Meal Distribution of Dietary Protein and Leucine Influences Long-Term Muscle Mass and Body Composition in Adult Rats

Layne E Norton, Gabriel J Wilson, Christopher J Moulton, and Donald K Layman

Division of Nutritional Sciences and Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL

Abstract

Background: Protein quantity and quality at a meal affect muscle protein synthesis (MPS); however, long-term effects of protein distribution at individual meals on adult muscle mass remain unknown.

Objective: We used a precise feeding protocol in adult rats to determine if optimizing postmeal MPS response by modifying the meal distribution of protein, and the amino acid leucine (Leu), would affect muscle mass.

Methods: Two studies were conducted with the use of male Sprague-Dawley rats (~300 g) trained to consume 3 meals/d, then assigned to diet treatments with identical macronutrient contents (16% of energy from protein, 54% from carbohydrates, and 30% from fat) but differing in protein quality or meal distribution. Study 1 provided 16% protein at each meal with the use of whey, egg white, soy, or wheat gluten, with Leu concentrations of 10.9%, 8.8%, 7.7%, and 6.8% (wt:wt), respectively. Study 2 used whey protein with 16% protein at each meal [balanced distribution (BD)] or meals with 8%, 8%, and 27% protein [unbalanced distribution (UD)]. MPS and translation factors 4E binding protein 1 (4E-BP1) and ribosomal protein p70S6 (S6K) were determined before and after breakfast meals at 2 and 11 wk. Muscle weights and body composition were measured at 11 wk.

Results: In study 1, the breakfast meal increased MPS and S6K in whey and egg treatments but not in wheat or soy treatments. Gastrocnemius weight was greater in the whey group (2.20 ± 0.03 g) than the soy group (1.95 ± 0.04 g) (P < 0.05) and was intermediate in the egg and wheat groups. The whey group had >20% more body fat than the soy, egg, or whey groups (P < 0.05). Study 2, postmeal MPS and translation factors were 30–45% greater in the BD group than the UD group (P < 0.05), resulting in 6% and 11% greater (P < 0.05) gastrocnemius and soleus weights at 11 wk.

Conclusion: These studies show that meal distribution of protein and Leu influences MPS and long-term changes in adult muscle mass.

Keywords: muscle protein synthesis, initiation factors, whey protein, egg protein, soy protein

Introduction

Dietary guidelines for protein are defined as net daily intake. However, evidence is accumulating that supports the role of the meal distribution of daily protein is also important (1, 2). Older adults appear to require more indispensable amino acids (IAAs) delivered as a bolus (i.e., grams per meal) to stimulate muscle protein synthesis (MPS) than do adults aged <25 y (3–7). Potential mechanisms to explain the increased IAA need may include reduced blood flow to muscle tissues, reduced amino acid transporters at the cell membrane, and/or reduced anabolic signaling from growth factors or nutrients, including the amino acid leucine (Leu) (8). Leu is an IAA known to stimulate the initiation of MPS through activation of mechanistic target of rapamycin complex 1 (mTORC1). Increases in intracellular Leu concentrations after a meal induce phosphorylation of mTORC1, resulting in the activation of the initiation factor 4F complex, assembly of the 48S initiation complex, and activation of the S6 ribosomal protein. The activation of these factors collectively stimulates MPS (9, 10). Although the molecular roles of Leu in the activation of mTORC1 and the stimulation of MPS are well characterized, the importance of meal distribution of Leu to changes in muscle mass remains unclear.

A recent study provided evidence to support protein distribution to optimize MPS in humans (1); however, another study found no difference with the use of an equal distribution of...
protein across all meals compared with a large dinner meal (11). Ultimately, interpreting short-term postmeal changes in MPS in humans requires the measurement of long-term changes in muscle mass. Studies in humans requiring the precise control of macronutrient intakes at every meal for prolonged periods to produce what are likely small muscle changes in adults will remain a challenging task.

For initial proof-of-concept, we conducted 2 studies by using a meal-feeding protocol with adult rats to determine if meal distribution of protein and Leu is important for optimizing MPS and ultimately muscle protein accretion. Study 1 was designed to determine if feeding meals with identical energy and macronutrient content but with the use of proteins with different Leu contents would produce sustained differences in MPS and ultimately changes in muscle mass. Study 2 examined the importance of meal patterns with protein consumed in either a balanced distribution (BD) or an unbalanced distribution (UD). The total daily energy and macronutrient intakes were identical for BD and UD patterns. Both studies lasted 11 wk and evaluated the effect on postmeal MPS and long-term muscle mass.

