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Abstract

To avoid the transformation of the dependent variable, which introduces bias when back-transformed, complex nonlinear
forest models have the parameters estimated with heuristic techniques, which can supply erroneous values. The solution for
accurate nonlinear models provided by Strimbu et al. (Ecosphere 8:¢01945, 2017) for 11 functions (i.e., power, trigonomet-
ric, and hyperbolic) is not based on heuristics but could contain a Taylor series expansion. Therefore, the objectives of the
present study are to present the unbiased estimates for variance following the transformation of the predicted variable and
to identify an expansion of the Taylor series that does not induce numerical bias for mean and variance. We proved that the
Taylor series expansion present in the unbiased expectation of mean and variance depends on the variance. We illustrated
the new modeling approach on two problems, one at the ecosystem level, namely site productivity, and one at individual
tree level, namely stem taper. The two models are unbiased, more parsimonious, and more precise than the existing less
parsimonious models. This study focuses on research methods, which could be applied in similar studies of other species,
ecosystem, as well as in behavioral sciences and econometrics.

Keywords Taylor series expansion - Unbiased estimates - Hyperbolic functions - Trigonometric functions - Power
function - Mean - Variance

Introduction

The formal departure from the linear modeling arguably
starts with the development of derivatives of basic functions
by Newton (1687) and von Leibnitz (1920). Nevertheless,
the seminal work of Newton and Leibnitz on nonlinearity
was implemented mainly on relatively simple formulations,
such as trigonometric, power, or exponential functions.
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Significant advancements in modeling occurred in 1715
when Taylor (1715) presented an approximation of any
function that is locally any continuously differentiable with
a polynomial function. Even after the introduction of the
Taylor series, application to environmental processes was
limited, until 1877, when Galton (1877) developed linear
regression. One of the main advancements of the regression
was the ability to represent nonlinearity by transforming
the variables (Schumacher and Hall 1933; Warton and Hui
2011), in most instances the predictors (Neter et al. 1996).
The linear regression coefficients were estimated for almost
two hundred years with the least square method (Cotes
1722). However, even when the assumptions of the least
squares method are met, the transformation of the predictors
did not necessarily supply the desired results. In those cases,
transformation of the predicted was executed to improve the
results. However, the bias induced by the transformation of
the dependent variable was formally addressed more than
half century later by Williams (1937) and Cochran (1938).
Nevertheless, bias correction for the case when the predicted
variable was changed was developed only for few transfor-
mations, such as the logarithm function (Finney 1941).
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Transformation of the dependent variable without correct-
ing it was present even after the seminal paper of Neyman
and Scott (1960), who proposed a bias-correction framework
for almost all functions. The complex implementation of
the Neyman and Scott framework (Neyman and Scott 1960)
was overcome by the development of the generalized lin-
ear models (GLM) by Nelder and Wedderburn (1972). The
assumptions of GLM limited its application to a reduced
number functions, such as the logistic function.

The development in the information technology at the
end of the second millennium, which allowed massive
computations in a short amount of time, recommended new
procedures for modeling complex nonlinear functions. For
more than 50 years, the main estimators were nonlinear least
squares, as proposed by Levenberg (1944) and Marquardt
(1963), and the restricted maximum likelihood, as proposed
Bartlett (1937) and formalized by Patterson and Thompson
(1971). Both methods are suboptimal as either considered
only a portion of the data, the case of restricted maximum
likelihood, or do not search the entire solution space, the
case of the nonlinear least squares. Therefore, new proce-
dures were proposed, which are based on complex heuristics
(Hoos and Stutzle 2005; Talbi 2009). The heuristic meth-
ods, such as simulated annealing, genetic algorithms, or
particle swarm optimization, have the ability to either find
the actual values of the parameters defining the nonlinear
model or supply values close to the actual values in a rea-
sonable amount of time (Aledo et al. 2016; Prieto-Escobar
et al. 2018; Ozsoy et al. 2020). A wave of developments
of heuristic algorithms aiming at the estimation of param-
eters of nonlinear relationships happened at the beginning

of the third millennium, such as Pujol (2007), Yuan (2011,
2015), or Chen et al. (2008), to cite just a few. However, the
sophistication of the heuristic techniques relies on the fact
that an approximation of the solution is obtained. In many
instances, the heuristic solutions are so close to the actual
solution, that there no practical reason to spend more effort
in attaining better results (Bettinger et al. 2002). However,
process-based modeling (Korzukhin et al. 1996) is sensitive
to the solution supplied by the heuristic techniques, as incor-
rect relationships can alter fundamentally the behavior, and
consequently the interpretation, of the ecosystem dynamic.

In many instances, common algorithms based on heuris-
tics (e.g., steepest descent, Gauss—Newton, or Marquardt)
estimate the parameters of nonlinear relationship with oppo-
site signs than the actual ones. Bayesian approaches (Gel-
man et al. 2003) can lead to similar results, as proven by
Amarioarei et al. (2020). To prove the impact of the estima-
tion procedure on the parameters to be estimated, we use an
example. Let assume that a process can be modeled with
the equation:

VEi-x
= - 1.2 +e,
y arctan<5 5><exp< 1000 >>/ +e €))

where x is the predictor, y the response variable, and tan(y)
at a given x is normally distributed with mean p, and stand-
ard deviation of ¢ 2.

