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Abstract
To avoid the transformation of the dependent variable, which introduces bias when back-transformed, complex nonlinear 
forest models have the parameters estimated with heuristic techniques, which can supply erroneous values. The solution for 
accurate nonlinear models provided by Strimbu et al. (Ecosphere 8:e01945, 2017) for 11 functions (i.e., power, trigonomet-
ric, and hyperbolic) is not based on heuristics but could contain a Taylor series expansion. Therefore, the objectives of the 
present study are to present the unbiased estimates for variance following the transformation of the predicted variable and 
to identify an expansion of the Taylor series that does not induce numerical bias for mean and variance. We proved that the 
Taylor series expansion present in the unbiased expectation of mean and variance depends on the variance. We illustrated 
the new modeling approach on two problems, one at the ecosystem level, namely site productivity, and one at individual 
tree level, namely stem taper. The two models are unbiased, more parsimonious, and more precise than the existing less 
parsimonious models. This study focuses on research methods, which could be applied in similar studies of other species, 
ecosystem, as well as in behavioral sciences and econometrics.

Keywords  Taylor series expansion · Unbiased estimates · Hyperbolic functions · Trigonometric functions · Power 
function · Mean · Variance

Introduction

The formal departure from the linear modeling arguably 
starts with the development of derivatives of basic functions 
by Newton (1687) and von Leibnitz (1920). Nevertheless, 
the seminal work of Newton and Leibnitz on nonlinearity 
was implemented mainly on relatively simple formulations, 
such as trigonometric, power, or exponential functions. 

Significant advancements in modeling occurred in 1715 
when Taylor (1715) presented an approximation of any 
function that is locally any continuously differentiable with 
a polynomial function. Even after the introduction of the 
Taylor series, application to environmental processes was 
limited, until 1877, when Galton (1877) developed linear 
regression. One of the main advancements of the regression 
was the ability to represent nonlinearity by transforming 
the variables (Schumacher and Hall 1933; Warton and Hui 
2011), in most instances the predictors (Neter et al. 1996). 
The linear regression coefficients were estimated for almost 
two hundred years with the least square method (Cotes 
1722). However, even when the assumptions of the least 
squares method are met, the transformation of the predictors 
did not necessarily supply the desired results. In those cases, 
transformation of the predicted was executed to improve the 
results. However, the bias induced by the transformation of 
the dependent variable was formally addressed more than 
half century later by Williams (1937) and Cochran (1938). 
Nevertheless, bias correction for the case when the predicted 
variable was changed was developed only for few transfor-
mations, such as the logarithm function (Finney 1941). 
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Transformation of the dependent variable without correct-
ing it was present even after the seminal paper of Neyman 
and Scott (1960), who proposed a bias-correction framework 
for almost all functions. The complex implementation of 
the Neyman and Scott framework (Neyman and Scott 1960) 
was overcome by the development of the generalized lin-
ear models (GLM) by Nelder and Wedderburn (1972). The 
assumptions of GLM limited its application to a reduced 
number functions, such as the logistic function.

The development in the information technology at the 
end of the second millennium, which allowed massive 
computations in a short amount of time, recommended new 
procedures for modeling complex nonlinear functions. For 
more than 50 years, the main estimators were nonlinear least 
squares, as proposed by Levenberg (1944) and Marquardt 
(1963), and the restricted maximum likelihood, as proposed 
Bartlett (1937) and formalized by Patterson and Thompson 
(1971). Both methods are suboptimal as either considered 
only a portion of the data, the case of restricted maximum 
likelihood, or do not search the entire solution space, the 
case of the nonlinear least squares. Therefore, new proce-
dures were proposed, which are based on complex heuristics 
(Hoos and Stutzle 2005; Talbi 2009). The heuristic meth-
ods, such as simulated annealing, genetic algorithms, or 
particle swarm optimization, have the ability to either find 
the actual values of the parameters defining the nonlinear 
model or supply values close to the actual values in a rea-
sonable amount of time (Aledo et al. 2016; Prieto-Escobar 
et al. 2018; Özsoy et al. 2020). A wave of developments 
of heuristic algorithms aiming at the estimation of param-
eters of nonlinear relationships happened at the beginning 

of the third millennium, such as Pujol (2007), Yuan (2011, 
2015), or Chen et al. (2008), to cite just a few. However, the 
sophistication of the heuristic techniques relies on the fact 
that an approximation of the solution is obtained. In many 
instances, the heuristic solutions are so close to the actual 
solution, that there no practical reason to spend more effort 
in attaining better results (Bettinger et al. 2002). However, 
process-based modeling (Korzukhin et al. 1996) is sensitive 
to the solution supplied by the heuristic techniques, as incor-
rect relationships can alter fundamentally the behavior, and 
consequently the interpretation, of the ecosystem dynamic.

In many instances, common algorithms based on heuris-
tics (e.g., steepest descent, Gauss–Newton, or Marquardt) 
estimate the parameters of nonlinear relationship with oppo-
site signs than the actual ones. Bayesian approaches (Gel-
man et al. 2003) can lead to similar results, as proven by 
Amarioarei et al. (2020). To prove the impact of the estima-
tion procedure on the parameters to be estimated, we use an 
example. Let assume that a process can be modeled with 
the equation:

where x is the predictor, y the response variable, and tan(y) 
at a given x is normally distributed with mean μx and stand-
ard deviation of σx

2.
If synthetic y is generated for x varying from 1 to 500, 

assuming a normal distribution of the residuals of tan(y) 
with variance 0.01 (Fig. 1), then the parameters of Eq. 1 can 
be estimated using the nonlinear model

(1)y = arctan

�
5 − 5 × exp

�√
x − x

1000

���
1.2 + e,

Fig. 1   Generated data based on 
Eq. 1
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The solution of Eq. 2 varies with the estimation algorithm, 
as the SAS implementation of the Marquardt algorithm 
supplies the values b0 = −0.122, b1 = 0.0868, b2 = 0.2262, 
b3 = –0.00305, and b4 = 1.3712, whereas the Gauss–New-
ton algorithm leads to b0 = 2.4274, b1 = -2.3739, b2 = 0.0078, 
b3 = -0.0023, and b4 = 1.0988. The difference between the 
computed values and the actual values is not necessarily 
important for this argument; what is important is the change 
in the sign of b0 and b1 between algorithms, which triggers a 
different model interpretation. The generated model has b0 
positive and b1 negative, whereas the Marquardt algorithm 
supplies the opposite values for both and Gauss–Newton 
consistent with the sign of the model. Therefore, the heuris-
tics employed in estimation of nonlinear models can supply 
incorrect results because of the algorithm. However, if the 
dependent variable is transformed using the tangent func-
tion, then the coefficient would have the correct sign but it 
would produce biased results when the predicted variable 
is back-transformed. Nevertheless, if correction of the bias 
induced by the nonlinear transformation of the dependent 
variable is applied, then the back-transformation would pro-
duce unbiased values.

