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Abstract
Body movements, autonomic arousal, and electroencephalograms (EEGs) 
of group members are often coordinated or synchronized with those of 
other group members. Linear and nonlinear measures of synchronization 
have been developed for pairs of individuals, but little work has been 
done on measures of synchronization for groups. We define a new 
synchronization coefficient, SE, for a group based on pairwise correlations 
in time series data and employing the notions of a group driver, who most 
drives the group’s responses, and empath, who is most driven by the 
group. SE is developed here in the context of emotional synchronization 
based on galvanic skin response time series. A simulation study explores 
its properties, the balance between strong versus weak autocorrelational 
effects, transfer, group size, and direct versus oscillatory functions. 
Distributions of SE are not affected by group size up to 16 members. 
Norms for interpreting the coefficient are presented along with directions 
for new research.
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Emotions in groups can be contagious. When everyone’s positive and nega-
tive emotional tides follow closely together in time, they are said to be syn-
chronized. Synchronization resembles some forms of coordination, such as 
neuromuscular coordination, where there is a relatively exact or proportional 
tracking of body sway, hand and head movements, autonomic arousal, or 
electroencephalogram (EEG) readings between two or more people. There is 
a theory building effort currently underway to uncover connections between 
synchronization in arousal, cognition, task structures, and performance out-
comes in dyads and teams (Gipson, Gorman, & Hessler, 2016; Guastello 
et al., 2016; Salas et al., 2015). Outcomes of interest include better therapy 
sessions when the therapist and client are synchronized with regard to auto-
nomic arousal (Marci, Ham, Moran, & Orr, 2007; Orsucci et al., 2016), body 
movements (Ramseyer & Tschacher, 2011, 2016), or speech patterns (Reuzel 
et  al., 2014). Better work performance outcomes would also be expected 
when teams are similarly synchronized (Elkins et  al., 2009; Henning, 
Boucsein, & Gil, 2001; Stevens & Galloway, 2016).

Studies of synchronization proceed from a broader awareness that group 
processes need to be studied as events over time (Arrow, Poole, Henry, 
Wheelan, & Moreland, 2004). Some perspectives go several steps further by 
using specific principles from nonlinear dynamical systems (NDS) theory 
such as attractors, bifurcations, chaos, fractals, entropy, catastrophes, phase 
shifts, self-organization, and emergence to explain the patterns in the tempo-
ral events (Arrow, 2005; Guastello, 2009; Wheelan & Williams, 2003). Due 
to length considerations, some familiarity with basic concepts from NDS 
(limit cycle attractors, oscillator dynamics, chaos, self-organization, etc.) is 
assumed in what follows. There is an extensive body of literature available; 
for further background details see, for example, Kaplan and Glass (1995), 
Sprott (2003), and Guastello and Liebovitch (2009), in addition to other 
works cited in this article.

Although several computational methods have been offered for quantify-
ing the level of synchronization between two people, little has been done to 
develop a metric that captures the overall amount of synchronization in a 
group as a whole. Such a metric would facilitate research that compares lev-
els of group synchronization with interesting verbal, behavioral, and situa-
tional variables of interest. It would also facilitate investigations into emergent 
group-level phenomena that cannot be reduced to the contributions of indi-
viduals or dyads. Thus, the primary objective of the present study was to 
develop such a metric.

Our approach for the group synchronization metric is to build it up from 
pairwise (dyadic) measures of influence between each pair of members in a 
group. A virtue of this approach is its generality: It can be applied to linear 
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dyadic measurements or more sophisticated nonlinear dyadic measurements 
and can, therefore, facilitate important ongoing assessments when various non-
linear models are more appropriate. Once the full set of pairwise measurements 
of influence (pairwise synchronization coefficients built up from time series 
analysis in our case here) has been determined (according to a linear or nonlin-
ear model), theses coefficients are organized as a matrix of pairwise synchroni-
zation coefficients (e.g., person 1 on person 2, person 1 on person 3, person 2 
on person 1, person 3 on person 1, and so on). Thus, the matrix of pairwise 
synchronization coefficients can written as [Pi,j], where Pi,j is the ith person’s 
influence on the jth person, as described in a subsequent section of this article.

The next step involves identifying (a) the member most influenced by the 
other members of the group—the empath—who is the person with the largest 
sum of pairwise synchronization coefficients of others on him or her and (b) 
the member with the most influence on the other members of the group—the 
driver—who is the person with the largest sum of pairwise synchronization 
coefficients of him or her on others.

Finally, one sets up a problem much like an ordinary multiple linear 
regression. The values of the empath’s pairwise synchronization coefficients 
(others influence on the empath) are regressed as the dependent variables on 
the values of the other members’ influence on everyone else. This regression 
of how well the empath’s degree of being influenced by the others is then 
used to extract a metric that is analogous to the coefficient of determination 
(R2), which is a measure of the global fit, and is taken to be the degree of 
group synchronization (SE).

In the following sections, we begin by presenting the details of the central 
features of synchronization, and then discuss the details of the statistical anal-
yses that are used most often for dyadic analyses, and some findings of par-
ticular interest to emotional synchronization phenomena. Then, we develop 
in detail a new synchronization coefficient for groups and present a simula-
tion study that explores its properties. We conclude with a discussion of the 
results, including some practical issues with utilizing the technique and a 
suggested research agenda.

Principles of Synchronization

The dynamics of synchronization involve self-organization and emergence 
constructs and bear some similarity to Haken’s (1984) notion of driver–slave 
relationships. Unlike the driver–slave relationship, which is unidirectional, 
synchronization phenomena are bi-directional or N-directional in the case of 
groups. A prototype illustration is the synchronization of a particular species 
of fireflies from Southeast Asia (Strogatz, 2003). The flies flash on and off, 
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which is their means of communicating with each other. In the early part of 
the evening, each one flashes at its own rate. As they interact, they pulse on 
and off in greater synchrony, so that by the end of the evening, the whole for-
est lights up and turns off as if one were flipping a light switch. The common 
features among the many examples are that synchronized systems contain 
two oscillators, a feedback loop between them, and a control parameter that 
speeds up the oscillation. When the speed reaches a critical level, phase lock 
sets in and the synchronized pulsing can be observed.

