
12 P h a r m a c e u t i c a l E n g i n e e r i n g

GAMP® CONSIDERATIONS
When Relying on
Open-Source Software
By James Canterbury and Petch Ashida Druar

This article aims to refresh information on
open-source software (OSS) within regulated
computerized systems that was fi rst discussed
in an article in May-June 2010 Pharmaceutical
Engineering®. The adoption of OSS advanced
since then, and the article explores the
importance of recognizing when an organization
is relying on OSS and the benefi ts and risks this
brings from a GAMP® 5 perspective.

Reliance on OSS has become proli� c across today’s information
technology (IT) environments. Whether it is the use of well-
known operating platforms like Linux or statistical analysis
tools such as R or leveraging available JavaScript libraries to

build custom applications, OSS has permeated most enterprises,
including pharmaceutical/biopharmaceutical companies. When
relying on OSS within a regulated computerized system, it is impor-
tant to understand the method in which that software is developed
and maintained so that critical thinking can be applied when deter-
mining the level of risk and mitigation strategies.

In the May-June 2010 issue of Pharmaceutical Engineering®, the
article “Guide for Using Open Source Software (OSS) in Regulated
Industries Based on GAMP” detailed the various support models
for maintaining a GxP environment where OSS is used [1]. OSS is
sometimes referred to as free/ libre/open-source sof tware
(FLOSS) or free and open source software (FOSS), which attempts
to distinguish between the values behind developing OSS and
the licensing models for distributing it [2]. While important to
understand, the primary concern from a GxP perspective is the
development and maintenance of this software, and we will sim-
ply refer to it as OSS in this article.

COVER STORY GAMP ®

This article aims to refresh Pharmaceutical Engineering® readers
on the topic and build upon the foundation set in the 2010 article
by highlighting several areas that have advanced since the publi-
cation of that article. Speci� cally, we will cover the importance of
recognizing when an organization is relying on OSS and the bene-
� ts and risks this brings from a GAMP Category 5 perspective (see
Figure 1). The large majority of OSS today would be classi� ed as
GAMP Category 1 software (i.e., embedded software components,
libraries, development tools, and operating systems).

Like other infrastructure components, the inherent level of GxP
risk is low; however, with increasingly connected systems and the
rise in cybersecurity attacks (which often exploit vulnerabilities in
GAMP Category 1 software to gain unauthorized access to networks
and system resources), it is increasingly important for the GxP
practitioner to have a solid understanding of what they are relying
on and to plan their risk-based validation approach accordingly.

When we look toward the future, there is a strong trend for
smaller � t-for-purpose applications that often run on broader,
decentralized networks. In a GxP environment, these special-
ized systems could be GAMP Category 4 or 5 software and would
carry a higher risk. Examples range from applications for man-
aging clinical trials to post-market surveillance. These types of
applications rely extensively on OSS, especially if they run on
public networks.

OSS CHANGES
While a lot has recently changed in IT, the principles of GAMP set
forth in the 2010 article still hold true for most companies that
leverage OSS. However, there have been signi� cant developments
in the way communities organize to develop and maintain OSS. It
is this collaborative development process and the freedom for
anyone to access the source code to study, use, or modify it as they
see fit that we must consider when using it to meet regulatory
requirements.

m a r c h /a p r i l 2 0 2 2 1 3

One driver for the increased adoption of OSS is its availability
and reusability: developers � nd it easier and faster to build from a
component they already know works. A software package is a col-
lection of components that developers pull together to deliver the
functionality that users need. By referencing predeveloped com-
ponents, developers can develop faster and be more innovative.

For example, a few years ago, if you were building an in-house
application using JavaScript and your users wanted the ability to
left justify their comments in a text box (i.e., align them with the
left margin), you would probably use the then-popular “left-pad”
package available from the package manager company NPM
(www.npmjs.com/package/left-pad) by simply including “$ npm
install left-pad” in your build. Now your home-built, possibly pro-
prietary, software is reliant on an open-source package. (Note: As
of this writing, left-pad has been deprecated, but is still a relevant
example).