Methods

Animals and diets

Male Sprague-Dawley rats (275 ± 10 g; Harlan-Teklad) were maintained at 24°C with a 12-h light:dark cycle and free access to water. The animal facilities and protocol were reviewed and approved by the Institutional Animal Care and Use Committee of the University of Illinois at Urbana-Champaign.

Study 1. Rats were trained for 6 d to consume their food in defined meals, with a 4-g meal at 0700, a 4-g meal at 1300, and a 6-g meal at 1800. All meals were consumed within 20 min and food cups removed. This meal pattern was designed to be similar to the eating behavior of adults in the United States and to mimic breakfast, lunch, and dinner meals in our previous clinical protocol (12). On day 7, rats were randomly assigned to 1 of 4 diet groups (n = 21–25) containing wheat, soy, egg, or whey proteins (Supplemental Table 1). Wheat protein was supplemented with lysine to the concentration of the whey protein, consistent with previous experiments (12, 13) (Supplemental Table 2).

The whey protein diet was used for initial meal training. Each of the diet treatments provided 16% of energy from protein, 54% from carbohydrates, and 30% from lipids. The 4-g meals provided 0.68 g protein, with 69, 76, 90, and 111 mg Leu, respectively, and the 6-g meal provided 1.02 g protein, with 74, 74, 111, and 74 mg Leu, respectively. The Leu contents of the meals in the BD were 74, 74, and 111 mg, respectively, and the UD pattern was 38, 38, and 184 mg, respectively. Total daily energy, protein, IAA, carbohydrate, lipid, and fiber intakes were identical for both groups. Rats were examined after 2 and 11 wk, similar to study 1. The test meals for MPS were the habitual breakfast meals.

Determination of MPS

Protein synthesis was measured in skeletal muscle 90 min after the breakfast meals at 2 and 11 wk by using the flooding dose method (14). A 100% enriched l-[1-15N]phenylalanine solution (150 mmol/L, Cambridge Isotope Laboratories) was administered at 150 μmol/100 g body weight and injected via the tail vein (1 mL/100 g body weight) 80 min after completion of the meals. At 10 min after isotope injection (90 min postmeal), rats were killed by decapitation, and hind limbs were quickly removed and immersed in an ice-water mixture. Gastrocnemius muscle was removed from cooled hind limbs, frozen in liquid nitrogen, and stored at −80°C.

Frozen muscle tissue was powdered in liquid nitrogen, and protein was precipitated with cold (4°C) perchloric acid (30 g/L, 1 mL/50 g muscle tissue). The resulting supernatant and protein pellet were prepared for analysis by gas chromatography–mass spectrometry, as described previously (12).

The muscle supernatant was used for the determination of intracellular free phenylalanine enrichment. Free amino acids were purified by ion exchange resin solid-phase extraction by using an E2faast amino acid analysis sample testing kit (Phenomenex), and 1H3-phenylalanine enrichment was determined by using a propyl chlorofominate derivative with gas chromatography–mass spectrometry by monitoring the ions at m/z 206 (m) and 211 (m + 5) (15). Fractional rates of protein synthesis were determined from the rate of incorporation of l-[1-15N]phenylalanine into total mixed muscle protein as described previously (12).

Plasma measurements

Plasma was obtained from trunk blood by centrifugation at 1800 × g for 10 min at 4°C. Plasma insulin concentrations were analyzed by using a commercial RIA kit for rat insulin (Linco Research). Plasma amino acid concentrations were analyzed by HPLC by using a Waters 2475 fluorescence detector (16).

Phosphorylation of 4E-BP1 and S6K

Muscle supernatants were subjected to protein immunoblot analysis as described previously (17) with the use of a rabbit polyclonal antibody to 4E-BP1 (Bethyl Labs) and a rabbit polyclonal S6K antibody (Bethyl Labs).

Body composition

Before random assignment to treatments and at 2 and 11 wk, total body composition was assessed by using DXA analysis. Rats received an anesthetic by intraperitoneal injection of 0.3 mg dexmedetomidine/kg (Dexdomitor; Pfizer) for sedation during testing. The DXA instrument (QDR 4500A, software version 11.1.3; Hologic) was calibrated for rodent size as per the manufacturer’s guidelines. Sedated rats were placed in the DXA and whole-body scans were performed. Scans for each time point were performed over 2 consecutive days with rats randomly assigned to order. All of the scans were analyzed by the same research technician who was blinded to group identity.