The prototype synchronization dynamics are not always simple and direct. 
The “oscillators” could be complex self-organized events. Galvanic skin response 
(GSR) time series and EEG, for instance, result from the combined activity of 
multiple neural circuits that are supposed to act chaotically over time, even 
though they might result in oscillating behavioral outcomes. From the between-
person perspective, three coupled oscillators are sufficient to produce chaos 
(Newhouse, Ruelle, & Takens, 1978). Not all possible combinations of oscilla-
tors and parameters will do so (Pikovsky, Rosenblum, & Kurths, 2001; Puu, 
1993); they could flatten each other out, however, and some oscillators can 
become unstable in the presence of others (Puu, 2000). Thus, the assumption that 
the synchronizing time series are pure oscillators is not universally applicable.

The level of synchronization could be matters of degree and direction. 
Feedback could be a one-way or an imbalanced two-way relationship. The 
feedback could be positive–positive, in which the participants feed off each 
other and their emotions go up and down at the same time. Feedback could 
also be positive–negative, such that one person tends to excite the second, but 
the second dampens the first to maintain focus or calm. There is also the pos-
sibility of negative–negative synchronization, which might have the appear-
ance of two people on an emotional see-saw (Guastello, 2016).

The task also imposes different requirements for coordination and syn-
chronization. Dyads could be (a) taking turns in conversation, (b) taking dif-
ferent but synchronized compatible actions, or (c) working in parallel on a 
task where they can have different levels of interaction. Figure 1 contains a 
pair of GSR records for two people working on a vigilance task that required 
participants to look for an intruder in a virtual reality security camera display 
showing scenes from an empty building, while performing a second task 
(Guastello, 2016). The person represented in the upper chart was positively 
influenced by the person in the lower chart, meaning that arousal levels in the 
upper chart tended to go up and down within a few seconds of the movement 
from the person in the lower chart. The person in the lower chart, however, 
was negatively affected by the person in the upper chart, meaning that upward 
and downward fluctuations from the upper chart tended to be dampened by 
the person in the lower chart once they were experienced.
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Teams of three or more people could be (a) synchronized with each other in 
any of the modes possible for dyads, (b) focused on an external situation that is 
changing, or (c) both, as depicted in the diagram in Figure 2. The linkage diagram 
in Figure 2 represents the task configuration for a team of four people working in 
an emergency response (ER) simulation against a single opponent (also human, 
not a computer-generated avatar). The activity contained a defined turn-taking 
process. Figure 3 is a set of GSRs generated from one such simulation (Guastello 
et al., 2016). The upper panel of time series contains raw observations generated 
at 120 samples per second; the opponent’s data are designated as GSR5. The 
lower panel of time series contains the same raw data as the upper panel except 
that the observations were down-sampled to one observation per second. The 
appearance of synchronization was still present but less pronounced.

Dyadic Models of Synchronization

In this section, we make use of standard time series analysis techniques (see 
Ozaki, 2012). It is assumed that the analyses of the discussed physiological 
metrics are performed on continuously streaming data, rather than discrete 
event-based data, to capture the nonlinear dynamics in the process. Although 
event markers could be incorporated into the experimental design as addi-
tional elements to create discrete event-based data, the use of such event mark-
ing is not required for basic modeling with the computations described next.

There are a few boundary conditions that need to be observed when choosing 
a statistical model. The general model for all candidate models is shown below.

X f X P2 1 1= ( ), . 	 (1)

Figure 1.  GSR time series for a dyad performing a vigilance dual task.
Source. Reprinted from Guastello (2016, p. 66). Copyright 2016 by the Society for Chaos 
Theory in Psychology & Life Sciences.
Note. GSR = galvanic skin response.
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Here X = {X1, X2, . . .} is the time series for the target person, and P = {P1, P2, 
. . .} is the other person. The statistical model needs to determine Granger 
causality; that is, P must explain X over and above the autocorrelation X (with 

Figure 2.  Four members of an emergency response (ER) team coordinate 
responses and synchronize arousal levels as they work against a situation that is 
changing over time.

Figure 3.  GSR readings for five people playing the emergency response board 
game with a defined turn-taking sequence.
Source. Reprinted from Guastello et al. (2016, p. 231), Copyright 2016 by the Society for 
Chaos Theory in Psychology & Life Sciences.
Note. Upper panel: Raw data in millivolts. Lower panel: Data resampled at one observation 
per second. GSR = galvanic skin response.
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itself). This is an important constraint to guard against spontaneous synchro-
nization. Two entities can behave similarly over time for reasons that are com-
pletely independent of one another. One also wants point estimation and a 
measure of the size of synchronization effect, not simply a significance test.

Several types of nonlinear analyses have been used to assess the synchro-
nization between pairs of people, such as recursion quantification analysis 
(Delaherche et al., 2012; Orsucci et al., 2016; Reuzel et al., 2014), phases of 
oscillators (Delaherche et  al., 2012; Gorman, Amazeen, & Cooke, 2010; 
Richardson, Garcia, Frank, Gergor, & Marsh, 2012), statistical models that are 
based on the assumption of pure oscillators (Butner, Amazeen, & Mulvey, 
2005; Butner & Story, 2011), chaos (Guastello, 2016; Guastello et al., 2016; 
Guastello, Pincus, & Gunderson, 2006), wavelet analysis (Likens, Amazeen, 
Stevens, Galloway, & Gorman, 2014), and symbolic dynamics (Stevens & 
Galloway, 2016; Stevens, Galloway, & Lamb, 2014; Stevens, Gorman, 
Amazeen, Likens, & Galloway, 2013). Given the range of available options, 
we selected the exponential structure as a reference model because it can 
determine whether the time series is chaotic, self-organizing (1/f), oscillating, 
dampening, or moving toward a fixed point—providing a wide range of pos-
sible dynamics all in one analysis. Self-organized systems tend to produce 
time series of behavior that have fractal dimensions between 1.0 and 2.0 (Bak, 
1996; Guastello & Gregson, 2011). Calmer systems would fall closer to 1.0 
and thus be well approximated by a linear time series analysis. The linear 
model also serves as a helpful reference model because it is a common choice, 
and it also provides the necessary elements for the new synchronization coef-
ficient. More volatile systems would produce time series with higher dimen-
sions, and thus be represented better by an appropriate nonlinear model.

