Q! PayGuardian™

i0S Framework Developer Integration Guide
Version 1.6

PayGuardian iOS Framework Developer Integration Guide

Version 1.6 Released October 20, 2017

Copyright © 2011-2017, BridgePay Network Solutions, Inc. All rights reserved.

The information contained herein is the confidential and proprietary property of BridgePay Network
Solutions, Inc. and may not be used, distributed, modified, disclosed, or reproduced without express
written permission.

S BridgePay

Table of Contents

QT T [0 4T T 3
1. PayGUArdian SEtUP......cccciiiiiiiiiiisiiir s s s s s 4
O 0= o 1V =] 0 £ 1=T L U REPR 4
1.2 iOS APPLICAtiON SEEUD GUILEeeeneeeieieeeeeeee ettt e et sse e st e s e e saneesanee e 4
1.2.1 MinimumM REGUITEMENTS ..eieiiiiiiiiiieet e sttt e e e st e e e e s sestte e e e e e e sesaetaeeeeeeeesansbaseeeessasasssnneesesssnssnnnes 4
1.2.2 ProjeCt DEPENUENCIES ..ccouveieiiieiieeite ettt ettt ettt ettt ettt ettt et e s bt e bt e sttt e bt e sab e e s bt e sabeesbeesbeeebeesabeesnneenane 5
1.2.3 DEVICE CONFIGUIATION ..uiiiiiiie ettt e e e s e e et e e e s ata e e e s ataeeeesteeessnsseeesnseeeeanssaeesnsneas 5

R 1 =Y =4 1o T4 T o o o= 7
B B =41 [o I e 1 (= S 7
2.2. TranSACION FIOW SUMMIAITYcooueieiiiiiiieie ettt ettt ettt ettt ettt e s ne et esaneenane s 7

3. PayGuUardian INtEZrationcccceuiiiiiiiiiieeciiiiiiierneeiiseeeeteeennsssseesseseesnnsssssssssessnnsssssssssssssnnsssssssssssannnnssssssnes 8
3.1, iOS FrameWOIK INtEGIALIONcocueeeeiieiieeit ettt ettt ettt ettt ettt e te et e sineesane s 8
3.1.0. BPNPQYMENTREQUEST ...cciiieiiiiicciccceeeeeeeeeeeeee e e e e e e e e e e e e e et e e e e e e et e eeeeteeeeeeeeeeeseeesesaeanens 8
3.1.2. PayGUArdianTranSaCtioNcoouueeiiiiiieeee ettt sttt sttt ettt ettt e be e sb e e be e e be e e nabe e ne e nneeeneas 11
N I T =1 o N1 =1V 0 1 T=T o PP PP PTPPPTPPPPPPPRE 11
3.1.4. BridgECOMMERESPONSE ..cuuveiitieitieiiiteeite ettt e et e sttt et e e sabeesat e e s abe e bee e s bt e e eaeeesbbeesbeeesbeeebeeesnbeeseeesnnesanees 11
3.0 5. BPNRECEIPT ettt e e e e e e e et e e e e e e e e e e e e e e e e e e aaeaaaees 13
3.1.5.1 SamPIE @XAMPIES ...cneieeieieiteeeee ettt ettt e h e et he e sab e ne e sareeneas 14

3.2. EMV TIANSACLION SUPPOIL......coooeiaeeeeee ettt ettt e e e e sttt e e e e e st e e e e e easnneeeeeseenaannns 26
3.2.1. EMV IMplementation DELAilS........ciiiuiieieiiiieciiee sttt e et e e e e st e e st e s e sarae e s saaeeeens 26
3.2.2. EMV Purchase Transaction FIOWcoccueiiiiiriiiiiieeniie ettt site et sire e siae e siteesaaeesaaeesaeesssaeeeeas 27

S oY oY1 o N 31
W B S {=X o Yo T K= o][V 1= SR 31

A O 2 (=TT U A 0 Yo =TS PP 31

] N VA (=T o Yo Y I o T S 31
. T AV A Y=Y o T g Y S 6o o [T PP 32

N = 4 o) TP PRI 33
A.2.1. IOS APP EXTENSION EFTOIS cuuiuiiiiiuieieieteieiettieretsreretererereretererereretereree..e....—————————.—..........—..—...—.—.—————————— 33

A.3. TSt COIAS QNU DAL ..ottt ettt ettt sate ettt et e e ate ettt e stteesteesateenbtessateensseenaseenssen 34
A.3.1. Swiped / MSR Test Transaction INfO........uciieiiiiieiie ettt et ae e sae e s e reeaaeeane e 34

A4, TIMS Of USE AGIEEIMENToeeeeeeeeeeeeeeeeeeee e e et tte e e sttt e e st e e s ststeeeatteaeaasseeasasssaaessseaeenssesessassnessssseeann 37

2

ﬁ BridgePay

Introduction

Mobile Point-of-Sales (mPQOS) systems that process sensitive payment information are
required to certify their payment applications to the Payment Application Data Security
Standard (PA-DSS). The addition of EMV certification and continued need for both
encryption and tokenization has become a concern for both merchants and

integrators. Instituting and maintaining these standards requires significant financial and
employee resources in order to adhere to the Payments Card Industry Data Security
Standards (PCI DSS) compliance requirements. Subsequently, any changes made in the
mPQOS system, may require a partial or full recertification, which increases the cost and time
to market. BridgePay has engaged these issues through our product line, the Pay Guardian
suite, to better serve the needs of our integrators and merchants.