The reduced number of nonlinear functions for which 
unbiased estimation exists (Nelder and Wedderburn 1972), 
the difficult to implement framework proposed by Neyman 
and Scott (1960) for bias correction when the dependent 
variable is transformed, and the lack of accuracy associated 
with heuristics prompted the development of unbiased esti-
mates for 10 transformations of the predicted variable that 
are commonly encountered in forest modeling (Strimbu et al. 
2017). For the 10 functions, complex nonlinear models can 
be developed exactly, as parameters are estimated without 
using heuristics. Furthermore, a sequential transformation of 
the dependent variable can now be applied, as the estimated 
values are accurate and precise.

The approach proposed by Strimbu et al. (2017), which 
avoids heuristic estimations, provides unbiased results when 
transforming the predicted variable, Y, with a differentiable 
function f. The method for correcting the bias induced by the 
change of the dependent variable is based on the assumption 
that between f(Y) and a set of predictor variables, X, there is 
a linear relationship

where b is the vector of coefficients for the independent vari-
ables X, ε are the residuals, which are normally distributed 
with mean 0 and variance σ2, � ∼ N

(
0, �2

)
.

The bias correction based on Eq. 3 computed explicitly 
the mean of Y|X for 10 commonly used functions. Because 

(2)y = arctan
�
b0 + b1 × exp

�
b2

√
x + b3x

���
b4 + e.

(3)f (Y) = Xb + �,

the estimates for eight of these functions (i.e., sine, cosine, 
tangent, arc sine, arc cosine, arc tangent, hyperbolic sine, 
and hyperbolic tangent functions) contains a Taylor series 
expansion, the formulas contain an infinite number of terms. 
The simulated data used by the author to guide the selection 
of the number of terms present in the Taylor series expansion 
is likely to be challenged by real problems, which are more 
complex than simulated data. Also, the method presented by 
Strimbu et al. (2017) does not provide unbiased estimates for 
the variance of the back-transformed Y. Estimation of vari-
ance of the predicted values is mandatory for computing the 
confidence intervals. Therefore, the objective of the present 
study is twofold: first, to present the unbiased estimates of 
the variance of the back-transformed variable, and second, 
to estimate a computational efficient Taylor series expansion 
that would provide unbiased results for the transformations 
involving Taylor series expansion. To illustrate the nonlinear 
estimation method advocated by this study, we present three 
forestry applications: one on site productivity, one on stem 
taper, and one on straw decomposition.

Methods

Foundation

Equation 3 can be rewritten f1(Y) = Y1 = Xb + � , for which 
an unbiased estimation of Y given X = x is:

When another transformation is applied to the first trans-
formation, f2 ○ f1, then Eq. 3 becomes

for which an unbiased estimator of Y at xʹ is according to 
Shanks and Gambill (1973):

where �′ is a normal distributed residual with mean 0 and 
variance �′2.

A series of unbiased back-transformations of nonlinear 
functions, each containing a finite number of terms, con-
cludes with an unbiased estimate. Nevertheless, when an 
infinite number of terms are required but only few are used, 
the compounding from Eq. 5 could lead to computational 
errors (Amarioarei et al. 2020). Significant deviation from 
the actual model can occur because of the truncation, even 
when only one transformation is present, like Eq. 4. To 
assess the impact of truncation on the transformations, we 
focused on the functions that contains a Taylor series expan-
sion, as computed by Strimbu et al. (2017). However, the 

(4)Y|x = f −1
1

(Xb + �)|x�.

(5)f2
(
Y1

)
= f2

(
f1(Y)

)
= X

�b� + �
�

(6)Y|x� = f −1
1

(f −1
2

(
X
�b� + �

�
)|x� ,
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identification of an efficient selection of terms for the Tay-
lor series expansion that would produce unbiased numeri-
cal estimates is not sufficient for modeling purposes. The 
variance of the predicted values is also required. In this 
study, we have also included formulas for the variance 
Var(Y) = �

[
Y2

]
− �

2[Y] (Grimmett and Stirzaker 2002), 
which requires the estimation of the mean, �[Y] , and of the 
second moment, �

[
Y2

]
 . The formulas for the expectation of 

Y were proven by (Strimbu et al. 2017); therefore, in this 
study we will include results for the �

[
Y2

]
 . The final formu-

lations for a series of common transformations are (proof in 
“Appendix”):

•	 Power: f(y) = ya with a > 0 and y ∈ (0, ∞)

•	 Sine: f (y) = sin(y) and y ∈
[
−

�

2
,
�

2

]
 ,  for which 

� = −(1 + �)∕� and � = (1 − �)∕�

•	 Cosine: f (y) = cos(y) and y ∈ [0,�] ,  for which 
α = -(1 + ξ)/σ and β = (1 − ξ)/σ

(7)

�[Y] =
1√
2�

∞�
k=0

� 1

a

k

�
�

1

a
−k�k ∫

∞

−
�

�

tke
−

t2

2 dt

=
1√
2�

∞�
k=0

� 1

a

k

�
�

1

a
−k�kI(�, k)

(8)

�
�
Y2

�
=

1√
2�

∞�
k=0

� 2

a

k

�
�

2

a
−k�k ∫

∞

−
�

�

tke
−

t2

2 dt

=
1√
2�

∞�
k=0

� 2

a

k

�
�

2

a
−k�kI(�, k)

(9)

�[Y] =
1√
2�

∞�
n=0

(2n − 1)!!