Statistical analysis

All of the data were analyzed by SPSS 15.0 software package for Windows. A 1-factor ANOVA was performed with the treatment group as the independent variable. When a significant overall effect was detected, differences between individual means were assessed by using Fisher’s least significant difference post hoc test. Data sets were tested for normal distribution and variance homogeneity by using Levene’s test. When variances were not homogeneous, means were compared by using a Games-Howell test. Correlations were determined by linear regression (Pearson’s correlation). P < 0.05 was considered significant. Values 0.05 < P < 0.1 were considered to be a trend. All values are presented as means ± SEMs.
protein, but the proteins differed in IAA concentrations (Table 1), including the targeted differences for Leu in the wheat (46 mg), soy (54 mg), egg (60 mg), and whey (74 mg) protein diets.

Postprandial changes in plasma amino acid concentrations were consistent with the IAA concentration of the proteins (Table 1). Postmeal plasma Leu concentration increased from baseline in the whey protein group and the increase was greater than in the wheat and soy groups. The increase in plasma Leu concentration in the egg group was intermediate but not significantly different from the others. After the 4-g meal, plasma concentrations of isoleucine (Ile) and valine (Val) increased from baseline in the whey and egg groups but not in the wheat and soy groups. The wheat and soy groups were not different from baseline. For lysine (Lys), the highest dietary amounts were in the whey and Lys-supplemented wheat groups, and those amounts were reflected in the postprandial plasma concentrations. For methionine (Met), the highest content was in the egg protein meal and the lowest was in the soy protein meal, and those differences were apparent in the plasma changes. For threonine (Thr), the highest protein content was in the whey meal and the lowest was in the wheat meal, and those differences were also reflected in the plasma response to the meal.

Postprandial insulin concentrations at 90 min after the meal were not different between the groups or different from baseline at 2 wk (data not shown). At 11 wk, the wheat group had greater postprandial insulin at 90 min after feeding (296 ± 60 pmol/L) than did the egg (150 ± 37 pmol/L) or whey (132 ± 26 pmol/L) groups (P < 0.05). The 90-min postprandial insulin concentrations were below initial baseline values for the egg and whey groups but not different from the soy group.

Changes in the plasma concentrations of Leu and MPS responses at 2 wk were consistent with the hyperphosphorylation of S6K (Figure 2B), with activation in the whey and egg groups greater than in wheat and soy groups and at baseline (P < 0.05). Hyperphosphorylation of 4E-BP1 was intermediate for the wheat and soy groups and differed from baseline and the egg and whey groups (P < 0.05) (Figure 2A). Translation factor responses at 11 wk were the same as those observed at 2 wk (data not shown).

TABLE 1 Postprandial plasma amino acid concentrations in adult rats fed meals containing different protein sources

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Wheat</th>
<th>Soy</th>
<th>Egg</th>
<th>Whey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucine, μmol/L</td>
<td>91 ± 6b</td>
<td>78 ± 8b</td>
<td>78 ± 6b</td>
<td>130 ± 18ab</td>
<td>146 ± 28ab</td>
</tr>
<tr>
<td>Contents in meal, mg</td>
<td>(46)</td>
<td>(54)</td>
<td>(60)</td>
<td>(74)</td>
<td></td>
</tr>
<tr>
<td>Isoleucine, μmol/L</td>
<td>74 ± 6.5b</td>
<td>65 ± 4b</td>
<td>74 ± 7b</td>
<td>117 ± 15ab</td>
<td>121 ± 24ab</td>
</tr>
<tr>
<td>Contents in meal, mg</td>
<td>(20)</td>
<td>(33)</td>
<td>(38)</td>
<td>(42)</td>
<td></td>
</tr>
<tr>
<td>Valine, μmol/L</td>
<td>130 ± 3.4b</td>
<td>97 ± 10b</td>
<td>118 ± 12b</td>
<td>251 ± 33b</td>
<td>182 ± 43ab</td>
</tr>
<tr>
<td>Contents in meal, mg</td>
<td>(31)</td>
<td>(32)</td>
<td>(46)</td>
<td>(41)</td>
<td></td>
</tr>
<tr>
<td>ΣBCAAs, μmol/L</td>
<td>295 ± 12b</td>
<td>245 ± 16b</td>
<td>270 ± 26b</td>
<td>498 ± 66b</td>
<td>457 ± 97b</td>
</tr>
<tr>
<td>Contents in meal, mg</td>
<td>(97)</td>
<td>(119)</td>
<td>(142)</td>
<td>(157)</td>
<td></td>
</tr>
<tr>
<td>Lysine, μmol/L</td>
<td>543 ± 15ab</td>
<td>549 ± 80ab</td>
<td>435 ± 82b</td>
<td>492 ± 65ab</td>
<td>626 ± 46b</td>
</tr>
<tr>
<td>Contents in meal, mg</td>
<td>(62)</td>
<td>(43)</td>
<td>(44)</td>
<td>(62)</td>
<td></td>
</tr>
<tr>
<td>Methionine, μmol/L</td>
<td>53 ± 2.6b</td>
<td>41 ± 5b</td>
<td>38 ± 2b</td>
<td>83 ± 12b</td>
<td>60 ± 19ab</td>
</tr>
<tr>
<td>Contents in meal, mg</td>
<td>(13)</td>
<td>(9)</td>
<td>(26)</td>
<td>(14)</td>
<td></td>
</tr>
<tr>
<td>Threonine, μmol/L</td>
<td>389 ± 54c</td>
<td>452 ± 17c</td>
<td>518 ± 67bc</td>
<td>537 ± 73b</td>
<td>860 ± 74c</td>
</tr>
<tr>
<td>Contents in meal, mg</td>
<td>(18)</td>
<td>(26)</td>
<td>(31)</td>
<td>(44)</td>
<td></td>
</tr>
</tbody>
</table>