In 2020, the Synopsys Cybersecurity Research Center (CyRC)
published their annual Open Source Security and Risk Analysis
report (OSSRA) [3] and found that of the 1,253 applications audited,
99% contained open-source components. In fact, as pointed out in
a 2019 TechCrunch article [4], it is actually software developers,
employed by companies, who often discover and integrate OSS
components into their current projects. The article states,

Once ‘infected’ by open-source software, these projects
work their way through the development cycles of organ-
izations from design, to prototyping, to development, to
integration and testing, to staging, and � nally to produc-
tion. By the time the open-source software gets to
production, it is rarely, if ever, displaced.

These references to components are often multiple layers deep,
i.e., where one component refers to a library that is made up of
other components that refer to libraries.

It is similar to the old anecdote of in� nite regress where it was
postulated that our world rested on the back of a giant turtle.
When challenged to describe what the turtle stood on, the answer
was an even larger turtle, with the ultimate conclusion that it was
turtles all the way down. With open-source components and refer-
ence libraries, it is likewise “turtles all the way down” [5].

Software companies, realizing that this is inevitable, have
begun to embrace the use of OSS. A review of the “commits” (the
term used when an update to code is posted) between 2011 and
2020 shows that just behind software companies dedicated to
open-source development (such as RedHat and Liferay), are famil-
iar names such as Google and Microsoft [6]. These same corporate
entities often provide the grants that support the foundations that
manage the code base of large open-source projects. Even SAP,
considered a highly proprietary software, has an “open source
program o� ce” as part of the Linux Foundation [7].

It is no longer a question of if your organization uses OSS; it is a
question of “do you understand where it is being used?” The level
of oversight and control over these software components have
typically been low and should be given closer examination, espe-
cially by regulated companies.

OSS allows developers to innovate faster and deliver software
with features that capitalize on the collective thinking and experi-
ence of hundreds of thousands of developers worldwide. This gen-
erally leads to more secure software, more frequent updates, and
enhanced modernizations, but to reap these bene� ts, you need to
keep it up to date.

Figure 1: Comparison of closed- vs. open-source software.

ispe.orgConnecting Pharmaceutical Knowledge

Software
Vendor

Developer
Community

Proprietary
(closed source)

Open Source

Ø Vendor developed
Ø Pushed updates
Ø Pay vendor for

new/custom features
Ø Restricted use

Ø Community developed
Ø Monitor for changes
Ø Suggest new features

to community
Ø Free to use

IT Organization

Business Users

Service
Level

Agreement

Internal or
contracted
support

1 4 P h a r m a c e u t i c a l E n g i n e e r i n g

Cultural movements aside, it is undeniable that OSS has
become more prevalent, and it extends far beyond installing a
Linux operating system on your server or using the Libre O� ce
Suite because you are looking for some free software. In fact, while
companies will still cite cost as a driver for choosing OSS, many are
realizing that this is not the primary factor; and, as the 2010 article
pointed out, “free” software is rarely free.

 The decision to use OSS is not always just about cost; it can also
be strategic. Because OSS does not come from a proprietary soft-
ware provider, many companies select OSS so they have the option
to switch to different software when needed. A 2020 survey by
Tidelift showed 40% of respondents stated “avoiding vendor
lock-in” as a primary driver for choosing OSS [8].

EMERGING TECHNOLOGY AND THE ROLE OF
OSS GOVERNANCE
One emerging draw to OSS is the awakening of distributed and
decentralized systems that operate to form a shared network
under a common set of rules. These systems are commonly known
as blockchains, but blockchain is only one form of this rapidly
evolving class of technology.

The heart of these shared networks are their protocols, or the
core code that dictates the rules by which the network functions. A
public blockchain is owned by all the members who participate in it,
and it is open for anyone to join; therefore, the protocol is necessarily
open source. This is not a new concept; we have been living with
open-source protocols for years, but they have become entrenched
in our everyday lives, even if we do not realize it.

For example, if you are reading this article online, you are lever-
aging the TCP/IP protocol to make sure your request to view this
article in your browser made it to the right computer. The di� erence
is that TCP/IP was created in 1973 long before there was a large
internet user base, and it became established as the de facto protocol
for transmission as the internet we know today was being built.
Changes to TCP/IP are today governed by the Internet Engineering
Task Force, a nonpro� t, but arguably centralized, authority for the
protocol. In a public blockchain, anyone (you do not even have to be
a participant) can propose changes, and if the majority of the partic-
ipants accept the change, it becomes part of the code base. This has
drastic implications on how we think about system governance.