If synthetic y is generated for x varying from 1 to 500,
assuming a normal distribution of the residuals of tan(y)
with variance 0.01 (Fig. 1), then the parameters of Eq. 1 can
be estimated using the nonlinear model

Fig. 1 Generated data based on
Eq. 1
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y = arctan (bo + b, X exp <b2\/; + b3x) >/b4 +e. 2)

The solution of Eq. 2 varies with the estimation algorithm,
as the SAS implementation of the Marquardt algorithm
supplies the values by=—-0.122, b; =0.0868, b, =0.2262,
b;=-0.00305, and b,=1.3712, whereas the Gauss—New-
ton algorithm leads to b,=2.4274, b;=-2.3739, b,=0.0078,
b;=-0.0023, and b,=1.0988. The difference between the
computed values and the actual values is not necessarily
important for this argument; what is important is the change
in the sign of b, and b, between algorithms, which triggers a
different model interpretation. The generated model has b
positive and b, negative, whereas the Marquardt algorithm
supplies the opposite values for both and Gauss—Newton
consistent with the sign of the model. Therefore, the heuris-
tics employed in estimation of nonlinear models can supply
incorrect results because of the algorithm. However, if the
dependent variable is transformed using the tangent func-
tion, then the coefficient would have the correct sign but it
would produce biased results when the predicted variable
is back-transformed. Nevertheless, if correction of the bias
induced by the nonlinear transformation of the dependent
variable is applied, then the back-transformation would pro-
duce unbiased values.

The reduced number of nonlinear functions for which
unbiased estimation exists (Nelder and Wedderburn 1972),
the difficult to implement framework proposed by Neyman
and Scott (1960) for bias correction when the dependent
variable is transformed, and the lack of accuracy associated
with heuristics prompted the development of unbiased esti-
mates for 10 transformations of the predicted variable that
are commonly encountered in forest modeling (Strimbu et al.
2017). For the 10 functions, complex nonlinear models can
be developed exactly, as parameters are estimated without
using heuristics. Furthermore, a sequential transformation of
the dependent variable can now be applied, as the estimated
values are accurate and precise.

The approach proposed by Strimbu et al. (2017), which
avoids heuristic estimations, provides unbiased results when
transforming the predicted variable, Y, with a differentiable
function f. The method for correcting the bias induced by the
change of the dependent variable is based on the assumption
that between f(Y) and a set of predictor variables, X, there is
a linear relationship

f(Y)=Xb +¢, 3)

where b is the vector of coefficients for the independent vari-
ables X, ¢ are the residuals, which are normally distributed
with mean 0 and variance ¢°, € ~ N(0, 62).

The bias correction based on Eq. 3 computed explicitly
the mean of Y1X for 10 commonly used functions. Because

the estimates for eight of these functions (i.e., sine, cosine,
tangent, arc sine, arc cosine, arc tangent, hyperbolic sine,
and hyperbolic tangent functions) contains a Taylor series
expansion, the formulas contain an infinite number of terms.
The simulated data used by the author to guide the selection
of the number of terms present in the Taylor series expansion
is likely to be challenged by real problems, which are more
complex than simulated data. Also, the method presented by
Strimbu et al. (2017) does not provide unbiased estimates for
the variance of the back-transformed Y. Estimation of vari-
ance of the predicted values is mandatory for computing the
confidence intervals. Therefore, the objective of the present
study is twofold: first, to present the unbiased estimates of
the variance of the back-transformed variable, and second,
to estimate a computational efficient Taylor series expansion
that would provide unbiased results for the transformations
involving Taylor series expansion. To illustrate the nonlinear
estimation method advocated by this study, we present three
forestry applications: one on site productivity, one on stem
taper, and one on straw decomposition.

Methods
Foundation

Equation 3 can be rewritten f;(Y) =Y, = Xb + ¢, for which
an unbiased estimation of Y given X=x is:

Y[, =f7'(Xb+#)l,. 4)

When another transformation is applied to the first trans-
formation, 2 O f1, then Eq. 3 becomes

LY =H(H) =XV + ¢ )

for which an unbiased estimator of Y at x’ is according to
Shanks and Gambill (1973):

Y, =6 (XY +€)lyn ©6)

where €’ is a normal distributed residual with mean 0 and
variance ¢'2.