(2n)!!

1

2n + 1

2n+1�
k=0

�
2n + 1

k

�
�2n+1−k�kI(�, �, k)

(10)

�
�
Y2

�
=

1√
2�

∞�
n=0

4n(n!)2

(2n + 1)!(n + 1)

2n+2�
k=0

�
2n + 2

k

�
�2n+2−k�kI(�, �, k)

(11)

�[Y] =
�

2
(Φ(�) − Φ(�)) −

1√
2�

∞�
n=0

(2n − 1)!!

(2n)!!

1

2n + 1

2n+1�
k=0

�
2n + 1

k

�
�2n+1−k�k

I(�, �, k)

•	 Tangent: f (y) = tan(y) and y ∈
[
0,

�

4

]
 , for which α = − ξ/σ 

and β = (1 − ξ)/σ

where Hn =
n∑

k=0

1

k
 is the nth harmonic number.

•	 Arcsine: f (y) = arcsin(y) and y ∈ [−1, 1] , for which 
α = − (π/2 + ξ)/σ and β = (π/2 − ξ)/σ

•	 Arccosine: f (y) = arccos(y) and y ∈ [−1, 1], for which 
α = -ξ/σ and β = (π − ξ)/σ

•	 Arctangent: f (y) = arctan(y) with y ∈
[
0,

�

4

]
 , for which 

� =
−

�

4
−�

�
 and � =

�

4
−�

�

where Bn is the nth Bernoulli number, computed recur-
sively starting from n = 0 and B0 = 1 with the formula 

Bn = −
n−1∑
k=0

�
n

k

�
Bk

n−k−1
, n ≥ 1.

•	 Hyperbolic sine: f (y) = sinh(y) =
ey−e−y

2
 with y ∈ [0, a] , 

for which α = − ξ/σ and β = (1 − ξ)/σ

(12)

�
�
Y
2
�
=

1√
2�

∞�
n=0

�
−
(2n − 1)!!

(2n)

�

2n + 1

2n+1�
k=0

�
2n + 1

k

�
�2n+1−k�k

I(�, �, k)

+
4n(n!)2

(2n + 1)!(n + 1)

2n+2�
k=0

�
2n + 2

k

�
�2n+2−k�k

I(�, �, k)

�
+

�2

4
(Φ(�) − Φ(�))

(13)

�[Y] =
1√
2�

∞�
n=0

(−1)n

2n + 1

2n+1�
k=0

�
2n + 1

k

�
�2n+1−k�kI(�, �, k)

(14)�
�
Y
2
�
=

1√
2�

∞�
n=0

(−1)n
�
2H2n+1 − H

n

�
2n + 1

2n+2�
k=0

⎛⎜⎜⎝
2n + 2

k

⎞⎟⎟⎠
�2n+2−k�k

I(�, �, k),

(15)

�[Y] =
1√
2�

∞�
n=0

(−1)n

(2n + 1)!

2n+1�
k=0

�
2n + 1

k

�
�2n+1−k�kI(�, �, k)

(16)�
�
Y
2
�
=

1

2

⎡⎢⎢⎣
Φ(�) − Φ(�) −

1√
2�

∞�
n=0

(−1)n4n

(2n)!

2n�
k=0

⎛⎜⎜⎝
2n

k

⎞⎟⎟⎠
�2n−k�k

I(�, �, k)
⎤⎥⎥⎦

(17)�[Y] =
1√
2�

∞�
n=0

(−1)n

(2n)!

2n�
k=0

�
2n

k

�
�2n−k�kI(�, �, k)

(18)

�
�
Y
2
�
=

1

2

�
Φ(�) − Φ(�) +

1√
2�

∞�
n=0

(−1)n4n

(2n)!

2n�
k=0

�
2n

k

�
�2n−k�k

I(�, �, k)

�

(19)

�[Y] =
1√
2�

∞�
n=0

(−1)n22n
�
22n − 1

�
B2n

(2n)!

2n−1�
k=0

�
2n − 1

k

�
�2n−1−k�k

I(�, �, k),
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•	 H y p e r b o l i c  a r c s i n e :  f (y) = arcsinh(y) =

ln

�
y +

√
y2 + 1

�
, y ∈ [0,∞)

•	 Hyperbolic tangent: f (y) = tanh (y) =
ey−e−y

ey+e−y
 with 

y ∈ [0,∞) , for which α = − ξ/σ and β = (1 − ξ)/σ

with Hn being the nth harmonic number.
The symbols used in Eqs. 9–25 are:
n, k are natural numbers;(
n

k

)
=

n!

k!(n−k)!
 is the binomial coefficient;

(2n − 1)!! = 1 × 3 ×⋯ × (2n − 1)  a n d 
(2n)!! = 2 × 4 ×⋯ × (2n) are the products of the uneven, 
or even, positive integers ≤ 2n − 1 or 2n;

Denoting by �(x) = 1√
2�
e
−

x2

2  , the standard normal den-

sity function and by Φ(x) =
x∫

−∞

�(t) dt the standard normal 

cumulative distribution function, it can be shown (for 
example, by mathematical induction) that the integral 
I(�, �, n) is given by

(20)

�[Y] =
1√
2�

∞�
n=0

(−1)n(2n)!

22n(n!)2(2n + 1)

2n+1�
k=0

�
2n + 1

k

�
�2n+1−k�kI(�, �, k)

(21)

�
�
Y2

�
=

1√
2�

∞�
n=0

(−4)n(n!)2

(n + 1)(2n + 1)!

2n+2�
k=0

�
2n + 2

k

�
�2n+2−k�kI(�, �, k)

(22)

�[Y] =
1

2
e

�2

2

[
2 sinh (�) + e−�Φ

(
−
�

�
− �

)
− e�Φ

(
−
�

�
+ �

)]

(23)

�
[
Y
2
]
= −

1

2

[
1 − Φ

(
−
�

�

)]

+
e
2�2

2

[
2 cosh (2�) − e

2�Φ

(
−
�

�
− 2�

)
− e

−2�Φ

(
−
�

�
+ 2�

)]
.