While public blockchains may take open-source governance to
the extreme, most emerging technologies make heavy use of this
development method, even if they later lock down their algorithms
in proprietary software. For example, some of the most robust
frameworks and tool sets for machine learning (ML) algorithms,
which often lead to artificial intelligence (AI) applications, are
built using open-source tool kits such as TensorFlow (the open-
source deep learning libraries supported by Google) and the Scikit-
learn library of classification, regression, and dimensionality
reduction algorithms [9].

Some of these same libraries are leveraged in more established
software such as R, which is a free software environment for statis-
tical computing and graphics [10]. Even if a company is not using

the R runtime environment, they are likely using it as a plug-in in
their statistical reporting or visualization applications (which
may be proprietary). R is governed by The R Foundation, a group of
volunteers who help decide which features are needed and how to
fix any bugs that are reported by the user community, which is
very broad. In 2021, there were three signi� cant version releases,
each addressing multiple issues and adding/changing features,
some of which your organization may rely on for making impor-
tant statistical-based decisions.

In the preceding examples, there is a mix of governance mod-
els. One is used for distributed software, such as blockchain,
where you may be leveraging a network in which you cannot con-
trol the changes. And another is used for locally installed applica-
tions (such as R) where you may not know that your implementa-
tion has become outdated. And in bet ween, you have ML
algorithms, where the program itself may determine when it is
best to update.

A BRIEF GLIMPSE INTO THE OSS MINDSET
It is often easiest to think of processes in an analog context. In a
post on Opensource.com, Bryan Behrenshausen of Red Hat
described OSS like baking a loaf of bread and sharing it with a
friend [11]. But instead of just giving them the bread, you give them
the recipe as well. This way, if they want to check the ingredients,
they can see exactly what went into the bread, and if they noticed
something did not taste quite right, they could let you know or
even suggest how to � x the recipe. Or better yet, if they wanted to
modify the recipe to suit their own taste, they are welcome to do so
and can even share their version with others. Open source lets you
blur the line between chefs, who create something new, and cooks,
who follow instructions, by letting the cook talk directly to, or
even become, the chef.

This communication between everyone is what fuels the
“open-source community” (see Figure 2). Online collaboration
tools have merged with social media to create a very responsive
and adaptive approach to software development. A great example
of this is GitHub, which is the most popular code-hosting platform
in the world. It works by allowing a developer to create a new
repository (or “repo”) for a project they are working on. The repo
can contain anything: folders, files, images, datasets. But most
important, it should contain a README � le that explains what the
project is about.

This initial creation becomes the main branch of their project
and is considered the de� nitive branch, or the source code of the
project. If you, or anyone else for that matter, want to make a
change, you create a branch off the main branch by creating a
copy of it at that point in time. You then make your edits to the
copied branch and commit your changes. If you think your
changes are worthy of being incorporated into the main branch,
you open a “pull request” for someone to review and pull your
contribution into the main branch. This is where the collabora-
tion begins; as soon as you submit a pull request, a side-by-side
comparison of your code is created against the main branch and a

COVER STORY GAMP ®

m a r c h /a p r i l 2 0 2 2 15

discussion is started. Here, various developers who are interested
in your project will comment on your updates (depending on the
size of the community, this can take some time). If a consensus is
reached that the changes should be accepted, someone with
access rights to the main branch can merge the pull request to
change the main branch with your updates. At this point, you can
delete your branch because the main has now been updated
(don’t worry: GitHub keeps an extensive history of all branches,
pulls, and merges). You can even require a certain number of
reviews from other developers prior to allowing a branch to be
merged.

Once the merge request has been completed, a new version of
the main branch is available for anyone to download and use. If
your project has been widely distributed, an announcement is
generally made about the new version available. Occasionally a
consensus cannot be reached about whether an update should be
merged not. In this case a “fork” of the main branch lives on as a
separate version. From an end-user standpoint, this is important
because you may have to decide if you want to stay with the main
branch or go with the fork. If over time, one becomes more popular
than the other, or if you simply do not apply updates as new pull
requests are merged, you may wind up with outdated and unsup-
ported code. Worse yet, if you do not apply updates that addressed
security weaknesses, you will be left with vulnerabilities in your
applications.