The simplest structure in the exponential model series (Guastello & Gregson, 
2011; Guastello, Nathan, & Johnson, 2009) is autocorrelational, and calculated 
through nonlinear regression, as shown with the following equation.

z z2 1 2 1 3= ( ) +θ θ θexp . 	 (2)

In Equation 2, θ2 is the Lyapunov exponent. z is the time series variable X that 
was transformed by location and scale.1 When testing a model, θ1 or θ3 can be 
dropped to preserve the statistical significance of θ2. Statistical models that 
are calculated with a least-squares procedure are usually compared on the 
basis of R2, percentage of variance accounted for. The calculation of the syn-
chronization coefficient requires the use of R (unsquared).

Equation 2 can be used as a test for chaos by examining the signs of θ2 and 
θ3. Not all expanding functions are chaotic; chaotic processes contain both 
expanding and contracting trajectories. Thus, if the exponent is positive and 
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the constant, θ3, is negative, one has signs of a chaotic process. The Lyapunov 
dimension, DL, is equal to exp(θ2t); t = 1 if all time intervals are equal, as they 
are in this application. However, previous work with GSR data (Guastello, 
2016; Guastello et al., 2016) showed that θ3 should be dropped.

The second model from the series that was adopted here is an expansion 
of Equation 2 in which a second exponential function in Equation 2 replaces 
the constant.

z z z2 1 2 1 3 4 1 5= ( ) + ( ) +θ θ θ θ θexp exp . 	 (3)

This structure has been used to assess synchronization or transfer effects 
from a conversation partner to the target person (Guastello et al., 2006), GSR 
series from dyads working on a vigilance task (Guastello, 2016), and teams 
playing an ER board game (Guastello et al., 2016). The data analyses showed 
that two of the regression weights were not necessary, and the model simpli-
fied to create Equation 4.

z z P2 1 2 1 4 1= ( ) + ( )θ θ θexp exp . 	 (4)

In Equation 4, P is the partner to the target person z, and this GSR series was 
also transformed by location and scale. The same simplification was needed 
in previous studies of dyads (Guastello, 2016; Guastello et al., 2006; Guastello 
et al., 2016).2 The regression weight, θ4, is the transfer coefficient that is used 
in the calculation of the synchronization coefficient. It represents the impact 
of a second person on the target person beyond the simple autocorrelation. 
Thus, it captures the amount of synchronization between P and z.

Linear models would have a similar but simpler structure. The autocorre-
lation function would be as follows.

X Xn n j= + −β β0 1 , 	 (5)

where X is the GSR series for a target person and j > 0 is the lag. An autocor-
relation is a linear relationship so long as the autocorrelation is positive. 
Negative autocorrelations indicate an oscillation; an upward movement is 
followed by a downward movement.

Equation 5 can accommodate synchronicity by adding the response from 
the second person with a second regression weight (β2).

X X Pn n j n j= + +− −β β β0 1 2 . 	 (6)

Then, the amount of synchronization between P and X is represented by the 
transfer function β2 and where j > 0 is the lag.3
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The use of any time series model requires that one determine an optimal 
lag length. Lag length reflects time required for Xn − j to produce Xn. Several 
methods for determining lag length are available, but the results do not 
always agree (Guastello et  al., 2016; Guastello, Reiter, & Malon, 2015). 
For practical purposes of analysis, one typically commits to one of the stan-
dard methods. The issue of choosing a lag length is revisited later in this 
article.

Group Synchronization Coefficient

Prior Approaches

Prior efforts to develop a synchronization coefficient for groups and teams 
have been predicated on the data sources that the researchers wanted to syn-
chronize and the underlying assumptions about their dynamics. The phase 
clustering concept originated with the expectation that the observable behav-
ior was an oscillating function such as finger tapping, rocking in a rocking 
chair, or the flashing of fireflies (Pikovsky et  al., 2001; Richardson et  al., 
2012). The actions of any two people would be synchronized to the extent 
that their phase differences in movement were minimal. Figure 4 shows two 
perfect oscillators that are slightly out of phase even though they are complet-
ing their cycles at the same frequency over time. The calculation of group 
synchronization would involve taking a function of the phase of each time 
series, finding the average of that function across people, then making one 
more calculation to arrive at the metric. The phase cluster metric has been 
shown to differentiate experimental conditions that manipulated the likeli-
hood of synchronization in a rocking chair task (Richardson et  al., 2012). 
Richardson et al. (2012) also remarked, however, that the phase cluster met-
ric did not reflect leader–follower relationships among the individuals, which 
could affect the level of synchronization of the group as a whole.

A related idea translated the set of biometric time series into a distance 
coefficient. Elkins et al. (2009) examined synchronization in heart rate vari-
ability among team members engaged in a computer simulation where an ER 
team was cleaning a building of armed combatants. Some of the pairwise 
indicators they assessed were phase differences between dynamics such as 
the prototype in Figure 4. Their team-level metric was based on distance 
across N dimensions (team members). The differences in heart rate variability 
occurring over a fixed amount of time were calculated, squared, and summed 
over team members; the synchronization metric was the square root of the 
sum. The metric was successful in distinguishing high- and low-performing 
teams. The metric did not appear to distinguish autocorrelation effects from 
the specific impact of one person on another in any sequential analysis.
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The symbolic dynamics approach (Stevens & Galloway, 2016; Stevens et al., 
2014; Stevens et al., 2013) was, strictly speaking, not a measurement of group 
synchronization. Rather, it looked for patterns of EEG activation across six team 
members, some of which could reflect synchronization, and how often those 
patterns changed. The patterns could be represented by one of 25 symbols, an 
example of which appears in Figure 5. The symbols are calculated at very short 
time intervals and are expected to change over time. The volatility of change (in 
symbol codes) over the data collection period is calculated as a Shannon entropy 
coefficient. Self-organized and synchronized sequences would exhibit lower 
entropy values. Relative to occupational performance criteria, entropy was 
lower in high-performing groups in the submarine navigation simulation during 
epochs in which the team was focusing attention on the central commander, and 
lower among high-performing groups during epochs that demanded individual-
ized action. Pairwise comparisons among team members’ sequences of EEG 
arousal codes can be evaluated with a mutual entropy coefficient, which is a 
variant of Shannon entropy that is interpreted like a correlation.

Figure 4.  Two oscillators that are slightly out of phase.

Figure 5.  Example of a synchronization symbol.
Source. Reprinted from Stevens and Galloway (2016, p. 275), Copyright 2016 by the Society 
for Chaos Theory in Psychology & Life Sciences.