1 Values are means ± SEMs unless other indicated, n = 5–8. Values in parenthesis are the amino acids provided by each of the proteins in the 4-g breakfast meal. Labeled means within a common superscript letter differ, P < 0.05. Σ, sum.
2 Premeal control (12-h food-deprived).
Although the diets had the same energy density and macro-
nutrient profiles, the meal proteins produced differences in
body weight and body composition (Table 2). After 11 wk,
body weight was significantly different (P < 0.05) between
groups. Specifically, the wheat group weighed more than the
egg, whey, and soy groups and the egg and whey groups
weighed more than the soy group. The wheat group had
significantly more body fat than the other 3 groups, which did
not differ. Body weight, FFM, and gastrocnemius weight were
significantly lower in the soy group than in the wheat, egg, and
whey groups. The whey group had significantly higher gastro-
cnemius mass than the wheat and soy groups, with the egg group
being intermediate but not different.

![Figure 2](image)

FIGURE 2 Phosphorylation status of translation factors 4E-BP1 (A) and S6K (B) in the gastrocnemius muscle of rats fed diets containing wheat, soy, egg, or whey proteins for 2 wk (study 1). Baseline values were obtained in rats deprived of food for 12 h. Values are means ± SEMs, n = 5–8. Bars without a common letter differ, P < 0.05. S6K, ribosomal protein p70S6 kinase; 4E-BP1, 4E binding protein 1.

Study 2. Daily protein (2.38 g) and Leu (260 mg) intakes were
the same in the BD and UD groups; however, the breakfast meal in
the BD group contained 16% of energy as protein with 74 mg
Leu, whereas the UD contained 8% protein and 38 mg Leu.
Postprandial plasma IAA concentrations at 90 min after the
breakfast meal were ~50% higher in the BD group than in the
UD group, with the differences significant for Leu, Val, and Thr
but not for the others (P = 0.06–0.09) (BD/UD × 100: Leu,
187%; Ile, 168%; Val, 194%; Lys, 149%; Met, 146%; and Thr,
158%). Plasma concentrations of Val, Lys, and Met were below
baseline values in the UD group at 90 min postmeal.

Postprandial MPS was significantly greater in the BD group
than in the baseline and UD groups at 2 wk. The UD group was
intermediate between the BD and baseline groups, with the trend
nearing significance at 11 wk (P = 0.06) (Figure 3A, B). Consistent
with the MPS responses, phosphorylation of 4E-BP1 and S6K was
significantly greater in the BD group compared with baseline
(Figure 4). Phosphorylation of 4E-BP1 was intermediate in the
UD group.

Body weight was significantly greater in the BD group (3.4%;
P < 0.05) than in the UD group at 11 wk, with a trend for greater
total FFM (2.4%; P = 0.07) (Table 3). Muscle weights in the BD
group were 6.3% and 11.2% greater (P < 0.05) than in the UD
group for the gastrocnemius and soleus muscles, respectively. Fat
mass did not differ between UD and BD groups.

