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Artificial intelligence (Al) has become one of

the supporting pillars for digitalization in many
areas of the business world. The pharmaceutical
industry and its GxP-regulated areas also

want to use Al in a beneficial way. Several
pharmaceutical companies are currently running
digital pilots, but only a small fraction follows

a systematic approach for the digitalization of
their operations [1] and validation. However, the
assurance of integrity and quality of outputs via
computerized system validation is essential for
applications in GxP environments. If validation

is not considered from the beginning, there is
considerable risk for Al-based digital pilots to
get stuck in the pilot phase and not move on

to operations.

here is no specific regulatory guidance for the validation of

Al applications that defines how to handle the specific char-

acteristics of Al The first milestone was the description of

the importance and implications of data and data integrity
onthe software development life cycle and the process outcomes [2].
No life-science-specific classification is available for Al There are
currently only local, preliminary, general Al classifications that
were recently published [3].

This lack of a validation concept can be seen as the greatest
hurdle for successfully continuing digital products after the pilot
phase. Nevertheless, Alvalidation concepts are being discussed by
regulatory bodies, and first attempts at defining regulatory guid-
ance have been undertaken. For example, in 2019 the US Food and
Drug Administration published a draft guidance paper on the use
of Al as part of software as a medical device [4], which demon-
strates that the regulatory bodies have a positive attitude toward
the application of Alin the regulated industries.
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Figure 1: Maturity model.
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INTRODUCING A MATURITY MODEL

As part of our general effort to develop industry-specific guidance
for the validation of applications that consider the characteristics
of AI, the ISPE D/A/CH (Germany, Austria, and Switzerland)
Affiliate Working Group on AI Validation recently defined an
industry-specific Al maturity model. In general, we see the matu-
rity model as the first step and the basis for developing further risk
assessment and quality assurance activities. By Al system matu-
rity, we mean the extent to which an Al system can take control
and evolvebased onitsownmechanisms, subjecttothe constraints
imposed on the system in the form of user or regulatory
requirements.



Table 1: Control design stages.

Seget |Swge2 Stge3 __Stwes _____Stwes

The system is used in parallel to the ~ The system is executing a GxP The system is executing the process ~ The system is running automatically ~ The system is running automatically
normal GxP processes process automatically but mustbe ~ automatically but can be revised by and controls itself and corrects itself
actively approved by the operator ~  the operator

Table 2: Autonomy stages.

T T S S VS C TS

Fixed algorithms are used The system is used in a Updates are performed after ~ Updates are performed by The system is fully The system is fully
(No machine learning) locked state. Updates indication by the system with  automated retraining witha  automated and learns automated and self-

are performed by manual a manual retraining manual verification step independently with a determines its task
retraining with new training quantifiable optimization competency and strategy
data sets goal

Our maturity model is based on the control design, which is
the capability of the system to take over controls that safeguard
product quality and patient safety. It is also based on the autonomy
of the system, which describes the feasibility of automatically
performing updates and thereby facilitating improvements.

We think that the control design and the autonomy of an Al
application cover critical dimensions in judging the application’s
ability to run in a GxP environment. We thus define maturity here
in a two-dimensional matrix (see Figure 1) spanned by control
design and autonomy, and propose that the defined AI maturity
can be used to identify the extent of validation activities.

Thisarticle was developed as part ofalargerinitiative regarding
Alvalidation. The maturity model is the first step. In fact, many
other topics such as data management or risk assessment have to be
considered in the validation of Al The basic maturity model will
have aninfluence on the risk assessment of the Al application.

Inthis article, we describe in detail which validation activities
are necessary for Al systems with different control mechanisms
and the varying degrees of autonomy that need to be investigated
via critical thinking. The goal was to find clusters with similar
validation needs across the entire area (see Figure 1) defined via
the autonomy and control design dimensions.

CONTROL DESIGN

Table 1 shows the five stages of the control design.