Guastello and Peressini	 13

The Shannon (1948) entropy metric was first introduced to assess the 
quality of long-distance telephone communication and quickly became the 
basis of a general theory of communication (Shannon & Weaver, 1949). It has 
had extensive use in the analysis communication and choice sequences 
(Attneave, 1959; Dabbs & Ruback, 1987; Griessmair, Strunk, Vetschera, & 
Koeszegi, 2011). One of its limitations, however, is that it does not take the 
serial dependency between system states into account in the calculation of 
entropy; a frequency distribution of categorical states that is executed in two 
or more different temporal orders would produce the same measurement of 
entropy. There are other measures of entropy that do take sequence into 
account, however (Guastello & Gregson, 2011), and importantly converge to 
a Lyapunov exponent under limiting conditions.

New Coefficient

The new synchronization coefficient builds on the statistical analysis of dyadic 
relationships. Within a team of four people, there would be 12 two-way dyadic 
linkages or transfer effects (N people × N − 1). Although there is no a priori 
reason to expect particular linkages to be tight, loose, positive, or negative, one 
could devise studies that search for variables that are connected to different 
linkage properties. Based on the differences among dyads that have been 
observed in other types of tasks, however, it is possible to anticipate that some 
team members would be more influential than others on their teammates, and 
some team members would be more responsive than others to their teammates. 
Thus, we define two new constructs for studying synchronization in team: the 
drivers and the empaths. Drivers would be the individuals who have the stron-
gest physiological effect on others in the group (i.e., other players were more 
likely to synchronize to their physiological behaviors). Empaths would be the 
individuals who are most responsive to other members in the group (i.e., they 
were more likely to synchronize to others’ physiological trends).

The designations of drivers and empaths would be determined statistically 
as explained below in conjunction with Table 1. For any pair of people, the 
linear models in Equations 2 and 4 or the nonlinear models in Equations 5 
and 6 can be calculated with one person’s GSR data as the target time series 
(z1 or Xn) and the partner’s data as a potentially synchronized series (Pn − j). 
The two series can be analyzed in the other direction so that the partner 
becomes the target and the previous target becomes the partner. The synchro-
nization coefficients would be θ4 in Equation 4 and β2 in Equation 6.

For larger groups, however, there are many potential autocorrelation and 
transfer effects, and most of the transfer effects are probably not symmetrical. 
For instance, Gottman (1979) and Levinson and Gottman (1983) found in 
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their studies of distressed married couples that the influence of one partner on 
the other was more often asymmetric in the couples who were more likely to 
break apart than the couples who remain together after therapy. In other 
words, one could predict the arousal level for one spouse during a conflict 
period from the arousal level of the other, but not necessarily the other way 
around. Importantly, high degrees of reactivity or synchronization were also 
predictive of dissolution if the content of the verbal exchange was negative. 
Guastello et al. (2006) found evidence of non-symmetric influence to varying 
degrees when two people who met each other for the first time engaged in 
conversation, although the presence of any level of influence was more read-
ily detected through a nonlinear analysis of GSR levels than through a linear 
analysis. Gottman (1979) interpreted the presence of a one-way influence 
effect as a dominance relationship. A later study that involved two people 
working together on a laboratory task showed similar asymmetries, but also 
other types of asymmetries, such that one person could have an arousing 
effect on the partner, while the partner could have a dampening effect on the 
other (Guastello, 2016).

Thus, we introduce the following matrix argument to simplify the determi-
nation of the person who has the most influence on the rest of the group and 
the person who is most responsive to the other group members. Table 1 is a 
prototype matrix P of synchronization coefficients. The diagonal values are 
autocorrelations. The off-diagonal entries are synchronization coefficients. 
The off-diagonal elements are organized so that they represent the influence 
of the person in the row index on the person in the column index. The matrix 
can be filled with coefficients from either a linear or nonlinear analysis.

The sum of squared coefficients in the rows can be compared so that the 
person with the largest value is the driver of others’ responses. The sum of 
squared coefficients in the columns can be compared so that the person with 

Table 1.  Prototype Matrix of Synchronization Coefficients for a Group With Four 
Members. 

To

Driver score  P1 P2 P3
 Pn

From P1 AR1 R12 R13 R1n ΣR2
1

P2 R21 AR2 R23 R2n ΣR2
2

P3 R31 R32 AR3 R3n ΣR2
3

  Pn Rn1 Rn2 Rn3 ARn ΣR2
n

Empath score ΣR2
1 ΣR2

2 ΣR2
3 ΣR2

n  
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the largest value is the empath. The computations on the rows and columns 
were borrowed from factor analysis where the initial values of communality 
and eigenvalues are established. Psychologically, the computation on the 
rows implies that the drivers are driving themselves as well as driving other 
people. Each person in the group is finding a balance between driving or 
influencing others and being influenced by them.

The empath would be most receptive and less driving than the driver in 
most cases, but not necessarily the least driving of the group. Empathy is usu-
ally defined as having a cognitive and an emotional component. The cognitive 
component is the ability of one person to see another person’s point of view, 
even though it may be different from their own. The emotional component is 
the ability to experience vicariously the emotions of other people. The latest 
thinking on the empathy trait is that it might contain other facets such as self-
regulation of emotion (Gerdes, Leitz, & Segal, 2011; Lietz et al., 2011), which 
makes the construct more similar to emotional intelligence. Correlations 
between .55 and .62 between emotional intelligence and empathy as defined 
by Gerdes et al. (2011) have been reported (Guastello et al., 2016).

Responsiveness does not necessarily mean following the same direction 
of increasing or decreasing arousal. Empathetic people can also detect 
arousal levels and calm the others down (Guastello, 2016). There are also 
situations in which empathy in the sense of accurate detection of the part-
ner’s emotional state does not produce any response at all (Winczewski, 
Bowen, & Collins, 2016).

Table 2 is a set of values of synchronization coefficients that were com-
puted from actual GSR time series for a group of four people participating in 
an ER simulation using the linear set of coefficients. In the example, Person 
1 would be the driver of the group, and Person 2 would be the empath.

The calculation of the team-wide measure of group synchronization, SE, is 
based on the logic inherent in multiple regression. It involves some of the 
matrix calculations that are present, but generally not seen, in standard mul-
tiple regression as performed by commonly used software; see, for example, 
Tabachnick and Fidell (2007, Appendix A) for background. The first step is 
to identify the empath, which is P2 in the example. Second, the column of 
coefficients for P2 is removed, the autocorrelation entry AR2 is dropped, and 
the remaining coefficients become a column vector V′.