A series of unbiased back-transformations of nonlinear
functions, each containing a finite number of terms, con-
cludes with an unbiased estimate. Nevertheless, when an
infinite number of terms are required but only few are used,
the compounding from Eq. 5 could lead to computational
errors (Amarioarei et al. 2020). Significant deviation from
the actual model can occur because of the truncation, even
when only one transformation is present, like Eq. 4. To
assess the impact of truncation on the transformations, we
focused on the functions that contains a Taylor series expan-
sion, as computed by Strimbu et al. (2017). However, the
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identification of an efficient selection of terms for the Tay-
lor series expansion that would produce unbiased numeri-
cal estimates is not sufficient for modeling purposes. The
variance of the predicted values is also required. In this
study, we have also included formulas for the variance
Var(Y) = E[Y?] — E?[Y] (Grimmett and Stirzaker 2002),
which requires the estimation of the mean, E[Y], and of the
second moment, E [Y 2]. The formulas for the expectation of
Y were proven by (Strimbu et al. 2017); therefore, in this
study we will include results for the E [Y 2]. The final formu-
lations for a series of common transformations are (proof in
“Appendix”):

e Power: f(y)=y" with a>0 and y€ (0, o)
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where H, = ), % is the nth harmonic number.

k=0
e Arcsine: f(y) = arcsin(y) and y € [—1, 1], for which
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e Arccosine: f(y) = arccos(y) and y € [—1, 1], for which
a=-{cand f=(x — &)/o

1
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where B, is the nth Bernoulli number, computed recur-
sively startlng from n=0 and By=1 with the formula

B, ——Z< >nk"1,n21.

e Hyperbolic sine: f(y) = sinh(y) =
for whicha=- & and f=(1 - &)/o

£=¢" with y € [0,al,
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e Hyperbolic arcsine:

1n<y+ \/yz—-i-l>, Yy €[0,00)
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with H, being the nth harmonic number.
The symbols used in Egs. 9-25 are:
n, k are natural numbers;
n
k m is the binomial coefficient;
Cn-DHN=1Xx3x:-x2n-1) and
2n)!! =2 x4 x --- X (2n) are the products of the uneven,

or even, positive integers <2n — 1 or 2n;
& = x"b, with x"being the transpose of the vector x;  (26)

B
I, f,n) = / "™ drandI(a, n) = lim I(a, pm). (27)
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Denoting by ¢p(x) = —e" 2, the standard normal den-
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sity function and by ®(x) = / ¢@(t) dt the standard normal

—00
cumulative distribution function, it can be shown (for
example, by mathematical induction) that the integral
I(a, B, n)is given by
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5! 2k+2
N 1)H|:¢(a)[l+ Z (2k+2)”] ¢(ﬁ)[ + Z (2£+2)HH n odd
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with initial values I(a, §,0) = V272(®(f) — D(a)) and
I, $. 1) = V2z($(a) - $(h).

For f— o, the integral from Eq. 28,
limg_, , I(a, f,n) = I(a,n), simplifies to:

=L |

2 Q2k+2
2z d(a)(n — 1)!!|:1 + k§) m} fornodd

I(a,n) =
21

\/Z(n - [1 — O(a) + Pp(a) Z (2k+])”] , forneven
(29)
where I(a,0) = V/27(1 — ®(a)) and I(a, 1) = \/27¢(a).

We considered an efficient Taylor series expansion a
series for which the addition of a new term fulfills two
conditions: first, the improvement of the existing estimates
is <107, and second, the line constructed from estimates
computed from two consecutive number of terms is almost
horizontal (i.e., the slope is <2°). The conditions mirror
the two common approaches used for selection of terms
from a series: one based on a preset value (LeVeque 2007),
and one based on the scree method (Cattell 1966; Tabach-
nick and Fidell 2001; Zhu and Ghodsi 2006).

By truncation, the expression of the means from Egs. 9-25
can be rewritten in matrix form such that the Taylor series
expansion would include only the first N terms:

2N+1 N
j= D D By = Tr(CE), (30)

k=0 n=0

where y is the predicted, back-transformed variable

C = (Chsrnr1) 0<k<aoN+1 §Maweanss

(€29
0<n<N
E=(E2 eEM
( n+l,k+l) 0 <n< N N+12N+2 (32)
0<k<2N+1

E koM (o, 1)1 g (K, arccosine
i = E K  I(a, B0,y (K), arctangent , for 0 <n < N.
Er+l-kok[(a, B: )y ant1y (k). other

[1]

(33)

The terms ¢, , from the triangular matrix C depend on the
transformation, and are given by
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@n=D 1 2n+1 . )
(2,1)[! 2n+1 k b Sll’le, cosine
=1y [ 2n+1 )
@n+1)! k s arcsine
o 2n arccosine
e\ k)’
_ (_1)/1—122»1(22n_1)32n 2n - 1

e T K , tangent
1y [ 2n+1
Tl < k 5 arctangent

2n+1

=D"em!
221(n1)2(2n+1)

1 2n+1
2n+1 k ’
(34

The elements of the matrix &, &, ,, depend on the variance
of the linear model. Therefore, the selection of the significant
terms triggers the back-transformation of the predicted vari-
able as the product of the constant matrix C and the matrix
Z, which contains the linear regression values. It should be
noticed that the matrix C is completely defined by the trans-
formation and the number of terms selected from the Taylor
series expansion and are independent of the data for which the
model is developed.

Considering that the first and second moments from
Eqgs. 9-25 depend on the variance, Amarioarei et al (2020)
used a factorial experiment to prove that relatively few number
of terms are required to represent the expectation unbiased
(i.e., less than 10). However, real applications revealed that
more than 10 terms could be needed for unbiased estimates,
likely 20 or even 30. However, the large number of terms
could be associated with the implementation, as computational
algorithms were proven to play a significant role in the results
(Seppelt and Richter 2005; Paun et al. 2020).