What is fascinating about this process is that anyone—literally
anyone with access to the internet—can view an open-source
project and request changes to it. You do not have to be a developer,
or even understand the source code: you can follow the commu-
nity and suggest features and use cases that you think would be
particularly good to include. If enough people agree with you, your
request can be picked up by a developer and included in the next
pull request.

This results in a strange form of user requirements, especially
if you are a GxP practitioner used to seeing formal user require-
ments or design specifications. In an open-source community,
these requirements may be captured in snippets of online dialogs
or in REA DME documents. As t he prev iously referenced
TechCrunch article puts it,

The community also ends up effectively being the
‘product manager’ for these projects. It asks for
enhancements and improvements; it points out the
shortcomings of the software. The feature requests are
not in a product requirements document, but on GitHub,
comments threads, and Hacker News. And, if an open-
source project diligently responds to the community, it
will shape itself to the features and capabilities that
developers want [4].

Most source code updates, especially those that are considered
“components,” such as the left-pad example, are handled with
package managers, which let the developers bundle up their
source code and push it out to anyone who is using it. Generally,
developers consider it best practice to regularly install all updates
before working in their environment so that they can make sure
they have the latest version. Because features are added and
updates are made frequently, this normally works well…until it
does not. There is always the risk that the component you have
been relying on might suddenly not be available. This can cause a
developer’s new build to fail and create disruptions while you
scramble to � nd a replacement component.

Take the left-pad example we have been using throughout this
article. In 2016, the developer who wrote and supported that code
was not happy with the decisions made by management at NPM,
Inc., the company that maintains the npm registry. In a � t of rage,
he deleted all of his projects on NPM, including left-pad—which,
according to an article on Ars Technica, “ended with JavaScript
developers around the world crying out in frustration as hundreds
of projects suddenly stopped working—their code failing because
of broken dependencies on modules” [13].

In true open-source fashion, the community was able to rally
around this and replace the repo with comparable code in about 2
hours and the software builds were able to continue. But the point
is that dependencies on that one piece of code had become proli� c
and, in this case, a single developer was able to a� ect hundreds of
projects with one action. It should be noted that this example is
extremely rare and most OSS today repositories have redundancy
built in to avoid this.

Figure 2: Visualization of collaborative development process [12].

Commit changes Submit pull request Discuss proposed changes

16 P h a r m a c e u t i c a l E n g i n e e r i n g

IMPACT ON PHARMA u Create an OSS catalog. Build an inventory of the OSS func-
tionality that is in use within your IT environment to help
define a pragmatic governance model and to better under-
stand where you may have risks.

 u Have con� dence in the size and sustainability of the OSS
community. Newer software may be more nimble and have
better features, but if the community does not have staying
power, you may not have support for your system in the future.

 u Look for the use of development standards and good docu-
mentation. Just because the source code is available for the
public to review does not mean it is always developed well.
Reading the documentation is usually a good indicator of the
quality of the software development cycle.

 u Know what version you are using. If you are using a local
distribution of the software, you must verify that your copy
does, in fact, match the version you are intending to install.
Oftentimes, OSS will have several implementation options
designed to accommodate a broad range of users and plat-
forms. You also need to make sure you are downloading from
a reputable source (preferably directly from the repo) and take
steps to ensure the code was not altered along the way (this is
often done with a checksum).

 u Understand the governance model. Be comfortable with the
governance model used by IT, or the service provider, for
updates and patches. If you are implementing (or connecting
to) a decentralized and distributed software (such as a public
blockchain), make sure that you are comfortable with the
governance model for that network and have a plan in place
should that network become compromised (i.e., run your own
archive node so that in the worst-case scenario, you can
retrieve the transactions you have posted on-chain).

 u Keep up to date. Make sure your SDLC process (for both you
and your software vendors) requires regular patches and
updates. Vulnerabilities are often exposed in software using
outdated versions of OSS libraries. Unless you are compiling
the program yourself, this is not always apparent.

 u Participate. Open source works best when there is a broad
community, so the best way to get new features that will make
your business better is to ask for them. This requires getting
involved in the forums and chats. Having this connectivity
become part of your IT culture will help ensure that you stay in
front of any major changes/disruptions. Regulated companies
may consider putting procedures in place for employee contri-
butions to OSS communities, to protect the regulated company
from unintended risk to their intellectual property rights or
con� ict with business objectives.