Third, P2’s row is also removed, leaving a square matrix M. Thus, if the origi-
nal group consisted of four people and the empath is removed, M is a 3 × 3 
matrix (and always square).

Fourth, take the inverse of M and calculate a vector of weights:

Q M V1= − ′. 	 (7)
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The elements (weights) of Q are comparable in meaning to regression weights 
where the empath is a (human) dependent measure, and the other members of 
the group are independent variables. The fifth and final step is

SE = V Q′ . 	 (8)

In the example, reduced vector V’ is

0.4050
0.1390
0.0710

The reduced matrix M is

0.6040	 0.2260	 0.2310
0.0620	 0.3590	 0.1670
0.0330	 0.0980	 0.2920

The vector of weights Q is

0.5399
0.2479
0.0989

The synchronization coefficient SE is 0.2602.
Even though the logic of the computation follows that of multiple linear 

regression, neither matrix P nor M contains 1.0 in the diagonal entries, and 
neither is symmetric as would be the case with a standard correlation matrix. 
Thus, it is not guaranteed that the range of values for SE would be confined 
between 0 and 1. Thus, the following simulation studies were conducted to 

Table 2.  Sample Matrix of Coefficients Representing Autocorrelations, Drivers, 
and Empaths.

To person

Driver score  1 2 3 4

From Person 1 .6040 .4050 .2260 .2310 .6333
From Person 2 .1090 .5480 .1930 .1830 .3829
From Person 3 .0620 .1390 .3590 .1670 .1799
From Person 4 .0330 .0710 .0980 .2920 .1010

Empath score .3816 .4887 .2268 .2000  
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determine the range of SE under different plausible conditions by varying 
diagonal values, off-diagonal values, and matrix size.

Simulations

Simulation 1: Diagonals and Off-Diagonal Ranges

The goal of this analysis was to assess the impact of the ranges of values 
appearing on the diagonal and off-diagonal matrix entries on the size of the 
synchronization coefficient. This analysis examined combinations of diago-
nal values within three constrained ranges, which were realistic in light of 
our lab work in progress with GSR data, and different proportions of nega-
tive values in the starting matrix. Negative values of synchronization in the 
off-diagonal can be interpreted as inhibition effects between a pair of partici-
pants. All values of SE were calculated for hypothetical groups of four. There 
were three diagonal conditions (Factor A) and four off-diagonal conditions 
(Factor B):

A1: Diagonals were randomly generated values between .90 and .99.
A2: Diagonals were randomly generated values between .50 and .59.
A3: Diagonals were randomly generated values between .20 and .29.
B1: Off-diagonals were all positive, ranging from 0 < rij < 1.
B2: Off-diagonals were 1/3 negative, ranging from −.5 < rij < 1.
B3: Off-diagonals were ½ negative, ranging from −1.0 < rij < 1.
B4: Off-diagonals were 2/3 negative, ranging from −1.0 < rij < .5.

The experimental design was fully crossed, and there were 10 replications 
for each combination of conditions. The dependent measure was the SE gen-
erated from the pairs of conditions. When generating the samples, one cell, 
A3-B2, contained an outlier value of SE > 100.00. It was replaced with a new 
sample of 10. The replacement sample did not contain such an outlier.

Levene’s test of homogeneity of variance among the 12 cells was signifi-
cant at p < .10, F(11, 108) = 1.784, p = .065. Thus, any differences in means 
could be confounded with differences in variance. Neither of the main effects 
for mean differences nor the interaction was significant, however, Factor A: 
F(2, 108) = 0.435, ηp

2  = .008; Factor B: F(3, 108) = 0.230, ηp
2  = .006; inter-

action: F(6, 108) = 0.811, ηp
2  = .043.

The results indicate that the grand mean of SE = 1.365, 95% confidence 
interval (CI) = [−0.602, 2.126], would apply to all combinations of diagonal 
and off-diagonal values tested for groups of four. These results would not 
generalize to SE > |100|. A follow-up run of 100 cases of the A3-B2 condition 
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did not produce any instances of values greater than |100|. Thus, a reasonable 
estimate for the probability of values that large is less than .01.

Simulation 2: Dependent Off-Diagonals and Group Size

The concept for the second simulation study was that the high, medium, and 
low ranges of the diagonal would be co-dependent with limited ranges of 
bivariate synchronization among the off-diagonal entries. For instance, if 
autocorrelations were high, then there would be little room for influences 
from another person; thus, off-diagonals would be constrained to a smaller 
range. Therefore, one set of experimental conditions defined ranges of off-
diagonal matrix entries that were dependent on the diagonal values (Factor C) 
as follows:

C1: Diagonal ARi ranged from .90 to .99, off-diagonals ranging from −.10 
< rij < +.10.
C2: Diagonal ARi ranged from .50 to .59, off-diagonals ranging from −.50 
< rij < +.50.
C3: Diagonal ARi ranged from .20 to .29, off-diagonals ranging from −.80 
< rij < .80.

Given that the computational model was predicated on the logic of regression 
analysis, the hypothesis arose that group size, meaning matrix size, would affect 
the average value of SE coefficients. In ordinary multiple linear regression, a 
trivial variable produces a nominal increase in multiple R. Thus, another com-
parison was made among group sizes (Factor D) of 4, 8, 12, and 16 members.

The experimental design was fully crossed once again, with 10 replica-
tions for each combination of conditions. There were two cells, C2-D8 and 
C3-D16, that contained outlier values >|100|. They were replaced with new 
samples of 10 that did not contain an outlier.

Levene’s test of homogeneity of variance among the 12 cells was signifi-
cant, F(11, 108) = 3.200, p < .001. Thus, any apparent differences in means 
might result from differences in variances. However, neither of the main effects 
for mean differences was significant: Factor C: F(2, 108) = 0.744, ηp

2  = .014; 
Group size: F(3, 108) = 0.319, ηp

2
 = .045. The interaction effect was also non-

significant, F(6, 108) = 1.569, ηp
2  = .080. Thus, the grand mean of SE = 0.112 

(SE = 0.650; 95% CI = [−1.177, 1.402]) would apply to all conditions. These 
results would not generalize to observed SE coefficients greater than |100|.