(24)

�[Y] =
1√
2�

∞�
n=0

1

2n + 1

2n+1�
k=0

�
2n + 1

k

�
�2n+1−k�kI(�, �, k)

(25)

�
�
Y2

�
=

1√
2�

∞�
n=0

2H2n+1 − Hn

2n + 1

2n+2�
k=0

�
2n + 2

k

�
�2n+2−k�kI(�, �, k)

(26)� = xTb, with xTbeing the transpose of the vector x;

(27)I(�, �, n) =

�

∫
�

tne
−

t2

2 dtandI(�, n) = lim
�→∞

I(�, �, n).

with initial values I(�, �, 0) =
√
2�(Φ(�) − Φ(�)) and 

I(�, �, 1) =
√
2�(�(�) − �(�)).

F o r  � → ∞ ,  t h e  i n t e g r a l  f r o m  E q .   2 8 , 
lim�→∞ I(�, �, n) = I(�, n) , simplifies to:

where I(�, 0) =
√
2�(1 − Φ(�)) and I(�, 1) =

√
2��(�).

We considered an efficient Taylor series expansion a 
series for which the addition of a new term fulfills two 
conditions: first, the improvement of the existing estimates 
is < 10–5, and second, the line constructed from estimates 
computed from two consecutive number of terms is almost 
horizontal (i.e., the slope is < 2°). The conditions mirror 
the two common approaches used for selection of terms 
from a series: one based on a preset value (LeVeque 2007), 
and one based on the scree method (Cattell 1966; Tabach-
nick and Fidell 2001; Zhu and Ghodsi 2006).

By truncation, the expression of the means from Eqs. 9–25 
can be rewritten in matrix form such that the Taylor series 
expansion would include only the first N terms:

where ŷ is the predicted, back-transformed variable

The terms ck,n from the triangular matrix � depend on the 
transformation, and are given by

(28)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

√
2�(n − 1)!!

⎡
⎢⎢⎣
�(�)

⎛
⎜⎜⎝
1 +

n−1

2
−1�

k=0

�2k+2

(2k + 2)!!

⎞
⎟⎟⎠
− �(�)

⎛
⎜⎜⎝
1 +

n−1

2
−1�

k=0

�2k+2

(2k + 2)!!

⎞
⎟⎟⎠

⎤
⎥⎥⎦
, n odd

√
2�(n − 1)!!

⎡
⎢⎢⎣
Φ(�) − Φ(�) + �(�)

n

2
−1�

k=0

�2k+1

(2k + 1)!!
− �(�)

n

2
−1�

k=0

�2k+1

(2k + 1)!!

⎤
⎥⎥⎦
, neven

(29)

I(�, n) =

⎧⎪⎪⎨⎪⎪⎩

√
2��(�)(n − 1)!!

⎡
⎢⎢⎣
1 +

n−1

2
−1∑

k=0

�2k+2

(2k+2)!!

⎤
⎥⎥⎦
, fornodd

√
2�(n − 1)!!

�
1 − Φ(�) + �(�)

n

2
−1∑

k=0

�2k+1

(2k+1)!!

�
, forneven

(30)ŷ =

2N+1∑
k=0

N∑
n=0

ck,nΞn,k = Tr(��),

(31)
� =

(
ck+1,n+1

)
0 ≤ k ≤ 2N + 1

0 ≤ n ≤ N

∈ M2N+2,N+1,

(32)
� =

(
Ξn+1,k+1

)
0 ≤ n ≤ N

0 ≤ k ≤ 2N + 1

∈ MN+1,2N+2

(33)

Ξn,k =

⎧⎪⎨⎪⎩

�2n−k�kI(�, �, k)�{0,…,2n}(k), arccosine

�2n−1−k�kI(�, �, k)�{0,…,2n−1}(k), arctangent

�2n+1−k�kI(�, �, k)�{0,…,2n+1}(k), other

, for 0 ≤ n ≤ N.
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The elements of the matrix Ξ, Ξn,k, depend on the variance 
of the linear model. Therefore, the selection of the significant 
terms triggers the back-transformation of the predicted vari-
able as the product of the constant matrix C and the matrix 
Ξ, which contains the linear regression values. It should be 
noticed that the matrix C is completely defined by the trans-
formation and the number of terms selected from the Taylor 
series expansion and are independent of the data for which the 
model is developed.

Considering that the first and second moments from 
Eqs. 9–25 depend on the variance, Amarioarei et al (2020) 
used a factorial experiment to prove that relatively few number 
of terms are required to represent the expectation unbiased 
(i.e., less than 10). However, real applications revealed that 
more than 10 terms could be needed for unbiased estimates, 
likely 20 or even 30. However, the large number of terms 
could be associated with the implementation, as computational 
algorithms were proven to play a significant role in the results 
(Seppelt and Richter 2005; Paun et al. 2020).

Stand‑level models for height of dominant Norway 
spruce (Picea abies L.)

The main economic species in the Carpathian Mountains 
is Norway spruce (Tudoran and Zotta 2020), which trig-
gered significant efforts in modeling height of dominant 
trees. A polymorphic model with six parameters for height 
was developed by Giurgiu and Draghiciu (2004), based on 
the field measurements published in 1957 (Popescu-Zeletin 
1957). The polymorphic model is enforced by the Romanian 
regulations, and consequently with significant impact on for-
est management, is

(34)

ck,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2n−1)!!

(2n)!!

1

2n+1

�
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�
, sine, cosine

(−1)n

(2n+1)!

�
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(−1)n

(2n)!

�
2n

k

�
, arccosine

(−1)n−122n(22n−1)B2n

(2n)!

�
2n − 1

k

�
, tangent
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�
2n + 1
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�
, arctangent

(−1)n(2n)!
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�
2n + 1

k

�
, hyperbolic sine

1

2n+1
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2n + 1

k

�
, hyperbolic tangent

.

(35)
heightdominant = a0 × SI ×

(
tLorey height + t

a1
Lorey height

× ea2×tLorey height

)
,

where heightdominant is the height of dominant trees, 
tLorey height is transformed Lorey’s height modeled with the 
expression eb0(ageb1−100b1) , a0, a1, a2, b0, b1, b2 are parameters 
determined by species, SI is site index.