CONCLUSION
The nature of developing software will continue to evolve as
consumers ask for smaller � t-for-purpose applications and software
providers push out more frequent updates to keep in front of vulner-
abilities. In some cases, code is now being designed to operate
privately on public networks, leading us into a world of trusted

COVER STORY GAMP ®

Other than being an interesting glimpse into the world of
open=source development, why does this matter for a pharmaceu-
tical/biopharmaceutical companies? In a GxP environment, we
rely on software day in and day out to perform as designed. It is
always best practice to keep your company’s code base running on
the latest release (not the beta version, but the latest stable release).
This helps ensure that any security � aws have been addressed and
keeps your software compatible with future releases.

However, this comes at the risk of the code suddenly not oper-
ating as it used to (because open source can change) or it could lead
to disruptions if the components being updated are no longer sup-
ported. Just like with any patch management, a good amount of
due diligence needs to be taken when applying updates. But unlike
commercial software, there is not always a vendor (or even docu-
mentation) to walk you through each update.

As the 2010 Pharmaceutical Engineering® article implied, either
your IT becomes part of the open-source community, contributing
to future releases, reporting bugs, and understanding the updates at
a granular level, or you hire a third party to do this on your behalf.
Whichever path is taken, the pharmaceutical manufacturer is
responsible for maintaining the compliant and validated state of
their GxP computer systems. And so GAMP plays an important role
not only in the initial veri� cation of software, but also in the ongo-
ing veri� cation of the environment as it is patched and updated. In
the case of leveraging software as a service or vendor-hosted appli-
cations, it is important to understand their software development
life cycle (SDLC) process for keeping up with the latest releases; it is
often difficult (and risky) to apply a critical security patch if the
codebase is already several versions behind.

RISKS AND CONSIDERATIONS FOR RELYING ON OSS IN
REGULATED ENVIRONMENTS
In summary, the technical and project risks from 2010 still exist
today. However, the use of OSS by pharmaceutical/biopharmaceu-
tical manufacturers has become much more mainstream, and the
level of complexity in dependencies has increased. When evaluat-
ing the overall risk to regulated systems, it is important to think
like a developer. The diligence required to maintain an e� ective
current state needs to be built into your overall IT culture. Relying
on a third-party integrator to do this may alleviate some of the
operational stresses, but it does not displace the risks involved.
And to apply critical thinking to evaluate those risks, you need to
understand what you are relying on.

This list summarizes items to consider and provides examples
of good practice:
 u Understand what software you are relying on. Even if you

are purchasing commercial software, it likely has components
of OSS incorporated into it. It is becoming more common to
request a software bill of materials (SBOM) when evaluating
new commercial software or validating in-house developed
systems. Perform a risk assessment of the specific functions
you are relying on.

m a r c h /a p r i l 2 0 2 2 1 7

algorithms, zero knowledge proofs, and formal veri� cation—many
of these advancements are developed under an OSS license. It’s
likely that reliance on OSS will continue to grow; therefore, it is
bene� cial to have a strategy in place for relying on OSS within GxP
systems.

9. Gavrilova, Y. “18 Machine Learning Tools That You Can’t Go Without.” Serokell. 24 June 2020.
https://serokell.io/blog/popular-machine-learning-tools

10. The R Foundation. https://www.r-project.org/
11. Behrenshausen, B. “An Open Source Analogy: Open Source Is Like Sharing a Recipe.” 1

June 2012. Open Source.https://opensource.com/life/12/6/open-source-like-sharing-recipe
12. Github guides (n.d.). GitHub. https://guides.github.com/activities/hello-world/
13. Gallagher, S. “Rage-Quit: Coder Unpublished 17 Lines of JavaScript and ̀ Broke the Internet.’”

