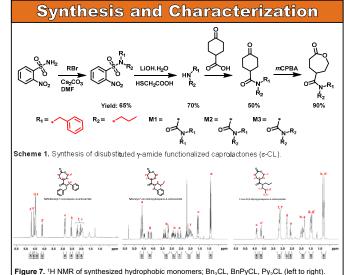


Tunable amphiphilic diblock copolymers with enhanced drug loading capacity and their toxicity evaluation through microfluidics


Stefan Group

<u>Himanshu Polara</u>, Hanghang Wang, Tejas V. Shah, Godwin Babanyinah, Abhi Bhadran, Michael C. Biewer, Mihaela C. Stefan* Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080. E-mail: Himanshu.Polara@utdallas.edu

Self-assembly in aqueous media

Figure 6. Self-assembly of amphiphilic copolymer to form drug-loaded polymeric micelles

as an initiator and 1,5,7-

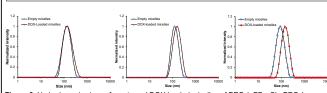
Table 1. Summary of molecular weights, compositions of synthesized block copolymers, and their

relative drug loading capacities.

PEG-b-

Scheme 2. Ring-opening

catalyst.


139.6

10:1

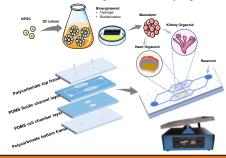
3.70

Size (dispersity) DOX Ratio loading DOXcapacity Polymer : DOX loaded 18.550 6.300 1.3 1.16 x 10⁻⁵ 10:1 5.55 PBn₂CL (0.149) PFG-b-137.9 121.0 16.600 4.600 1.9 1.50 x 10⁻⁴ 10:1 7.33 PBnPyCL (0.164)

53:47 7,900 4,200 1.1 6.00 x 10⁻⁴

Figure 8. Hydrodynamic sizes of empty and DOX-loaded micelles of PEG-*b*-PBn₂CL, PEG-*b*-PBnPyCL, PEG-*b*-PPy₂CL (left to right).

In-vitro drug Release


Figure 9. In-vitro drug release of PEG-b-PBn₂CL, PEG-b-PBnPyCL, and PEG-b-PPy₂CL (left to right) at acidic and physiological pH.

Future Directions

Combination loading of DOX with natural antioxidant resveratrol (RSV)⁵

Polymer	[Polymer]:[RSV]:[DOX]	DLC ^{RSV} (%)	EE ^{RSV} (%)	DLCDOX (%)	EE ^{DOX} (%)
PEG-b-PCL	10:1:0	0.24	2.4	-	-
	10:0:1	-	-	0.96	9.6
	10:1:1	0.06	0.6	1.08	10.8
PEG-b-PBCL	10:1:0	0.22	2.2	-	-
	10:0:1	-	-	3.10	31.0
	10:1:1	1.87	18.7	8.77	87.7

 Pumpless device⁶ with gravity-induced flow to mimic physiological conditions for culturing heart and kidney organoid

- Easy set-up and operation
- Cost effective
- No bubbles
- Realistic shear

Summary

Statement of Challenge

- We are designing and synthesizing various γ-functionalized ε-caprolactones used for the ring opening polymerization to generate amphiphilic diblock copolymers for micellar drug delivery.
- ☐ The biological studies include 2D and 3D cell culture in microfluidic devices. We designed and fabricated heart-liver-on-chip microfluidic devices and plan to advance the fabrication of heart-kidney organoid-on-a-chip microfluidic devices.

Summary of Key Elements and Finding of Research

Novel y-functionalized s-caprolactone monomers to generate amphiphilic diblock copolymers with tunable composition, molecular weight, size, and drug loading capacity of micelles. Co-loading with polyphenols resulted in increased drug loading capacity.

Potential for Positive Impact

The synthetic platform developed for caprolactone monomers can be modified to synthesize amide-functionalized caprolactone monomers. This can result in polymers with high drug loading capacity and better cellular uptake. A multiorganoid-on-chip model will be used to predict the toxicity of the loaded micelles.

References

- Soerjomataram, I.; Bray, F. Planning for tomorrow: global cancer incidence and the role of prevention 2020–2070 Nat Rev Clin Oncol 2021.18. 663–672.
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, CA: a cancer journal for clinicians 2018, 68 394–424.
- Calubaquib, E.L.; Soltantabar, P.; Wang, H.; Shin, H.; Flores, A.; Biewer, M.C.; Stefan, M.C. Polymer Chemistry 2021 12(24), 3544-3550.
- Bhadran, A.; Shah, T.; Babanyinah, G.K.; Polara, H.; Taslimy, S.; Biewer, M.C.; Stefan, M.C. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023, 15, 1977.
- 5) Washington, K.E.; Kularatne, R.N.; Biewer, M.C.; Stefan, M.C. ACS Biomaterials Science & Engineering 2018, 4(3), 997-1004.
- Soltantabar, P.; Calubaquib, E.L.; Mostafavi, E.; Ghazavi, A.; Stefan, M.C. Organs-on-a-Chip 2021, 3, 100008.

Acknowledgements

- □ GRaCE Fellowship Office of Research and Innovation, UTD
 □ Robert A. Welch Foundation –
- AT1740

 ☐ National Science Foundation –
 NSF CHE-1566059 & CHE-1609880