X , hyperbolic sine

hyperbolic tangent

Stand-level models for height of dominant Norway
spruce (Picea abies L.)

The main economic species in the Carpathian Mountains
is Norway spruce (Tudoran and Zotta 2020), which trig-
gered significant efforts in modeling height of dominant
trees. A polymorphic model with six parameters for height
was developed by Giurgiu and Draghiciu (2004), based on
the field measurements published in 1957 (Popescu-Zeletin
1957). The polymorphic model is enforced by the Romanian
regulations, and consequently with significant impact on for-
est management, is

@oxLorey height
X e orey heig] s

(35)

. _ 4
helghtdominam =ay X SI'x <tL0rey height + tLorey height
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where heighty, ... 1S the height of dominant trees,
TLorey height 1S transformed Lorey’s height modeled with the
expression e =100") o a by, by, b, are parameters
determined by species, S is site index.

The models proposed by Giurgiu and Draghiciu (2004)
are not justifiable, as they identify a regression with a causal
relationships, which was proven to be false (Neter et al.
1996; Duursma and Robinson 2003). The biased models of
Giurgiu and Draghiciu were replaced in 2020 by Amari-
oarei et al (2020), who developed parsimonious unbiased
models. Using the same data as Amarioarei et al (2020), we
improved the existing models not only in terms of estimators
but also by supplying estimates for variance. Evermore, we
have expanded the existing models by including the most
productive sites, the ones labeled class I, which were not
included in the original study of Amarioarei et al. There-
fore, we proposed a new set of polymorphic equations for
the height of dominant and codominant trees based on the
hyperbolic tangent of the ratio between height and the preset
site index, SI:

(5) oo (-5)
height) _ CXP{ T exp SI
SI exp (t%g;rht> +exp (_heght)
(36)
where SI is height at age 100 years, which is 36.9 m for
class I, 31.8 m for class II, 26.9 m for class III, and 21. 9 m
for class IV.
Amarioarei et al. found that that the reciprocal of 4/age is

linearly related to tanh (% ) Therefore, the height model

f(height) = tanh <

is:

f(height) = by + b; X +e,
0 1 ,—age (37)

wheree ~ N (0, aﬁeight )

The number of terms needed to avoid numerical bias was
identified by considering 5, 10, 20 and 30 terms in the Tay-
lor series expansion. To assess the parsimonious model of
height yield represented by Eq. 37, we compared it with the
models currently used by the Romanian Forest Administra-
tion (Giurgiu and Draghiciu 2004), namely Eq. 35. To prove
that the models obtained with the proposed study are not
only unbiased but also efficient, we have supplemented the
parametric estimation with the Bayesian approach proposed
by Stow et al. (2006) to correct the retransformation bias.
The Bayesian approach to nonlinear modeling is not new
and was advocated by many studies as an alternative to the
parametric estimates (van Oijen 2017; Golivets et al. 2019;
Kansanen et al. 2019). We used R (Gentleman and IThaka
2014) implementation of Stan (Stan Development Team
2016a) for Bayesian inference, namely the rstan package
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(Stan Development Team 2016b). The Bayesian estimates
produced by rstan, which is based on Markov Chain Monte
Carlo, require a series of parameters, out of which the num-
ber of iterations is the most important. We followed the
recommendation of the Stan Development Team (2016b),
which suggested four chains. The lack of knowledge on data
distribution, recommended the usage of a non-informative
prior distribution in the computations, as suggested by Stow
et al. (2006).

Stem taper models for loblolly pine (Pinus taeda L.)
in east Louisiana

Loblolly pine (Pinus taeda L.), which is one of the most
important commercial tree species in the USA, was the sub-
ject of many stem taper models (Max and Burkhart 1976;
Cao et al. 1980; Fang et al. 2000; McClure and Czaplewski
2011; Fang and Strimbu 2017; Nicoletti et al. 2020). The
majority of the stem taper models have at least two param-
eters, an exception being the model developed by Lenhart
et al. (1987) who has one parameter. Amarioarei et al (2020)
proposed a trigonometric model for describing the stem
taper of loblolly pine using the data from Fang and Strimbu
(2017). The dataset contains 18 trees from the Vernon Par-
ish, Louisiana, with diameters measuring every meter along
the stem, plus the diameter at 1.3 m, breast height (dbh). We
found that the cosine of the ratio between diameter, d, and

double dbh (i.e., cos <#§bh)) is linearly related with the

ratio of total height and square root of dbh and the product
of the logarithmized total height [i.e., In(Total height)] and
the square root of relative height (i.e., height of diameter d/
total height):

£(d) = cos (2 - dbh) = by + b, x In (Total height)

height Total height (%)
X — + b, X +e,
Total helght A /dbh

where e ~ N(0,02).

Considering that the transformation of the predicted vari-
able is cosine, the unbiased diameter along the stem was
computed with Eq. 11, and the unbiased variance as the dif-
ference between Eqs. 12 and 11. We identified the number
of terms needed to avoid numerical biased by considering 5,
10, 20, and 30 terms in the Taylor series expansion.