In Stage 1, the applications run in parallel to GxP processes and
have no direct influence on decisions that can impact data integ-
rity, product quality, or patient safety. This includes applications
that run in the product-critical environment with actual data. The
application may display recommendations to the operators. GxP-
relevant information can be collected, and pilots for proof of con-
cept are developed in this stage.

In Stage 2, an application runs the process automatically but
must be actively approved by the operator. If the application calcu-
lates more than one result, the operator should be able to select one

of them. In terms of a 4-eye principle (i.e., independent suggestion
for action on the one hand and check on the other hand), the system
takes over one pair of eyes. It creates GxP-critical outputs that have
to be accepted by a human operator. An example for a Stage 2 appli-
cation would be a natural language generation application creating
areport that has to be approved by an operator.

In Stage 3, the system runs the process automatically but can
be interrupted and revised by the operator. In this stage, the oper-
ator should be able to influence the system output during opera-
tion, such as deciding to override an output provided by the Al
application. A practical example would be to manually interrupta
process that was started automatically by an Al application.

In Stage 4, the system runs automatically and controls itself.
Technically, this can be realized by a confidence area, where a sys-
tem can automatically control whether the input and output
parameters are within the historical data range. If the input data
are clearly outside a defined range, the system stops operation and
requests input from the human operator. If the output data are of
low confidence, retraining with new data should be requested.

In Stage 5, the system runs automatically and corrects itself, so
it not only controls the outputs but also initiates changes in the
weighting of variables or by acquiring new data to generate out-
puts with a defined value of certainty.

To our knowledge, there are currently no systems in pharma-
ceutical production at level 4 or 5. Nevertheless, with more indus-
try experience, we expect applications to evolve for applications at
levels 4and 5.

AUTONOMY

Autonomy is represented in six stages (shown in Table 2).

In stage O, there are Al applications with complex algorithms
that are not based on machine learning (ML). These applications
have fixed algorithms and do not rely on training data. In terms of
validation, these applications can be handled similar to conven-
tional applications.
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Table 3: Validation levels.

Level | Description Minimum Validation Activities and
Requirements

| Parallel (Al) CS* No validation required

I Classical non-Al CS Validation of computerized system, but no

dedicated focus on Al

I} Piecewise locked state® In addition to the above requirements:
AICS « Documented justification on why a model was
selected
« Training data verification
« Model quality assurance after training
« Input data monitoring in operation
« Retraining procedures defined

v Self-triggered learning Al In addition to the above requirements:
CS with human operation  « Monitoring of model quality in operation
and update control at « Controlling quality KPIs® and notification process
all times « Validation of the human factors (depending
on control design) with regards to overrides,
qualifications, and Al system acceptance
) Self-triggered learning Al In addition to the above requirements:
CS with update control, « Periodic re-test with defined test data set

« Assurance of self-control

« Control of Al system outcomes by samples for
a defined, risk-oriented fraction, and adequate
stratification of input/output instances

but overall or sampled
operation control only

Vi Al CS with autonomous
learning

Validation concept currently under development

°CS means computerized system.

"Piecewise means that the system may be regularly or irregularly manually
updated to another version but provides one exact output to an instance of
input data within such a version.

KPI means key performance indicators.

In stage 1, the ML system is used in a so-called locked state.
Updates are performed by manual retraining with new training
data sets. As the system does not process any metadata of the pro-
duced results by which it could learn, the same data input always
leads to the generation of the same output. This is currently by far
the most common stage. The retraining of the model follows sub-
jective assessment or is performed at aregular interval.

In stage 2, the system is still operating in a locked state, but
updates are performed after indication by the system with a man-
ual retraining. In this stage, the system is collecting metadata of
the generated outputs or inputs and indicates to the system owner
that a retraining is required or should be considered, e.g., in
response to a certain shift in the distribution of input data.