A follow-up run of 100 cases from the C2-D8 condition did not produce any 
sync coefficients greater than |100|; thus, the odds of such an outlier are less 
than .01. However, a follow-up run of 100 cases from the C3-D16 condition did 
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produce two such outliers; thus, the odds of such an outlier are .0273. Table 3 
contains the descriptive statistics for the specific conditions in Simulation 2.

An independent-samples t test between the grand means of the two samples 
(Factors A and B, and C and D) with unequal variances assumed was significant, 
t = 1.658, df = 238, p < .05, one-tailed. The mean synchronization value for com-
patible levels of on- and off-diagonal values and different group sizes (C-D) was 
smaller than that obtained for scenarios based on Factors A and B. The former 
was close to 0.00 which should be a target value for the interpretation no synchro-
nization. Thus, the descriptive statistics in Table 3 are provided as an interpretive 
guide to synchronization coefficients drawn from plausibly real data.

Simulation 3: Matrix Dominated by Oscillators

This simulation contained one scenario, which was based on the popular 
assumption of pure oscillators. Pure oscillators could be fair assumptions for 
finger-tapping experiments or other rhythmic activities such as synchronized 

Table 3.  Descriptive Statistics for Simulation 2: Co-Dependent Diagonals and Off-
Diagonals With Group Size.

Diagonal–off-diagonal condition (C) Group size M SD n

1 1 0.014 0.008 10
  2 0.025 0.008 10
  3 −1.539 9.317 10
  4 0.062 0.010 10
  Total −0.360 4.523 40
2 1 1.240 0.939 10
  2 0.029 1.358 10
  3 −1.539 9.357 10
  4 −1.863 13.560 10
  Total 0.053 8.043 40
3 1 −1.436 5.143 10
  2 3.522 12.476 10
  3 2.279 4.574 10
  4 0.556 6.777 10
  Total 1.230 7.812 40
Total 1 −0.060 3.118 30
  2 1.191 7.189 30
  3 −0.267 7.983 30
  4 −0.415 8.512 30
  Total 0.112 6.968 120
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swimming or rowing. The diagonals were relatively strong negative autocor-
relations ranging from −1.0 to −.5. The off-diagonals were allowed to vary 
from −1.00 to +1.00. The descriptive statistics based on N = 200 simulated 
cases were M = −1.153, SD = 4.802. The distribution is shown in Figure 2. It 
was slightly biased toward negative synchronization, although it was closely 
packed around the mode and symmetrical (see Figure 6).

Discussion

There is a strong and growing interest in the synchronization of physiological 
events in small groups and the possible implications for team performance, 
problem solving, and other outcomes. The synchronization of any pair of 
people is an NDS phenomenon, even though some research on record does 
not refer to those underlying principles. The principles do affect the choice of 
statistical models for analyzing pairwise synchronization, however, and there 
have been some clear advantages associated with NDS models.

The present study responded to the need for a single measure of group 
synchronization that does not require the restrictive assumption that the con-
tributing time series be pure oscillators. Although pure oscillators are appar-
ent in some rhythmic group motions, autonomic arousal has a more complex 
structure by virtue of the contributing neural networks, which might not be 

Figure 6.  Distribution of SE when relatively strong pure oscillators are assumed.
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exactly the same for all team members. In fact, there is strong evidence that 
the low-dimensional chaos that is characteristic of self-organized systems is 
likely present in many cases (Guastello, 2016; Guastello et  al., 2016; 
Guastello et al., 2006). If the medium of synchronization (e.g., autonomic 
arousal) is produced by the human nervous system, a self-organized system 
is almost guaranteed because of the large number of excitatory and inhibitory 
circuits that are involved (Whittle, 2010). Furthermore, a team action might 
in fact require its members to do different things in a coordinated fashion; the 
arousal levels, however, could still reflect a pattern of synchronization. It 
was, thus, important to develop the SE coefficient developed here to be flex-
ible with regard to contributing dynamics. SE also produces some intermedi-
ate calculations that identify drivers and empaths within a group, which have 
other uses.

There is a loose similarity between the logic behind the SE calculation 
presented here, and the logic behind generalizability theory (Cronbach, 
Rajaratnam, & Gleser, 1963), which was an extension of Cronbach’s alpha 
and some intervening ideas about person perception. In generalizability the-
ory, there are different perceivers (raters) and persons being perceived on 
rating scales (ratees), resulting in a rectangular matrix of ratings. One then 
uses the calculations from the ANOVA to assess variance among ratees, 
which should be relatively high, and variance among raters, which should be 
relatively small. The variance among raters should be relatively small due to 
their differing opportunities to see different aspects of the ratees. Then, there 
is the total amount of error variance that is not explicitly associated with 
either axis of the matrix, which determines the overall reliability (generaliz-
ability) of the rating system.

Kenny (1994) extended the person perception concepts behind Cronbach 
et al.’s work to produce a matrix-based array of perceivers and persons per-
ceived that would result in an assessment of how much variance reflects simi-
larities among people that one would expect from a cohesive and homogeneous 
group, and how much variance reflects individual differences. The scenario 
in which perceivers are not rated and ratees do not give ratings produces a 
rectangular matrix similar to those used in applications of generalizability 
theory. The scenario in which everyone rates everyone else is considered 
much more complicated to compute. In the latter case, the matrix is square 
and asymmetric, and there is no diagonal.

It should also be mentioned that Kenny’s (1994) system was not a time 
series, although he indicated that results from discrete time intervals could be 
compared. The SYMLOG system (Bales & Cohen, 1979) of group evalua-
tions also reflected this static-but-repeated perspective. Bales (1999) later 
extended the principles behind SYMLOG to continuously evolving groups 
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with formal nonlinear dynamics operating, particularly self-organization 
(Pincus & Guastello, 2005).

The SE coefficient presented here was not derived directly from Cronbach 
et al. (1963) or Kenny (1994), who were not studying synchronization, but 
rather extended from the more classical multiple linear regression theory. 
Unlike the classical scenario, however, the data matrix is square, the observa-
tions are continuous, and the diagonal in the matrix does not contain 1.0 
except, perhaps, on rare occasions. The matrix entries are autocorrelations 
and semi-partial time series correlations rather than raw observation values. 
These computational elements prevent spurious synchronization, which 
could happen if two people are coincidentally acting the same way over time 
without having any direct interaction with each other.