Discussion

Numerous studies have shown that the amount of protein or
IAAs at a meal affects postprandial MPS and that older adults
require more protein to maximize MPS than do younger adults,
leading many to recommend meal-based guidelines for dietary
protein (8, 18, 19). Although meal effects of protein on MPS are
well established, long-term benefits of meal distribution of
dietary protein and specifically the relation of postprandial MPS
to changes in adult muscle mass remain controversial (1, 2, 11).
The current studies used an animal model to evaluate the
hypothesis that the meal distribution of dietary protein affects
muscle mass. These studies show that optimizing daily protein in
the first meal of the day to stimulate postmeal MPS, either by
increasing protein quality or by redistributing protein from the
dinner meal, resulted in greater muscle mass in adult rats. These
studies also support the hypothesis that dietary Leu is an
important component of protein quality in defining a minimum
meal threshold for protein necessary to stimulate the translation
initiation of MPS.

MPS responds to the amount of protein and, at least in part,
the Leu content of the meal (12, 13, 20, 21). Furthermore, the

TABLE 2 Body weight, body composition, and tissue weights for adult rats fed diets containing
different protein sources for 11 wk

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Wheat</th>
<th>Soy</th>
<th>Egg</th>
<th>Whey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, g</td>
<td>392 ± 2.2<sup>a</sup></td>
<td>388 ± 2.6<sup>b</sup></td>
<td>385 ± 2.4<sup>a</sup></td>
<td>385 ± 2.4<sup>a</sup></td>
</tr>
<tr>
<td>Body fat,<sup>2</sup> %</td>
<td>12.4 ± 0.5<sup>a</sup></td>
<td>10.2 ± 0.7<sup>b</sup></td>
<td>9.7 ± 1.4<sup>b</sup></td>
<td>9.6 ± 3.0<sup>ab</sup></td>
</tr>
<tr>
<td>FFM,<sup>2</sup> g</td>
<td>344 ± 3.3<sup>a</sup></td>
<td>330 ± 2.2<sup>b</sup></td>
<td>341 ± 2.6<sup>a</sup></td>
<td>345 ± 3.5<sup>a</sup></td>
</tr>
<tr>
<td>Gastrocnemius muscle, g</td>
<td>2.07 ± 0.03<sup>b</sup></td>
<td>1.95 ± 0.04<sup>d</sup></td>
<td>2.12 ± 0.02<sup>ab</sup></td>
<td>2.20 ± 0.03<sup>c</sup></td>
</tr>
<tr>
<td>Soleus muscle, g</td>
<td>0.148 ± 0.004<sup>a</sup></td>
<td>0.135 ± 0.005<sup>b</sup></td>
<td>0.143 ± 0.003<sup>a</sup></td>
<td>0.149 ± 0.005<sup>a</sup></td>
</tr>
<tr>
<td>Liver, g</td>
<td>9.1 ± 0.4<sup>ab</sup></td>
<td>8.6 ± 0.2<sup>b</sup></td>
<td>8.8 ± 0.3<sup>bc</sup></td>
<td>9.4 ± 0.3<sup>c</sup></td>
</tr>
</tbody>
</table>

¹Values are means ± SEMs, n = 8–13. Labeled means without a common superscript letter differ, P < 0.05.
²Composition determined by DXA.
maximum MPS postmeal response appears to reach a plateau with increasing protein (12, 22) or Leu (23). This “S-shaped” response curve of MPS combined with the finite duration of the postmeal anabolic response (12, 24, 25) led researchers to propose that distributing protein and/or Leu into multiple daily meals that each stimulate MPS should be superior to a single large meal for protein anabolism and muscle mass (8, 18).

The current research tests this proposal with 2 studies that used a 3-meal/d feeding protocol in adult rats and showed that differences in protein distribution and the IAA content at individual meals influence muscle mass. Study 2 compared 2 feeding patterns with identical daily macronutrient compositions but with whey protein distributed in either a BD or a UD. The BD produced greater postprandial MPS after the breakfast meal and resulted in greater muscle mass after 11 wk. Although the muscle mass of the 2 hind-limb muscles was greater in the BD group than in the UD group, the difference in total FFM was not significant (2.4%; \(P = 0.07 \)). The difference in muscle mass between the BD and UD groups might be due to differential responses of other muscles or the difficulty in interpreting DXA data. We did not measure the chemical composition of the tissues and cannot rule out changes in hydration or glycogen content between groups; however, we speculate that this is unlikely in the diets containing identical macronutrient contents and with the meal patterns, physical activity, and water intakes being consistent across the groups for 3 mo. An alternative possibility is that the meal distribution of protein affects organ size. We found that the UD group had greater liver mass (7.4%; \(P < 0.05 \)), presumably associated with the greater influx of amino acids and amino-nitrogen at the dinner meal (26). Other organs that may be influenced by protein content of the meal include the kidneys and gastrointestinal tract.