The models proposed by Giurgiu and Draghiciu (2004) 
are not justifiable, as they identify a regression with a causal 
relationships, which was proven to be false (Neter et al. 
1996; Duursma and Robinson 2003). The biased models of 
Giurgiu and Draghiciu were replaced in 2020 by Amari-
oarei et al (2020), who developed parsimonious unbiased 
models. Using the same data as Amarioarei et al (2020), we 
improved the existing models not only in terms of estimators 
but also by supplying estimates for variance. Evermore, we 
have expanded the existing models by including the most 
productive sites, the ones labeled class I, which were not 
included in the original study of Amarioarei et al. There-
fore, we proposed a new set of polymorphic equations for 
the height of dominant and codominant trees based on the 
hyperbolic tangent of the ratio between height and the preset 
site index, SI:

where SI is height at age 100 years, which is 36.9 m for 
class I, 31.8 m for class II, 26.9 m for class III, and 21. 9 m 
for class IV.

Amarioarei et al. found that that the reciprocal of 
√
age is 

linearly related to tanh
(

height

SI

)
 . Therefore, the height model 

is:

where e ∼ N
(
0, �2

height

)
.

The number of terms needed to avoid numerical bias was 
identified by considering 5, 10, 20 and 30 terms in the Tay-
lor series expansion. To assess the parsimonious model of 
height yield represented by Eq. 37, we compared it with the 
models currently used by the Romanian Forest Administra-
tion (Giurgiu and Draghiciu 2004), namely Eq. 35. To prove 
that the models obtained with the proposed study are not 
only unbiased but also efficient, we have supplemented the 
parametric estimation with the Bayesian approach proposed 
by Stow et al. (2006) to correct the retransformation bias. 
The Bayesian approach to nonlinear modeling is not new 
and was advocated by many studies as an alternative to the 
parametric estimates (van Oijen 2017; Golivets et al. 2019; 
Kansanen et al. 2019). We used R (Gentleman and Ihaka 
2014) implementation of Stan (Stan Development Team 
2016a) for Bayesian inference, namely the rstan package 

(36)

f (height) = tanh

(
height

SI

)
=

exp
(

height

SI

)
− exp

(
−

height

SI

)

exp
(

height

SI

)
+ exp

(
−

height

SI

) ,

(37)f (height) = b0 + b1 ×
1√
age

+ e,
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(Stan Development Team 2016b). The Bayesian estimates 
produced by rstan, which is based on Markov Chain Monte 
Carlo, require a series of parameters, out of which the num-
ber of iterations is the most important. We followed the 
recommendation of the Stan Development Team (2016b), 
which suggested four chains. The lack of knowledge on data 
distribution, recommended the usage of a non-informative 
prior distribution in the computations, as suggested by Stow 
et al. (2006).

Stem taper models for loblolly pine (Pinus taeda L.) 
in east Louisiana

Loblolly pine (Pinus taeda L.), which is one of the most 
important commercial tree species in the USA, was the sub-
ject of many stem taper models (Max and Burkhart 1976; 
Cao et al. 1980; Fang et al. 2000; McClure and Czaplewski 
2011; Fang and Strimbu 2017; Nicoletti et al. 2020). The 
majority of the stem taper models have at least two param-
eters, an exception being the model developed by Lenhart 
et al. (1987) who has one parameter. Amarioarei et al (2020) 
proposed a trigonometric model for describing the stem 
taper of loblolly pine using the data from Fang and Strimbu 
(2017). The dataset contains 18 trees from the Vernon Par-
ish, Louisiana, with diameters measuring every meter along 
the stem, plus the diameter at 1.3 m, breast height (dbh). We 
found that the cosine of the ratio between diameter, d, and 
double dbh (i.e., cos

(
d

2×dbh

)
 ) is linearly related with the 

ratio of total height and square root of dbh and the product 
of the logarithmized total height [i.e., ln(Total height)] and 
the square root of relative height (i.e., height of diameter d/
total height):

where e ∼ N
(
0, �2

d

)
.

Considering that the transformation of the predicted vari-
able is cosine, the unbiased diameter along the stem was 
computed with Eq. 11, and the unbiased variance as the dif-
ference between Eqs. 12 and 11. We identified the number 
of terms needed to avoid numerical biased by considering 5, 
10, 20, and 30 terms in the Taylor series expansion.

The model 02 of Kozak (2004) was demonstrated by 
Fang and Strimbu (2017) to be the most suitable to the 18 
trees used in the present study. Therefore, we compared the 
parsimonious model obtained with Eq. 38 with Kozak02 
model. To ensure consistency of the results, we determined 
the Bayesian estimates of the model presented by Eq. 38, 
using Stan’s probabilistic language (Stan Development 

(38)

f (d) = cos
�

d

2 × dbh

�
= b0 + b1 × ln (Total height)

×

�
height

Total height
+ b2 ×

Total height√
dbh

+ e,

Team 2016a) as implemented in the R programming lan-
guage (Gentleman and Ihaka 2014). Similarly to the site 
index models, we have used four Markov chains and a non-
informative prior distribution in computations. Stem taper 
models are subject to autocorrelation (Lindstrom and Bates 
1990), which violates the independence assumption (Val-
entine and Gregoire 2001). However, when the residuals 
are white noise, then the models are considered complete 
(Brockwell and Davis 1996). Therefore, we tested autocor-
relation with the Durbin–Watson test, as implemented in 
SAS 9.4 (Ansley et al. 1992). To ensure that the models 
developed are efficient, we have used Bartlett’s test to assess 
homoskedasticity.

Models assessment

The key requirement of the proposed nonlinear modeling 
framework mandatory represented by Eqs. 9–25 is the nor-
mal distribution of the residuals produced from the linear 
relationship between the transformed variable of interest 
and the independent variables. To ensure that the normality 
condition is fulfilled, we have used the Shapiro–Wilk test, as 
implemented in the base R programming language. Ensuing 
normal distribution of the residual, the performance of the 
three models were assessed using four metrics: pseudo-R2, 
bias, mean absolute error (MAE), and root mean square error 
(RMSE), similarly to Bilskie and Hagen (2013), Montealegre 
et al. (2015), and Stängle et al. (2017):

where ŷi, yi, yi is the predicted, measured, or mean value 
at moment i (i.e., age, height, day), n is the number of 
observations.