Extreme Conditions

Simulation 2 showed that the population value of SE hovers around 0.00 
meaning that no synchronization exists within the group when autocorrela-
tions and linkage coefficients exist in what are regarded as plausible condi-
tions. Negative values are possible, which would indicate that the system is 
tilted toward out-of-phase relationships or inhibitory relationships among the 
group members (Simulation 3). More extreme (absolute) values are possible 
(Simulations 1 and 3), and the extreme nature of some values can be attrib-
uted to combinations of low diagonal values and high off-diagonal values.

The extreme conditions are possible when random numbers are generated, 
but are much less likely when the probability structures associated with real 
living systems are involved. A very low self-consistency combined with a very 
high responsivity to group members would be highly unstable overall, as it 
would indicate capricious group behavior and minimal individual control over 
entropic conditions. The personal experience in such a context would likely 
result in self-organizing efforts to maintain personal predictability. One might 
expect someone in the group to assume the role of the driver and assert some 
control for better or for worse. Alternatively, one might expect that an outside 
agent, such as law enforcement (also represented by the heavy black dot in 
Figure 1), might exercise control and serve as the driver.

Although the efficacy of controlling extreme crowds depends in part on 
the size of the crowd, the SE coefficient itself is not affected by group size. 
Specifically, this study examined groups ranging in size from four to 16 
members and found no significant difference in the SE coefficient due to team 
size. This is a welcome departure from what one would expect from a matrix 
calculation that parallels that of multiple linear regression. Researchers might 
eventually find that connections between group size and synchronization can 
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attribute differences in SE to the social conditions rather than artifacts of the 
metric itself.

Practical Use of SE

The matrix calculations that produce SE would be very time consuming if 
performed by hand, particularly if groups larger than three members were 
involved. Thus, we have developed a computer program, SyncCalc 1.0 
(Peressini & Guastello, 2016). To operate it, the researchers must first assem-
ble an input matrix that is formatted like the ones shown in Tables 1 and 2. 
The diagonal and off-diagonal elements would come from analyses of pair-
wise linear (Equations 5 and 6) or nonlinear (Equations 2 and 4), which can 
be calculated with commonly available statistical software.

An unresolved issue concerns the relative merits of using linear versus 
nonlinear model coefficients to compose the synchronization matrix. The 
answer is likely connected to the physiological measurement, the task, and 
the time horizon over which group events would occur. Sometimes the non-
linear models are more accurate in terms of R2 than the linear models for 
dyadic interaction (Guastello et al., 2006). Sometimes the linear models are 
more accurate, but the nonlinear coefficients detect important events or 
dynamics that the linear coefficient cannot detect. For instance, it is unlikely 
that electrodermal responses for a group would go into true phase lock when 
the surrounding events increase in speed. It has been reported, however, that 
greater synchronization in dyads was obtained when the pace of the task 
increased rather than decreased (Guastello, 2016); this difference was detect-
able with the nonlinear coefficients, but not with the linear ones.

Researchers need to make some choices regarding the lag length in the 
time series when calculating the pairwise models. In principle, physical pro-
cesses require some time for the effect of one variable (person) to have an 
effect on another. The best choice would reflect this physical process, and the 
task or context could have a strong influence. Lag lengths of 1, 5, 6, and 20 s 
have been reported for GSR data (Guastello, 2016; Guastello et  al., 2016; 
Guastello et  al., 2015). Although a comparison of the various means for 
determining lag length are beyond the scope of this article, principles and 
procedures are discussed in the previous references.

Ergodicity, also known as stationarity, is another challenging issue in time 
series analysis. A time series is stationary if the dynamics (relationships 
among variables or people) remain constant throughout the time series. Non-
stationarity can be induced by transient events, or by changes that can be 
attributed to control parameters within the system (Gregson, 2011, 2013; 
Rabinovitch, Huerta, Varona, & Afraimovich, 2008). Examples might include 
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somebody joining or leaving the group. There could be metastable processes 
in which group interaction schemata self-organize and reorganize over time, 
possibly in relationship to external conditions (Castillo, Kloos, Holden, & 
Richardson, 2015; Kello & Van Orden, 2009; Kelso, 1995). Gregson (2011) 
noted that, within individuals, multiple neurocognitive processes are operat-
ing simultaneously, but the expression of any of them in consciousness is 
serial; one idea has to wait for another. A similar process occurs in group 
discussions; individuals process ideas simultaneously, but typically one per-
son speaks at a time, and as a result, some do not speak as much as they 
would like to do. This particular phenomenon has surfaced as time sharing 
demand (Helton, Funke, & Knott, 2014).

According to Poole (1981), groups usually go through a series of develop-
mental phases, but not all groups follow the same course of development. 
Another source might arise from punctuated equilibrium effects where a group 
self-organizes its social, communication, and work patterns sharply as it 
matures and moves toward its goal (Gersick, 1988). R2 values would drop to 
the extent that the time series is not stationary. Ideally, researchers should try 
to connect changes in autonomic arousal dynamics to supervening processes.

Future Directions

New research with SE can proceed in two groups of directions. One concerns the 
formal properties of the SE itself, and the other involves connections with external 
events or conditions such as group performance and decision-making behavior.

The SE coefficient is based on a matrix that is composed of values from 
different sources, such as different pairs of people. The prototype scenario 
was that all members of the group were likely to interact homogeneously, 
which should minimize stress on the assumptions of the calculation routine. 
If homogeneity of interactions cannot be assumed, however, then the new 
question becomes whether SE of a given value (e.g., .50) has the same mean-
ing if the whole group is working on the same task or the group contains 
subgroups working on separate subtasks that are meant to coordinate together. 
Extensions of the calculations might be needed to identify such bifurcations. 
Alternatively, SE might be further refined to produce a number that has equiv-
alent meaning for bifurcated and homogeneous groups.

Regarding the substance of synchronization, there are presently no psycho-
logical rules to define when synchronization is beneficial or not, but one can 
make some informed speculations for future research in this area. We are par-
ticularly concerned with the level of Emotion 1 (E1), homeostatic-adaptive 
responses generated by the autonomic or endocrine systems (Buck, 1997). 
Also much of the communication that is transpiring in our simulated situation 
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occurs at the level of symbolic communication, not spontaneous communica-
tion, which is typically associated with E1 processing (Buck, 1997).