The model 02 of Kozak (2004) was demonstrated by
Fang and Strimbu (2017) to be the most suitable to the 18
trees used in the present study. Therefore, we compared the
parsimonious model obtained with Eq. 38 with Kozak02
model. To ensure consistency of the results, we determined
the Bayesian estimates of the model presented by Eq. 38,
using Stan’s probabilistic language (Stan Development

Team 2016a) as implemented in the R programming lan-
guage (Gentleman and Ihaka 2014). Similarly to the site
index models, we have used four Markov chains and a non-
informative prior distribution in computations. Stem taper
models are subject to autocorrelation (Lindstrom and Bates
1990), which violates the independence assumption (Val-
entine and Gregoire 2001). However, when the residuals
are white noise, then the models are considered complete
(Brockwell and Davis 1996). Therefore, we tested autocor-
relation with the Durbin—Watson test, as implemented in
SAS 9.4 (Ansley et al. 1992). To ensure that the models
developed are efficient, we have used Bartlett’s test to assess
homoskedasticity.

Models assessment

The key requirement of the proposed nonlinear modeling
framework mandatory represented by Eqgs. 9-25 is the nor-
mal distribution of the residuals produced from the linear
relationship between the transformed variable of interest
and the independent variables. To ensure that the normality
condition is fulfilled, we have used the Shapiro—Wilk test, as
implemented in the base R programming language. Ensuing
normal distribution of the residual, the performance of the
three models were assessed using four metrics: pseudo-R?,
bias, mean absolute error (MAE), and root mean square error
(RMSE), similarly to Bilskie and Hagen (2013), Montealegre
et al. (2015), and Sténgle et al. (2017):

n ~

bias = ) 2" (39)
i=1
MAE=Z—|yi;yi| (40)
n 5. — v. 2
RMSE = ) u “n
n

i=n

where 9;,,,y; is the predicted, measured, or mean value
at moment i (i.e., age, height, day), n is the number of
observations.

All the computations were executed in R programming
language (Gentleman and Thaka 2014). We considered that
an efficient Taylor series expansion is a series for which
MAE < 1%, similarly to Amarioarei et al. (2020).
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Results
Foundation

The factorial experiment focused on Taylor series expan-
sion showed that an efficient Taylor series could have < 10
terms, regardless of the variance. The number of terms
depends on the selection approach, with the preset value
supplying more terms than the scree plot. However, the two
approaches agreed, when the number of terms is chosen
first time when the preset value is reached by the difference
between the expectations computed with consecutive num-
ber of terms (i.e., one term apart), except for the hyperbolic
tangent case (i.e., two terms apart). When the preset value
was surpassed at least two times, the scree plot and the pre-
set value approaches could differ by six terms (Amarioarei
et al. 2020). Considering that the expectation of the first-
order moment depends on the variance, the usage of a fewer
terms should be avoided, as it can lead to biased results. To
ensure computational unbiasedness, we considered that the
number of terms should be selected according to the preset
value, the case when it was met at least two times.

The second-order moment, and consequently the vari-
ance, depend on the same three estimates as the first-order
moment, namely &, o, and I(«, 5, n). Evermore, the formula
for the first- and second-order moments is similar, the main
difference being in the power of £ or o (Egs. 7-25). There-
fore, not surprisingly, the number of terms needed for unbi-
ased estimates of the variance is also in the same range with
the first-order moment, with the observation that usually
an extra term is present. Therefore, a Taylor series expan-
sion with 10 terms will likely ensure the lack of computa-
tional bias for the expectations, the predicted values, and the
variance. Nevertheless, in complex applications, with larger
variance there is the possibility that a larger number of terms
would be needed in the Taylor series expansion.

Models of dominant height of Romanian Norway
spruce

According to Eq. 24, the height of dominant and codomi-
nant trees for the Romanian Norway spruce developed from
Eq. 37 is

2N+1 N 2n+1-k
I 1 [2n+1 b
height = ' m[ A ](bo - \/;_ge> PUCHN ) TN (o)
k=0 n=0
(42)