A limitation of this study is that MPS was not measured after the dinner meal. Previous research from our laboratory (12) and others (22) shows that the meal response of MPS reaches a plateau with increasing protein amounts, and certainly the mTORC1 initiation signal reaches a Leu plateau (23). For the specific age and size of rats in this experiment, and within the limits of our isotope measurements, we cannot detect differences in MPS between groups at dietary intakes >100 mg Leu (12, 13), leading us to assume that MPS was not different between groups after the dinner meal. Furthermore, the protein differences in the breakfast meals produced differences in MPS and muscle mass that were not fully compensated by balancing total daily intake with the larger dinner meal (containing 184 mg Leu compared with 111 mg for the UD and BD, respectively). Similar MPS effects of meal distribution were reported in a clinical trial in which BD resulted in greater net MPS for the 24-h period (1).

Study 1 provides evidence that modifying the meal composition of IAA with cow, affects both MPS and muscle mass. This study used meals with identical macronutrient compositions but differing in the amount of protein and the associated amino acid compositions. The proteins were selected for differences in Leu content. Although the concentrations of each of the IAA differed among the proteins, the 16%-protein diets exceeded the NRC requirements for each of the IAA for adult rats (27) (Note: wheat gluten does not meet the NRC requirement for Lys and was supplemented to the whey protein diet with cows). FIGURE 3 MPS in rats fed meals with a BD or UD of whey protein for 2 wk (A) or 11 wk (B) (study 2). Baseline values were obtained in rats deprived of food for 12 h. Values are means ± SEMs, \(n = 8–13 \). Bars without a common letter differ, \(P < 0.05 \). BD, balanced distribution; MPS, muscle protein synthesis; UD, unbalanced distribution.

FIGURE 4 Phosphorylation status of 4E-BP1 (A) and S6K (B) in the gastrocnemius muscle of rats fed meals with a BD or UD of whey protein for 11 wk (study 2). Baseline values were obtained in rats deprived of food for 12 h. Values are means ± SEMs, \(n = 8–13 \). Bars without a common letter differ, \(P < 0.05 \). BD, balanced distribution; S6K, ribosomal protein p70S6 kinase; UD, unbalanced distribution; 4E-BP1, 4E binding protein 1.
TABLE 3 Body weight, body composition, and tissue weights of adult rats fed diets with whey protein distributed in 3 BD or UD meals for 11 wk

<table>
<thead>
<tr>
<th>Meal treatment</th>
<th>Body weight, g</th>
<th>Body fat, %</th>
<th>FFM, g</th>
<th>Gastrocnemius muscle, g</th>
<th>Soleus muscle, g</th>
<th>Liver, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>UD</td>
<td>372 ± 2.1</td>
<td>9.7 ± 1.9</td>
<td>337 ± 2.5</td>
<td>2.07 ± 0.05</td>
<td>0.134 ± 0.005</td>
<td>10.1 ± 0.4</td>
</tr>
<tr>
<td>BD</td>
<td>385 ± 2.4*</td>
<td>9.6 ± 3.0</td>
<td>345 ± 3.5*</td>
<td>2.20 ± 0.03*</td>
<td>0.149 ± 0.005*</td>
<td>9.4 ± 0.3*</td>
</tr>
</tbody>
</table>

1 Values are means ± SEMs, n = 8–13. *Significant difference, P < 0.05; †trend for difference, P = 0.08. BD, balanced distribution; UD, unbalanced distribution.

References

...
18. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and
16. Reverter M, Lundh T, Lindberg JE. Determination of free amino acids
15. McNurlan MA, Essen P, Thorell A, Calder AG, Anderson SE,
14. Garlick PJ, McNurlan MA, Preedy VR. A rapid and convenient tech-
11. Kim I-Y, Schutzler S, Schrader A, Spencer H, Kortebein P, Deutz NEP,
10. Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids.
9. Kimball SR, Jefferson LS. Signaling pathways and molecular mecha-
6. Ashida K, Harper AE. Metabolic adaptations in higher animals. VI.
4. Bohe J, Ali Low JF, Wolfe RR, Rennie MJ. Latency and duration of
0. Christou DD. A reduced ratio of dietary carbohydrate to protein im-