All the computations were executed in R programming 
language (Gentleman and Ihaka 2014). We considered that 
an efficient Taylor series expansion is a series for which 
MAE < 1%, similarly to Amarioarei et al. (2020).

(39)bias =

n∑
i=1

ŷi − yi

n

(40)MAE =

n∑
i=n

||ŷi − yi
||

n

(41)RMSE =

n∑
i=n

(
ŷi − yi

)2
n

,
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Results

Foundation

The factorial experiment focused on Taylor series expan-
sion showed that an efficient Taylor series could have < 10 
terms, regardless of the variance. The number of terms 
depends on the selection approach, with the preset value 
supplying more terms than the scree plot. However, the two 
approaches agreed, when the number of terms is chosen 
first time when the preset value is reached by the difference 
between the expectations computed with consecutive num-
ber of terms (i.e., one term apart), except for the hyperbolic 
tangent case (i.e., two terms apart). When the preset value 
was surpassed at least two times, the scree plot and the pre-
set value approaches could differ by six terms (Amarioarei 
et al. 2020). Considering that the expectation of the first-
order moment depends on the variance, the usage of a fewer 
terms should be avoided, as it can lead to biased results. To 
ensure computational unbiasedness, we considered that the 
number of terms should be selected according to the preset 
value, the case when it was met at least two times.

The second-order moment, and consequently the vari-
ance, depend on the same three estimates as the first-order 
moment, namely ξ, σ, and I(α, β, n). Evermore, the formula 
for the first- and second-order moments is similar, the main 
difference being in the power of ξ or σ (Eqs. 7–25). There-
fore, not surprisingly, the number of terms needed for unbi-
ased estimates of the variance is also in the same range with 
the first-order moment, with the observation that usually 
an extra term is present. Therefore, a Taylor series expan-
sion with 10 terms will likely ensure the lack of computa-
tional bias for the expectations, the predicted values, and the 
variance. Nevertheless, in complex applications, with larger 
variance there is the possibility that a larger number of terms 
would be needed in the Taylor series expansion.

Models of dominant height of Romanian Norway 
spruce

According to Eq. 24, the height of dominant and codomi-
nant trees for the Romanian Norway spruce developed from 
Eq. 37 is

The coefficients b0 and b1 vary with site index (Table 1), 
which suggests that the height of dominant and codomi-
nant Norway spruce should be modeled with polymorphic 
equations.

(42)
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�2n+1−k

�k
I(�, �, k)�{0,…,2n+1}(k).

All the proposed models are significant (p value < 0.001) 
and have coefficient of determination > 0.9, which support 
their suitability in modeling the total height of dominant 
and codominant Norway spruce from Romania (Fig. 2). The 
validity of the models is supported by the Shapiro–Wilk test, 
which suggests normality of the residuals (p value > 0.25); 
consequently, the appropriateness of Eq. 37 in modeling 
tree height. As expected, the correlation between the pre-
dicted and original data increases with the number of terms 
(Table 2), but minutely (i.e., < 1% from 10 to 30 terms). The 
Bayesian model based on Eq. 37 is almost identical with 
the one from Eq. 42, therefore the assessment metrics were 
similar (Table 2); with bias, MAE and RMSE being almost 
undetectable larger than the back-transformed values. The 
model currently in used in Romania (Giurgiu and Draghiciu 
2004) had not surprisingly all six variables significant (p 
value < 0.001). The correlation coefficient between the pre-
dicted and original data is superior to the one supplied by 
Eq. 42 (Table 2), but the difference is < 1% for all site indi-
ces. Regardless of the site index, the bias, MAE, and RMSE 
were the smallest for Giurgiu and Draghiciu (2004) mod-
els (Table 2), but the differences were miniscule (< 1%). If 
the values predicted by the Giurgiu and Draghiciu (2004) 
models were infinitesimal superior to the Bayesian and the 
proposed methods, the situation is completely reversed when 
the focus is on variance. Irrespective of the assessment met-
ric, the Bayesian and parsimonious models always exhibit a 
smaller variance than Giurgiu and Draghiciu (2004) models 
(Table 2). For bias, the variance of parsimonious models is 
three times smaller than the one supplied by the Bayesian 
or Giurgiu and Draghiciu (2004) models, sometimes almost 
one order of magnitude (e.g., 95% vs −9.7 for SI = 26.9 m). 
The same conclusion is reached for MAE and RMSE, with 
the parsimonious models consistently providing smaller 
variance, sometimes almost three times smaller (i.e., 95% 
vs 29% for the MAE of SI = 26.9 m). Considering that the 
Giurgiu and Draghiciu (2004) models are less parsimonious 
than Eq. 42, exhibits significantly larger variances of the 
three metrics (inferior precision), while revealing an infini-
tesimal superior accuracy (i.e., < 1%), it can be inferred that 
they are no longer justified in applications.

Table 1   Coefficient of the height of dominant and codominant tree 
height according to Eq. 42

Coefficient SI (m)

21.9 26.9 31.8 36.9

b0 1.107664 1.116752 1.10624 1.098149
b1 −4.3304 −3.9883 −3.75759 −3.62727
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a b

c d

Fig. 2   Model for the dominant height of Norway spruce in the Carpathian Mountains: a class IV (SI = 21.9 m), b class III (SI = 26.9 m), c class 
II (SI = 31.8 m), and d class I (SI = 36.9 m)

Table 2   Assessment of the 
dominant/codominant tree 
height models for the Norway 
spruce in the Carpathian 
Mountains. The abbreviations 
are: Giurgiu Giurgiu–Draghiciu, 
Pars. Parsimonious, Var 
variance

Site index Model Bias (%) MAE (%) RMSE (%) Correlation 
coefficient (%)