In stage 3, the update cycles are partially or fully automated,
leading to a semi-autonomous system. This can include the selec-
tion and weighting of training data. The only human input is the
manual verification of the individual training data points or the
approval of the training data sets.

In stage 4 and stage 5, the system is completely autonomous
with reinforced ML independently based on the input data.
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In stage 4, the system is fully automated and learns inde-
pendently with a quantifiable optimization goal and clearly meas-
urable metric. The goal can be defined by optimizing one variable
or a set of variables. In production, the variables could be the opti-
mization of the yield and selectivity of certain reactions.

In stage 5, the system learns independently without a clear
metric, exclusively based on the input data, and can self-assess its
task competency and strategy and express both in a human-
understandable form. Examples could be a translation application
that learns based on the feedback and correction of its user. If the
user suddenly starts to correct the inputs in another language, in
the long term, the system will provide translations to the new
language.

VALIDATION LEVELS

The maturity levels can be clustered into six Al validation levels
(see Table 3) and placed into the area defined by the dimensions of
autonomy and control design (see Figure 2). The Al validation lev-
els describe the minimum control measures necessary to achieve
regulatory compliance of the systems at a high level. Detailed
quality assurance requirements should be defined individually
based on the categorization, given the intended use and the risk
portfolio of the Al system.

Systems in Al validation level I have no influence on product
quality and patient safety (and data integrity); therefore, validation
isnot mandatory. Nevertheless, for applicationsin this category, the
human factor should not be underestimated. If a system is designed
toprovide adviceandisrunningin parallel to the normal process for
aprolonged amount of time, safeguards should be in place to ensure
that the operator is handling results based on critical thinking and
does not use these results to justify decisions.

Systemsin AlvalidationlevelIlare Al applications thatare not
based on ML and therefore do not require training. The results are
purely code-based and deterministic and can therefore be vali-
dated using a conventional computerized system validation
approach.

Systems in Al validation level III are based on mechanisms
suchas MLordeeplearning. Theyrely ontraining with data for the
generation of their outputs. Systemsin this category are operating
in alocked state until a retraining is performed.

For the validation, Al-specific measures have to be performed
that relate to the data model and the used data, in addition to the
conventional computerized system validation. The integrity of the
training data has to be verified. It needs to be verified that the data
used for the development are adequate for generating a certain
output and are not biased or corrupted. Al validation documents
should cover the following aspects:
= Arisk analysis for all extract, transform, load (ETL) process

steps for the data
= Assessments of the data transformation regarding the poten-

tial impact on data integrity
= The procedures on how labels have been produced and quality
assured
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Figure 2: Representation of the validation levels with focus on business decision-making.
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In addition, the model quality has to be verified during the devel-

opment and operational phases. During development, it must be

verified that:

= Theselected algorithm is suitable for the use case

= The trained model technically provides the anticipated
results based on the input data

In the operational phase, these additional aspects have to be con-

sidered and defined:

= Appropriate quality measures to monitor the model performance

= Required conditions to initiate retraining depending on
model performance

For retraining, it is desirable that the input structures for the
model input remain the same. Otherwise, a new assessment of
the methodological setup of the development phase may be
required.

To ensure that the system is only operating in a validated
range, input data during operations have to be monitored.
Furthermore, for systemsin this category and above, transparency
issues come into play, as the rationale for the generation of outputs
based on different input data may not be obvious. For this reason,
all available information should be visible to provide insight into
the path to the outcome, and explainability studies (which aim to
build trust in AI applications by describing the Al-powered
decision-making process, the Al model itself, and its expected
impact and potential biases) should be conducted to validate the
decision-making process and provide explanations and rationales
to anyinterested party.
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Systemsin Alvalidationlevel IV already inherit greater auton-
omy as varying aspects of the update process are automated,
which can include the selection of new training data. For this rea-
son, thereisastrongneed to focus on controlling key performance
indicators that reflect model quality during operation. Model
quality outputs should be monitored to ensure they are in the vali-
dated range. In addition, the notification process for cases, where
the system requires a retraining or is operating outside of the vali-
dated range, must be confirmed.