24 March 2016. Arstechnica.com. https://arstechnica.com/information-technology/2016/03/
rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/

14. Stasticts and Data.Top Companies Contributed to Open Source – 2011/2021. https://
statisticsanddata.org/data/top-companies-contributing-to-open-source-2011-2020/

About the authors
James Canterbury is a Principal in EY’s Blockchain Consulting practice, where he focuses on
applying decentralized networks to improve transparency and trust within supply chains. His
background is in implementing pharmaceutical product quality and compliance systems and
helping his clients operate within regulated IT environments. James is an advocate for standards
within emerging technology and is a contributor to several open-source development projects.
He holds a BS in industrial engineering from Penn State University and is a Certifi ed Information
Systems Auditor. James is currently Co-Chair of ISPE’s Global GAMP Steering Committee and
leads the GAMP blockchain special interest group. He has been an ISPE member since 2015.
Petch Ashida Druar is Manager for Computer Systems Quality Assurance in R&D Global Quality
Assurance at GlaxoSmithKline, based in North Carolina. She joined the IT group in 2002, working
primarily on computer systems validation projects supporting GCP and GLP business processes.
Since moving to CSQA in 2012, Petch has audited external suppliers and internal computer systems
for compliance with regulatory expectations for GxP computer systems. Petch received her BS
in electronic and electrical engineering from the University of Birmingham, UK, and her MS and
engineer’s degree in engineering economic systems and operations research from Stanford
University. She has been a member of ISPE since 2015 and is a contributing author to the ISPE
GAMP® Good Practice Guide: Data Integrity by Design.

WATER TECHNOLOGIES

See how far you can take your pharma lab.
Find out more: www.elgalabwater.com
PURELAB® Pharma Compliance – Simply transparent.

Meets GxP regulatory requirements:
• CFR21 Part II electronic signature enabled
• USP 643 TOC suitability test compliant
• USP 645 purity accuracy compliant

Be clearly
compliant
The new PURELAB® Pharma Compliance
lab water purification system is configured
specifically for your pharma lab.

Elga Veolia simply transparent campaign print ads_v2_alt layout.indd 1Elga Veolia simply transparent campaign print ads_v2_alt layout.indd 1 26/01/2022 12:29:4726/01/2022 12:29:47

References
1. Kaufmann, M., M. Ciolkowski, A. Hengstberger, T. Jostes, E. Kruschitz, T. Makait, K. H.

Menges, S. Münch, and M. Soto. “Guide for Using Open Source Software (OSS) in Regulated
Industries Based on GAMP.” Pharmaceutical Engineering 30, no. 3 (2010). https://ispe.org/
pharmaceutical-engineering/may-june-2010

2. Peterson, S. K. “What’s the Di� erence between Open Source Software and Free Software.”
Opensource.com. 7 November 2017. https://opensource.com/article/17/11/open-source-
or-free-software

3. Synopsys Cybersecurity Research Center. 2020 Open Source Security and Risk Analysis Report.
Synopsis, Inc. 2020. https://www.synopsys.com/software-integrity/resources/analyst-reports/
open-source-security-risk-analysis.html

4. Volpi, M. “How Open-Source Software Took Over the World.” 12 January 2019. TechCrunch.
https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-world/

5. Jackson, M. “Best Practices.” GitGuardian. 5 November 2021. https://blog.gitguardian.com/
supply-chain-attack-6-steps-to-harden-your-supply-chain/

6. Oberhaus, D. “The Internet Was Built on the Free Labor of Open Source Developers. Is That
Sustainable?” Vice. 14 February 2019. https://www.vice.com/en/article/43zak3/the-internet-
was-built-on-the-free-labor-of-open-source-developers-is-that-sustainable

7. Baker, P. “SAP: One of Open Source’s Best Kept Secrets.” Linux Foundation. 20 December
2020. www.linuxfoundation.org/blog/2019/01/sap-one-of-open-sources-best-kept-secrets

8. Grams, C. “4 Reasons Businesses Adopted Open Source in 2020.” Opensource.com. 22 December
2020. https://opensource.com/article/20/12/open-source-survey

