>
<td>Eastern and Central Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosovo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montenegro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serbia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liechtenstein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nephrologist density
- < 1.2 PMP
- 1.2–10.0 PMP
- 10.1–22.9 PMP
- > 22.9 PMP

Nephrology trainees density
- < 0.3 PMP
- 0.3–1.4 PMP
- 1.5–3.7 PMP
- > 3.7 PMP

<table>
<thead>
<tr>
<th>Nephrologist density</th>
<th>Nephrology trainees density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>