Systems in Alvalidation level V have a greater process control.
Therefore, stronger system controls have to be in place during the
operation. This can be achieved by periodically retesting with
defined test data sets. Furthermore, the self-controlling mechanism
should be verified during the validation phase.

Systemsin Al validationlevel VIare self-learning systems. Itis
expected that in the near future, strategies will be available for the
control of continuous learning systems. There is no validation
concept available now to ensure regulatory compliance for sys-
tems in this category.

In summary, the framework describes a tradeoff between the
organizational burden of controlling the Al system during operation,
which is more pronounced at the lower levels of the framework, and
the technical requirements that facilitate increased validation activi-
ties to secure an increasingly autonomous Al system (see Figure 2).

MATURITY POSITIONING AND DYNAMIC PATH

By following the framework outlined previously, the control
design of an Al system is supported with regards to the following
facets:



Figure 3: Example of a dynamic Al system’s path within the
autonomy and control framework.
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A decision has to be made
about how much human control
should be embedded into the
operative process.

Initial design

During the initial design of the AI control mode, based on critical
thinking, a decision has to be made about how much human con-
trol should be embedded into the operative process. For instance,
for a first start, a mode might be chosen with less autonomy and
more control, hence reducing the requirements with regard to the
technical framework, yet with a higher operational burden. This
decision should be critically founded on the intention of use and
the risk portfolio of the specific Al system and on the company'’s
experience with AI system design and maintenance in general.
The risk assessment mechanics specific to Al are not addressed in
thisarticle.

Dynamic path
Oncethe AIsystemhasbeen established, it should be continuously
evaluated for whether the control design and the positioning in

the maturity space are still appropriate, considering results from
validation activities, post-market monitoring, and risk assessment
updates, and from a business point of view, the balance of opera-
tional and technicalburden. This evaluation may direct the design
in either direction, e.g., the control design may be tightened (with
more human control, less autonomy), given newly identified risks,
or the Al system’s autonomy may be expanded, accompanied by
tighter technical control measures.

Management may consider the maturity model as a strategic
instrument in order to dynamically drive the Al solution through
its life cycle with regard to the system’s autonomy and human
control.

Example (see Figure 3):

1. The corporation decides to explore the usability of an Al

system for a specific use case, parallel to an existing GxP-
relevant process (Al validation level I).

N

. After successfulintroduction ofthe Al system, the Al system
should take over the GxP process, while stillin alocked-state
operation mode and controlled for all instances (AI valida-
tion level ITI); at the same time, stricter technical and func-
tional validation activities are introduced.

3.Extending the Al system'’s value-add further, the control

design is changed to a mode in which not all instances are
controlled; because it's still operating in locked-state mode,
Alvalidation level IIT applies. However, further controls
such as sample checks of instances may be introduced, given
the criticality of the GxP process.

4. After having collected sufficient experience with regard to
the Al system in its specific use case, the autonomy is
increased such that the system may indicate necessary
retraining (Al validation level IV).

. Extending the autonomy of the system further, the training

wv

process is now more oriented to the Al system’s mechanics,
i.e.,inthewaytheretrainingis performed, buttheactivation
of such a new version is still verified by a human operator
(still Alvalidation level IV).

6. As the final step in the solution’s growth path, the control
stage 4 is chosen so that the system controls itself (Al valida-
tion level V).

CONCLUSION

Because of the lack of AI/ML-specific regulations, other ways to
determine the appropriate number of validation activities are
required by the industry and development partners. The Al matu-
rity model described in this article provides the rationale for the
distinction among validation levels based on the Al model's stage
of autonomy and control design. We consider this maturity model
as the starting point for further discussions and as the basis for a
comprehensive guideline for the validation of applications based
on AI/ML in the pharmaceutical industry. We believe that our
model has great potential for application in other life sciences
industries. &
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