Mean Var Mean Var Mean Var

21.9 Giurgiu −2.1 84 12.9 84 8.7 84 91.7
Bayesian −2.0 82 13.3 82 8.8 83 91.4
Pars. 10 terms −1.9 12 13.3 50 8.8 57 91.4
Pars. 30 terms −2.0 12 13.3 50 8.8 57 91.4

26.9 Giurgiu 0.01 95 6.1 95 7.3 95 97.4
Bayesian −0.05 94 6.3 94 7.7 94 97.1
Pars. 10 terms −0.04 −9.7 6.3 29 7.7 72 97.1
Pars. 30 terms −0.04 −9.7 6.3 29 7.7 72 97.1

31.8 Giurgiu 3.4 96.3 4.8 96.3 5.6 96.3 98.1
Bayesian −0.5 95.3 5.1 95.3 6.0 95.3 97.7
Pars. 10 terms −0.5 −25.9 5.1 72.3 6.0 84.1 97.7
Pars. 30 terms −0.5 −25.9 5.1 72.3 6.0 84.1 97.7

36.9 Giurgiu −0.08 96.8 4.3 96.8 5.2 96.8 98.3
Bayesian −0.5 94.9 4.9 94.9 6.1 94.9 97.4
Pars. 10 terms −0.5 −38.7 4.9 80.4 6.1 94.6 97.4
Pars. 30 terms −0.5 −38.7 4.9 80.4 6.1 94.6 97.4
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Stem taper models for loblolly pine

Equation 38 that modeled the stem taper model for loblolly 
pine is

where d̂ is the predicted diameter measured at height h.
Equation 38 has both terms significant (p value < 0.0001) 

and supplied a correlation coefficient between the predicted 
and the original data of −0.96. The normality test did not 
suggest a lack of normal distribution of the residuals (p 
value = 0.25), which provides evidence that the parsimoni-
ous model is appropriate for stem taper modeling. The coef-
ficient of correlation between the predicted and original data 
is virtually the same when the Taylor series expansion con-
tains 10 or 30 terms, namely 0.96 (Table 3). Mirroring the 
height modeling, the Bayesian estimates were similar to the 
parsimonious model only in terms of bias but not in terms 
of variability, which was always two times larger (Table 3).

The nine parameters model of from Kozak (2004) was the 
most appropriate to describe the stem taper (Eq. 44), with 
a correlation coefficient between the predicted and original 
data of more than 98%. However, even that the model was 
significant as a whole (p value < 0.0001), some of the vari-
ables were deemed insignificant, such as b2, the coefficient 
of the inverse of the slenderness coefficient, or b3, the coef-
ficient of X0.1 (p values > 0.26):

The elimination of the insignificant variables did not alter 
the excellent performance of the Kozak model 02, which had 
a correlation coefficient between the predicted and original 
data of 98% (Table 3). Among the considered stem taper 
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models, the Kozak model 02 is the most suitable to describe 
the variation of diameter along the stem based on all the first-
order moments, as the bias, MAE and RMSE were smaller 
than the parsimonious or Bayes models (Table 3). Never-
theless, when the second-order moment was considered, the 
Kozak 02 model exhibited larger values for all three measures 
(i.e., bias, MAE, and RMSE), but the difference was minute 
(Table 3). Both models, parsimonious and Kozak, exhibited 
no significant autocorrelation, as the Durbin–Watson test 
supplied a p value of > 0.05. Similar conclusion was reached 
for homoskedasticity, as Bartlett’s test indicates that variance 
does not change with height (p value > 0.1).

The parsimonious models with more than 20 terms in 
the Taylor expansion, the Bayesian model, and the Kozak 
02 model are almost identical on the lower half of the stem 
(Fig. 3), the differences occurring on the upper portion, 
which inside the crown. Considering that the smallest vol-
ume is located inside the crown section of the stem, the dif-
ferences between the models are operationally insignificant. 
The superior performance of the Kozak 02 model in respect 
to the first-order moments is not mirrored by the second-
order moments, which place emphasis on the parsimony of 
the model rather than on the performances. Therefore, the 
less parsimonious model (i.e., Kozak 02) is more accurate 
but less precise than the more parsimonious model (Eq. 44)

Discussion

The parsimonious framework that we are proposing in 
this study completes the work of Strimbu et al (2017) and 
Amarioarei et al (2020) by presenting not only the first-order 
expectations but also the second order. Our models expand 
the findings of Neyman and Scott (1960) by providing an 

Table 3   Comparison of the stem taper models for loblolly pine from 
east Louisiana

Measure Parsimonious 
model

Kozak model 
02

Bayesian model

10 terms 30 terms

Correlation 
coefficient 
(%)

96.1 96.4 98.1 96.3

Bias (%)
 Mean −2 −0.1 −0.2 0.2
 Variance 99.3 95.1 96.0 203.5

MAE (%)
 Mean 5.0 4.3 3.2 4.5
 Variance 99.3 95.1 96.0 203.5

RMSE (%)
 Mean 8.2 7.7 3.8 8.1
 Variance 99.7 95.2 96.0 209.9



European Journal of Forest Research	

1 3

approach for solving nonlinear models that is fast and simple. 
Our parsimonious approach is suitable for modeling com-
plex nonlinear relationships, as a Taylor series expansion 
with 20 terms will provide numerically unbiased results. 
The successive application of transformation is particularly 
suitable for functions that do not include Taylor series, such 
as the hyperbolic arcsine. The improvement carried out by 
Nelder and Wedderburn (1972) on the work of Neyman and 
Scott (1960) simplified the distribution of residuals such that 
any distribution from the exponential family can be used. 
However, the generalization from normal to an exponential 
distribution proposed by Nelder and Wedderburn (1972) is 
based on fusing two distributions: of the residuals and of the 
predicted variable. The merging of residuals, which are a 
measure of the lack of knowledge, with a variable, precludes 
the applicability of generalized linear models to any function 
(Fox 2008). Consequently, many popular functions, such as 
trigonometric functions, cannot be used within the Nelder 
and Wedderburn (1972) framework because their expectation 
is difficult to compute. Our study restricts the distribution of 
residuals to normal distribution but allows inclusion of all 
the standard trigonometric functions in modeling. One of the 
main attractions of the proposed parsimonious approach is 
the ability to compound functions, such that exponential or 
power functions can be combined with trigonometric func-
tions without biasing the results. Consequently, the linear 
equation (30) is arguably the simplest parsimonious method 
of solving nonlinear models. However, the requirement 
that the variance of the residuals must have small values in 
respect to the predicted variable indicates that the proposed 

parsimonious modeling framework is highly dependent on 
data fitting.