The coefficients b, and b, vary with site index (Table 1),
which suggests that the height of dominant and codomi-
nant Norway spruce should be modeled with polymorphic
equations.
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All the proposed models are significant (p value <0.001)
and have coefficient of determination > 0.9, which support
their suitability in modeling the total height of dominant
and codominant Norway spruce from Romania (Fig. 2). The
validity of the models is supported by the Shapiro—Wilk test,
which suggests normality of the residuals (p value >0.25);
consequently, the appropriateness of Eq. 37 in modeling
tree height. As expected, the correlation between the pre-
dicted and original data increases with the number of terms
(Table 2), but minutely (i.e., < 1% from 10 to 30 terms). The
Bayesian model based on Eq. 37 is almost identical with
the one from Eq. 42, therefore the assessment metrics were
similar (Table 2); with bias, MAE and RMSE being almost
undetectable larger than the back-transformed values. The
model currently in used in Romania (Giurgiu and Draghiciu
2004) had not surprisingly all six variables significant (p
value < 0.001). The correlation coefficient between the pre-
dicted and original data is superior to the one supplied by
Eq. 42 (Table 2), but the difference is < 1% for all site indi-
ces. Regardless of the site index, the bias, MAE, and RMSE
were the smallest for Giurgiu and Draghiciu (2004) mod-
els (Table 2), but the differences were miniscule (< 1%). If
the values predicted by the Giurgiu and Draghiciu (2004)
models were infinitesimal superior to the Bayesian and the
proposed methods, the situation is completely reversed when
the focus is on variance. Irrespective of the assessment met-
ric, the Bayesian and parsimonious models always exhibit a
smaller variance than Giurgiu and Draghiciu (2004) models
(Table 2). For bias, the variance of parsimonious models is
three times smaller than the one supplied by the Bayesian
or Giurgiu and Draghiciu (2004) models, sometimes almost
one order of magnitude (e.g., 95% vs —9.7 for SI=26.9 m).
The same conclusion is reached for MAE and RMSE, with
the parsimonious models consistently providing smaller
variance, sometimes almost three times smaller (i.e., 95%
vs 29% for the MAE of S1=26.9 m). Considering that the
Giurgiu and Draghiciu (2004) models are less parsimonious
than Eq. 42, exhibits significantly larger variances of the
three metrics (inferior precision), while revealing an infini-
tesimal superior accuracy (i.e., < 1%), it can be inferred that
they are no longer justified in applications.

Table 1 Coefficient of the height of dominant and codominant tree
height according to Eq. 42

Coefficient SI (m)

21.9 26.9 31.8 36.9
b, 1.107664 1.116752 1.10624 1.098149
b, —4.3304 —3.9883 —3.75759 -3.62727
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Fig.2 Model for the dominant height of Norway spruce in the Carpathian Mountains: a class IV (SI=21.9 m), b class III (SI=26.9 m), ¢ class

II (SI=31.8 m), and d class I (SI=36.9 m)

Table2 Assessment of the
dominant/codominant tree
height models for the Norway
spruce in the Carpathian
Mountains. The abbreviations
are: Giurgiu Giurgiu—Draghiciu,
Pars. Parsimonious, Var
variance

Site index Model Bias (%) MAE (%) RMSE (%) Correlation
coefficient (%)
Mean Var Mean Var Mean Var

21.9 Giurgiu -2.1 84 12.9 84 8.7 84 91.7
Bayesian -2.0 82 13.3 82 8.8 83 914
Pars. 10 terms -1.9 12 13.3 50 8.8 57 914
Pars. 30 terms -2.0 12 13.3 50 8.8 57 914

26.9 Giurgiu 0.01 95 6.1 95 7.3 95 97.4
Bayesian —0.05 94 6.3 94 7.7 94 97.1
Pars. 10 terms —0.04 -9.7 6.3 29 7.7 72 97.1
Pars. 30 terms —0.04 -9.7 6.3 29 7.7 72 97.1

31.8 Giurgiu 34 96.3 4.8 96.3 5.6 96.3 98.1
Bayesian -0.5 95.3 5.1 95.3 6.0 95.3 97.7
Pars. 10 terms —0.5 -25.9 5.1 72.3 6.0 84.1 97.7
Pars. 30 terms -0.5 =259 5.1 72.3 6.0 84.1 97.7

36.9 Giurgiu -0.08 96.8 4.3 96.8 5.2 96.8 98.3
Bayesian -0.5 94.9 4.9 94.9 6.1 94.9 97.4
Pars. 10 terms -0.5 -38.7 4.9 80.4 6.1 94.6 974
Pars. 30 terms -0.5 -38.7 4.9 80.4 6.1 94.6 974
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Stem taper models for loblolly pine

Equation 38 that modeled the stem taper model for loblolly
pine is

A N+l N
d :ZZ 1 2n+1
2dbh 2n+1 k

k=0 n=0

b
0.783 + 0.0318 X log (Total height) X #
Total height (43)

2n41-k
Total height
dbh

+0.01867 x

where d is the predicted diameter measured at height /.

Equation 38 has both terms significant (p value <0.0001)
and supplied a correlation coefficient between the predicted
and the original data of —0.96. The normality test did not
suggest a lack of normal distribution of the residuals (p
value =0.25), which provides evidence that the parsimoni-
ous model is appropriate for stem taper modeling. The coef-
ficient of correlation between the predicted and original data
is virtually the same when the Taylor series expansion con-
tains 10 or 30 terms, namely 0.96 (Table 3). Mirroring the
height modeling, the Bayesian estimates were similar to the
parsimonious model only in terms of bias but not in terms
of variability, which was always two times larger (Table 3).