Although our measure of group synchronization is indeed taken at the low 
level of E1 processing, it is not limited merely to measuring E1-level sponta-
neous communication. The possibility of such a level-transcending measure 
residing at this low level, that is, of not merely being a function of (and there-
fore, about only) spontaneous E1 communication is compatible with, and in 
fact predicted by, Buck-style models of communication. Such models under-
stand that the processes that make up the emotional, cognitive, and social 
“readout systems” (Buck, 1997, p. 316) are deeply inter-connected by inter-
level and inter-system feedback, control, and suppression relations. Thus, 
even autonomic responses, when considered in a socially embedded and 
functioning individual must be understood holistically as potentially a func-
tion of the entire social system. Therefore, the ensemble of GSR time series 
of participants in such a social setting do plausibly contain information rich 
enough to measure synchronization of higher level functioning, including 
symbolic communication—and is not limited a priori to contexts in which 
spontaneous communication (e.g., therapy sessions) dominate. It will of 
course be a rich and open empirical question as to which types of groups 
synchronization measures are best suited.

When coordinated action is needed, one would surmise that synchroniza-
tion would be high for effective groups. If a problem-solving event is 
involved, however, some independent thought and action could be more ben-
eficial. Group think and group polarization have not been studied from the 
perspective of synchronization, but there are intermediary constructs that 
could bridge the theoretical gap.

The explanation of individual participation in group discussion, or more elab-
orate activities, has been ongoing for decades. At the individual-to-group level of 
analysis, game theory (von Neumann & Morgenstern, 1953), particularly the stag 
hunt game, individuals choose whether to join the group or act independently 
depending on the relative efficacy of the group versus the efficacy of their own 
initiatives for producing results. From the group’s perspective, its effectiveness 
depends on enough people contributing enough effort simultaneously.

Differential participation in the group has been interpreted as social loafing 
(Latané, Williams, & Harkins, 1979). Differential participation is not always a 
result of loafing, but can be a result of poor group coordination (Comer, 1995; 
Guastello, 2009). Social loafing, furthermore, has been interpreted as a nega-
tive type of coordination inherent in stag hunt games. The ebb and flow of 
participation in the ongoing group activity can be traced to the ebb and flow of 
the group’s apparent efficacy at any given point in time (Guastello & Bond, 
2004; Guastello, Marra, Castro, Gomez, & Perna, in press).
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The decision to participate in a group discussion at some level of involve-
ment results from expectations of the other members’ performance or effi-
cacy (Balkwell, 1991). Expectations derive from pairwise interactions among 
group members as they estimate and compare the performance efficacy of the 
other individuals. One can then frame the group’s expectations as a matrix of 
who or what idea dominates whom or alternative ideas. Differential partici-
pation then reflects a hierarchy of expectations regarding perception of the 
competence of other group members. Power and influence dynamics could 
be operating simultaneously with evaluations of competence: Some group 
members are likely to change views in response to the influence attempts of 
their group members whereas others stay with their initial position on a topic.

The formation of expectation states could be a complex process. It would 
take some time to evolve and could be complicated further by the group 
members’ task or collective orientations (Correll & Ridgeway, 2006; Davis, 
1973; Stasser, 1999). In social decision theory, a known probability distribu-
tion of individual preferences of the possible group responses is compared 
with all possible distributions (or a theoretically interesting subset), which 
correspond to social decision schemes; the probability distribution of indi-
vidual preferences can then be compared against the predicted distributions 
associated with the social decision schemes (Laughlin, 2011). The broad 
objective for present purposes, however, is to determine how synchronization 
is related to these intricate group dynamics. Levels of synchronization could 
possibly vary by the level of collective orientation or affiliation motivation 
within the group (Helm, Sbarra, & Ferrer, 2012; Lumsden, Miles, Richardson, 
Smith, & Macrae, 2012; Vink, Wijnants, Cillessen, & Bosman, in press), or 
competition dynamics (Fallani et  al., 2010). The SE coefficient produces 
weights measuring the connection between individuals and the empath. The 
role of those weights to expectation processes, the formation of hierarchies, 
and other group dynamics are yet to be determined.

There is some preliminary evidence indicating that the driver–empath dis-
tinction can be informative (Guastello et al., 2016). In an experiment involving 
groups of three or four members playing an ER game, drivers were the most 
anxious members of the group and those less likely to participate in group deci-
sion making and expressions of leadership. Greater participation came from the 
empaths and whoever else was more likely to talk to the empath. Dominance 
issues, which on the surface would appear related to drivers’ behavior, could be 
explored further in groups with these constructs. Similarly, anxiety issues, 
which were prominent among the drivers, should also be explored further as 
they are likely to affect the tenor of the entire group’s processes.

In conclusion, the early writers were quite correct that nonlinear processes 
abound in group dynamics. Hopefully, the development of the synchronization 
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coefficient can propel those investigations further with an eye toward an inte-
grated theory of group dynamics, communication, and performance. It would 
eventually be helpful to consider how different types of group data lend them-
selves to different types of sequence analysis that have been proposed in other 
contexts (Cornwell, 2015; Gottman & Roy, 1990; Magnusson, Burgoon, & 
Casarrubea, 2016) and to then consider how different data and analytical strate-
gies can identify underlying nonlinear processes (Guastello & Gregson, 2011), 
particularly when qualitative and categorical data are used in conjunction with 
synchronization phenomena.
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Notes

1.	 Raw observations Xi are transformed to z by subtracting the lower limit of X 
(lowest observed value) and dividing the result by the standard deviation of X. 
For further background on the use of location and scale values in nonlinear mod-
eling, see Guastello and Gregson (2011).

2.	 The inclusion of extraneous elements in a nonlinear regression model could 
compromise the apparent significance of a theoretically meaningful term. Of 
further importance when interpreting results, including an extraneous term could 
actually make the R2 go down, unlike what happens with multiple linear regres-
sion. For further explanation of the differences between the two types of regres-
sion procedures, see Guastello and Gregson (2011).

3.	 An autocorrelation function can become nonlinear for various reasons such as 
autocorrelation of residuals, dependent errors of other forms, and a multiplicity 
of lag terms (Guastello & Gregson, 2011; Ozaki, 2012). The number of lag com-
ponents can increase considerably in models containing two or more time series; 
the larger the number of parameters, the smaller the chance for replicating the 
model on another data set.
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