The models for height of dominant and codominant Nor-
way spruce and for the stem taper developed with the parsi-
monious framework presented in this study are accurate as 
the existing non-parsimonious models but more precise. The 
accuracy varies with the predicted variable, as the stem taper 
model is less accurate than the parsimonious model, whereas 
for the height the situation is reversed. Nevertheless, the 
differences are minute, which points toward the utility of the 
new framework. Even that the precision of the stem taper 
model seems to be superior to the parsimonious models, the 
variability of the non-parsimonious estimated RMSE sug-
gests the opposite. A similar conclusion holds for height 
modeling, with the difference that the variability of the esti-
mated assessment measures is significantly larger for the 
non-parsimonious models. Irrespective of the model, the 
non-parsimonious and the parsimonious models converge, 
but a large number of terms is needed in the Taylor series 
expansion, at least 20 (Figs. 2 and 3). The lack of parsimony 
is one aspect of the modeling process, another being the 
meaning of the variables predicting the variable of interest. 
From the meaning perspective, the parsimonious models 
include terms that can be interpreted [e.g., relative height 
(i.e., h/total height) or slenderness coefficient (i.e., total 
height/dbh)], whereas the non-parsimonious models contain 

terms like 10
�

1− 3
√
relative height

1− 3
√

1.3

Total height

 , which are not only difficult to 

infer or relate to tree processes, even that explanation for 
causality are argued to exist (LeMay 2018), but they are 

Fig. 3   The stem taper models 
for planted loblolly pine
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usually present as a part of a series (i.e., the 30th root of a 
variable). Considering that the differences between the mod-
els are minute in terms of linear moments (i.e., accuracy), 
whereas the second-order moment is constantly smaller for 
parsimonious models, the model selection should be placed 
on parsimony. As the natural alternative to heuristic estima-
tions of the nonlinear models, the Bayesian approach pro-
vided results inferior to the parsimonious models for all 
assessment metrics and moment order (i.e., linear or quad-
ratic), which suggests that more research is needed in the 
Bayesian area to reach levels similar to the parametric 
approaches. One of the main challenges faced by the Bayes-
ian approach is the reliance on computational resources, 
which for large datasets and complex nonlinear models 
could render solutions in unfeasible amount of time.

Our study provides a parsimonious method of solving 
complex nonlinear problems by enforcing the normality 
distribution of the residuals. The examples are used to show 
the performances of the proposed framework points toward 
superior results not only in terms of assessment metrics 
but also in terms of interpretability, particularly when the 
transformed linear model has a coefficient of determination 
larger than 0.95, recommended 0.99. The main limitation of 
the study rests in its normality assumption, as the formula 
are valid only when the residuals are normally distributed. 
Therefore, evidence of normality is required; we found that a 
p value > 0.25 is recommended. Consequently, further stud-
ies are needed to expand the results to other distribution, 
such as the exponential family of distribution as defined by 
Nelder and Wedderburn (1972).

Conclusions

The general linear regression framework developed by Gal-
ton (1877) was enhanced for more than one century but was 
not suitable for complex nonlinear models. The main issue 
faced by the nonlinear applications was the bias introduced 
by transforming the predicted variable. Our study builds on 
the work of Strimbu et al. (2017) and Amarioarei et al. (2020), 
and computes the bias corrections for the first and second 
order moments for some of the most popular transformations 
(i.e., power, trigonometric, and hyperbolic). Strimbu et al. 
(2017) proved that the estimated values are unbiased and 
complex nonlinear models can be obtained by compounding 
various transformations. Because the unbiased estimates for 
eight functions (i.e., sine, cosine, tangent, arcsine, arccosine, 
arctangent, hyperbolic sine, and hyperbolic tangent) contain 
a Taylor series expansion, we have shown that in most situa-
tions less than 10 terms are required for results without bias.

We have proved that the parsimonious framework can 
be applied successfully in forestry, by modeling the height 

for dominant and codominant Norway Spruce from Roma-
nia and stem taper of loblolly pine from east Louisiana. We 
compare our results with the current models used for stem 
taper and height, both non-parsimonious. The parsimoni-
ous models contain two terms for height, compared with 
Giurgiu and Draghiciu (2004), which contains six terms, 
and three terms for stem taper, compared with nine of Kozak 
model 02 (2004). The parsimonious models have similar 
first-order expectation for the three-assessment metrics (i.e., 
bias, MAE, and RMSE) but smaller second-order moment, 
sometime close to one order of magnitude. Therefore, the 
parsimonious models, by relaying on the normality assump-
tion, gain in precision without a significant loss, if any, of 
accuracy. The Bayesian approach to the parsimonious non-
linear models exhibits similar first-order moments for the 
assessment metrics, but the second-order moments were 
significantly larger. The attractiveness of Bayesian solution 
is challenged by the size of the data and the complexity of 
the model, as it is computationally intensive. The subsequent 
studies would focus on generalizing the normal distribu-
tion for which the formulas are now available by comput-
ing the same estimates, but for the exponential family of 
distribution.

Appendix

Using the same notation as above, the second moment �
[
Y2
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is computed as following:
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Arcsine: g(y) = arcsin (y) with y ∈ [−1, 1].
Since

we have
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Arccosine: g(y) = arccos(y) with y ∈ [−1, 1]
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Expanding arctan(t) in Taylor series for |t| ≤ 1 , we have

Thus,
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Hyperbolic sine: g(y) = sinh (y) with y ∈ [0, a], a < ∞.
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we obtain

Hyperbolic arcsine: f (y) = arcsinh(y) with y ∈ [0,∞)

Hyperbolic tangent: g(y) = tanh(y) with y ∈ [0,∞)

with Hn being the nth harmonic number and where we used 
the expansion
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