The nine parameters model of from Kozak (2004) was the
most appropriate to describe the stem taper (Eq. 44), with
a correlation coefficient between the predicted and original
data of more than 98%. However, even that the model was
significant as a whole (p value <0.0001), some of the vari-
ables were deemed insignificant, such as b,, the coefficient
of the inverse of the slenderness coefficient, or b5, the coef-
ficient of X*! (p values > 0.26):

d = 17.7256dbh®53 (Total height)~! 332 x¢(bh.Totl height X.0)
2dbh
whereg((dbh, k, Total height, X, Q)
h 4 ___dbh
=—0.394 ————— ) —0.08¢ Toulheigh
Total height
+0.056X%" + % + 0.1Total height? — 0.564X
(44)
e
Total height h
X = andQ=1-7/——.
(1 3 13 > Total height
Total height

The elimination of the insignificant variables did not alter
the excellent performance of the Kozak model 02, which had
a correlation coefficient between the predicted and original
data of 98% (Table 3). Among the considered stem taper
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Table 3 Comparison of the stem taper models for loblolly pine from
east Louisiana

Measure Parsimonious Kozak model  Bayesian model
model 02
10 terms 30 terms
Correlation  96.1 96.4 98.1 96.3
coefficient
(%)
Bias (%)
Mean -2 —0.1 -0.2 0.2
Variance 99.3 95.1 96.0 203.5
MAE (%)
Mean 5.0 4.3 32 4.5
Variance 99.3 95.1 96.0 203.5
RMSE (%)
Mean 8.2 7.7 3.8 8.1
Variance 99.7 95.2 96.0 209.9

models, the Kozak model 02 is the most suitable to describe
the variation of diameter along the stem based on all the first-
order moments, as the bias, MAE and RMSE were smaller
than the parsimonious or Bayes models (Table 3). Never-
theless, when the second-order moment was considered, the
Kozak 02 model exhibited larger values for all three measures
(i.e., bias, MAE, and RMSE), but the difference was minute
(Table 3). Both models, parsimonious and Kozak, exhibited
no significant autocorrelation, as the Durbin—Watson test
supplied a p value of >0.05. Similar conclusion was reached
for homoskedasticity, as Bartlett’s test indicates that variance
does not change with height (p value >0.1).

The parsimonious models with more than 20 terms in
the Taylor expansion, the Bayesian model, and the Kozak
02 model are almost identical on the lower half of the stem
(Fig. 3), the differences occurring on the upper portion,
which inside the crown. Considering that the smallest vol-
ume is located inside the crown section of the stem, the dif-
ferences between the models are operationally insignificant.
The superior performance of the Kozak 02 model in respect
to the first-order moments is not mirrored by the second-
order moments, which place emphasis on the parsimony of
the model rather than on the performances. Therefore, the
less parsimonious model (i.e., Kozak 02) is more accurate
but less precise than the more parsimonious model (Eq. 44)

Discussion

The parsimonious framework that we are proposing in
this study completes the work of Strimbu et al (2017) and
Amarioarei et al (2020) by presenting not only the first-order
expectations but also the second order. Our models expand
the findings of Neyman and Scott (1960) by providing an
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approach for solving nonlinear models that is fast and simple.
Our parsimonious approach is suitable for modeling com-
plex nonlinear relationships, as a Taylor series expansion
with 20 terms will provide numerically unbiased results.
The successive application of transformation is particularly
suitable for functions that do not include Taylor series, such
as the hyperbolic arcsine. The improvement carried out by
Nelder and Wedderburn (1972) on the work of Neyman and
Scott (1960) simplified the distribution of residuals such that
any distribution from the exponential family can be used.
However, the generalization from normal to an exponential
distribution proposed by Nelder and Wedderburn (1972) is
based on fusing two distributions: of the residuals and of the
predicted variable. The merging of residuals, which are a
measure of the lack of knowledge, with a variable, precludes
the applicability of generalized linear models to any function
(Fox 2008). Consequently, many popular functions, such as
trigonometric functions, cannot be used within the Nelder
and Wedderburn (1972) framework because their expectation
is difficult to compute. Our study restricts the distribution of
residuals to normal distribution but allows inclusion of all
the standard trigonometric functions in modeling. One of the
main attractions of the proposed parsimonious approach is
the ability to compound functions, such that exponential or
power functions can be combined with trigonometric func-
tions without biasing the results. Consequently, the linear
equation (30) is arguably the simplest parsimonious method
of solving nonlinear models. However, the requirement
that the variance of the residuals must have small values in
respect to the predicted variable indicates that the proposed

Fig.3 The stem taper models
for planted loblolly pine
05

04

0.3

Relative diameter [d/DBH]

0.2

0.2

Model - no. of terms. .

parsimonious modeling framework is highly dependent on
data fitting.

The models for height of dominant and codominant Nor-
way spruce and for the stem taper developed with the parsi-
monious framework presented in this study are accurate as
the existing non-parsimonious models but more precise. The
accuracy varies with the predicted variable, as the stem taper
model is less accurate than the parsimonious model, whereas
for the height the situation is reversed. Nevertheless, the
differences are minute, which points toward the utility of the
new framework. Even that the precision of the stem taper
model seems to be superior to the parsimonious models, the
variability of the non-parsimonious estimated RMSE sug-
gests the opposite. A similar conclusion holds for height
modeling, with the difference that the variability of the esti-
mated assessment measures is significantly larger for the
non-parsimonious models. Irrespective of the model, the
non-parsimonious and the parsimonious models converge,
but a large number of terms is needed in the Taylor series
expansion, at least 20 (Figs. 2 and 3). The lack of parsimony
is one aspect of the modeling process, another being the
meaning of the variables predicting the variable of interest.
From the meaning perspective, the parsimonious models
include terms that can be interpreted [e.g., relative height
(i.e., h/total height) or slenderness coefficient (i.e., total
height/dbh)], whereas the non-parsimonious models contain

1—4/relative height

- 13
Total height

infer or relate to tree processes, even that explanation for
causality are argued to exist (LeMay 2018), but they are

terms like 10 , which are not only difficult to
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usually present as a part of a series (i.e., the 30th root of a
variable). Considering that the differences between the mod-
els are minute in terms of linear moments (i.e., accuracy),
whereas the second-order moment is constantly smaller for
parsimonious models, the model selection should be placed
on parsimony. As the natural alternative to heuristic estima-
tions of the nonlinear models, the Bayesian approach pro-
vided results inferior to the parsimonious models for all
assessment metrics and moment order (i.e., linear or quad-
ratic), which suggests that more research is needed in the
Bayesian area to reach levels similar to the parametric
approaches. One of the main challenges faced by the Bayes-
ian approach is the reliance on computational resources,
which for large datasets and complex nonlinear models
could render solutions in unfeasible amount of time.

Our study provides a parsimonious method of solving
complex nonlinear problems by enforcing the normality
distribution of the residuals. The examples are used to show
the performances of the proposed framework points toward
superior results not only in terms of assessment metrics
but also in terms of interpretability, particularly when the
transformed linear model has a coefficient of determination
larger than 0.95, recommended 0.99. The main limitation of
the study rests in its normality assumption, as the formula
are valid only when the residuals are normally distributed.
Therefore, evidence of normality is required; we found that a
p value >0.25 is recommended. Consequently, further stud-
ies are needed to expand the results to other distribution,
such as the exponential family of distribution as defined by
Nelder and Wedderburn (1972).

Conclusions

The general linear regression framework developed by Gal-
ton (1877) was enhanced for more than one century but was
not suitable for complex nonlinear models. The main issue
faced by the nonlinear applications was the bias introduced
by transforming the predicted variable. Our study builds on
the work of Strimbu et al. (2017) and Amarioarei et al. (2020),
and computes the bias corrections for the first and second
order moments for some of the most popular transformations
(i.e., power, trigonometric, and hyperbolic). Strimbu et al.
(2017) proved that the estimated values are unbiased and
complex nonlinear models can be obtained by compounding
various transformations. Because the unbiased estimates for
eight functions (i.e., sine, cosine, tangent, arcsine, arccosine,
arctangent, hyperbolic sine, and hyperbolic tangent) contain
a Taylor series expansion, we have shown that in most situa-
tions less than 10 terms are required for results without bias.

We have proved that the parsimonious framework can
be applied successfully in forestry, by modeling the height
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for dominant and codominant Norway Spruce from Roma-
nia and stem taper of loblolly pine from east Louisiana. We
compare our results with the current models used for stem
taper and height, both non-parsimonious. The parsimoni-
ous models contain two terms for height, compared with
Giurgiu and Draghiciu (2004), which contains six terms,
and three terms for stem taper, compared with nine of Kozak
model 02 (2004). The parsimonious models have similar
first-order expectation for the three-assessment metrics (i.e.,
bias, MAE, and RMSE) but smaller second-order moment,
sometime close to one order of magnitude. Therefore, the
parsimonious models, by relaying on the normality assump-
tion, gain in precision without a significant loss, if any, of
accuracy. The Bayesian approach to the parsimonious non-
linear models exhibits similar first-order moments for the
assessment metrics, but the second-order moments were
significantly larger. The attractiveness of Bayesian solution
is challenged by the size of the data and the complexity of
the model, as it is computationally intensive. The subsequent
studies would focus on generalizing the normal distribu-
tion for which the formulas are now available by comput-
ing the same estimates, but for the exponential family of
distribution.

Appendix

Using the same notation as above, the second moment E [Yz]
is computed as following:
Power: g(y) = y* witha > 0 and y € (0, o0)

a_e\2 Vg

L 1(Y < 2
-5 — = 2 r
1 /yze 2< ° ) ay'dy = L/§+at)ﬂe_7 dr
V2o i V2

ik "/tkezdt Lm
3o oot 28

E[Y?] =

5 ok 1(a k),

2
~————

where a = —5.

|_|

Sine: g(y) = Sln(y) withy € [__, z

1

3
_1(sinm-¢)?
! /yze 2( c ) cos (y)dy =
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We used the following series expansion for arcsin?(z) for
7] < 1
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Arcsine: g(y) = arcsin (y) withy € [—-1,1].
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with o = %_:, p= : and where the interchange
between the summation and integration is a consequence
of the application of the Bounded Convergence Theorem.
Cosine: g(y) = cos (y) with y € [0, ]
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Tangent: g(y) = tan(y) with y € [0, %]

Expanding arctan(z) in Taylor series for |¢| < 1, we have
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where H, = ), % is the nth harmonic number.
k=0
Hyperbolic sine: g(y) = sinh (y) with y € [0,4], a < .
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we obtain
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