PayGuardian iOS is a light weight, highly secure iOS framework library that integrates
seamlessly into mPOS applications. PayGuardian iOS facilitates the transaction process by
handling the collection and transmission of sensitive payment information as an out of
scope PA-DSS solution, thereby offloading the certification responsibility from merchants
and integrators. PayGuardian iOS is EMV enabled, handles point to point encryption, and
tokenizes all transactions to ensure transaction processing is seamless and secure.

mPOS App

Ve BridgePay Gateway

PayGuardian iOS Framework 4

iOS Device

ﬁ BridgePay

v" The mPOS application collects transaction data such as the dollar amount, invoice humber,
tender type, transaction type, merchant account information, etc...

v' The mPOS application constructs a BPNPaymentRequest object and passes it to a new
instance of the PayGuardianTransaction object.

v" PayGuardian obtains the card information via the claiming of the mPOS device using the
Bluetooth API (re: Ingenico RBA SDK) and validates the transaction request object.

v' The mPOS device prompts to swipe or insert the card and transmits the card information to
the PayGuardian application, which captures the card data as a swiped or EMV transaction
respectively.

v' PayGuardian constructs the payload request and transmits the transaction request to the
Payment Gateway.

v PayGuardian transmits the transaction response returned from the Payment Gateway back
to the mPOS application.

v" The mPOS application implementation responds accordingly to the transaction response.

1. PayGuardian Setup

1.1. Requirements

Operating Systems

PayGuardian has a PA-DSS certification for the following operating systems:

v" i0S SDK 8.0 and above

1.2 i0S Application Setup Guide

1.2.1 Minimum Requirements

e iPad/iPhone device with iOS 8.0 and above.

e iPad/iPhone device must have the Bluetooth connectivity feature.

iﬂ BridgePay

1.2.2 Project Dependencies

Add the following bundled dependencies to the Linked Libraries and Frameworks section of the
Xcode project within the mPOS application.

e PayGuardian_SDK.framework
e Ono.framework

e RBA_SDK.framework

e IDTECH_UniMag.a

e |ibMTSCRA.a

Add the following bundled dependency to the Embedded Binaries section within the mPOS
application.

e Ono.framework

Add the following standard iOS frameworks to the Linked Libraries and Frameworks within the mPOS
application.

CFNetwork.framework
CoreAudioKit.framework
CoreAudio.framework
AudioToolbox.framework
MediaPlayer.framework
MessageUl.framework
AVFoundation.framework
ExternalAccessory.framework
CoreTelephony.framework
CoreBluetooth.framework
UIKit.framework
Foundation.framework
CoreGraphics.framework
libxml2.tbd

libstdc++.tbd

@® The bundled framework files are located in the ‘Dist’ folder of the
PayGuardian_SDK project.

1.2.3 Device configuration

@ i0S device and card reader must be connected through the Audio Jack,
Accessory Port, or Bluetooth Pairing connectivity.

ﬁ BridgePay

1.2.3.1 Ingenico

How to connect iOS Device and Card reader Device?

ICMP and iSMPc Devices

Use Card Reader Version: 15.0.4 RBA

Hit the “F” button four times quickly; the device will beep and return to the Bluetooth Pairing

Screen. Bluetooth pairing can begin from the Bluetooth Pairing Screen.

Restart the device by simultaneously pressing and holding the [.,#*] and [Yellow] keys until the
device beeps.

Wait for the device to display the RBA or UIA initialization screen.

When the RBA or UlA initialization screen appears, quickly press the [2] [6] [3] [4] [Green] [F] [F]
keys.

If successful, the Functions menu should appear. If the Functions menu does not appear, return
to Step 1 and restart the device.

Select the Bluetooth pairing options and select the iOS device from the list to connect the card

reader unit.

1.2.3.2 IDTech

How to connect iOS Device and Card reader Device?

UniMag / Shuttle and UniPay Ill Devices

Connect the card reader directly to the Audio Jack on the iOS device.

1.2.3.3 MagTek

How to connect iOS Device and Card reader Device?

iDynamo Device

Connect the card reader directly to the Accessory Port on the iOS device.

ﬁ BridgePay

2. Integration Process

2.1. Getting Started

The PayGuardian iOS Framework files must be added to the XCode project prior to the
start of an integration.

Contact: Developer.Support@bridgepaynetwork.com to receive the developer
application build of the PayGuardian iOS Framework library. The developer application
build points to the PayGuardian UAT environment for integration and certification testing.

2.2. Transaction Flow Summary

The following list summarizes the steps involved in processing a transaction:

1. The mPOS system collects order information and determines that the customer will pay
with one of the supported tender types.

2. The mPQOS system invokes the PayGuardian iOS Framework library.
3. The payment screen loads and prompts the user to enter customer and payment data.

4. After collecting all transaction information, PayGuardian transmits the data to the
server.

5. After receiving a response from the host, the payment screen returns the processing
results back to the mPOS system.

6. The mPOS system analyses response data.

MPOS App PayGuardian POS Device Gateway

Transaction Reguest

>

Reguest for Card information

Card information response

ProcessCreditCard Transaction

CreditCard TransactionResponse

Transacticn Response

iﬂ BridgePay

mailto:Developer.Support@bridgepaynetwork.com

3. PayGuardian Integration

3.1.i0S Framework Integration

Programmatically, a transaction is comprised of a four step process:

e Create a BPNPaymentRequest object.

e Pass the BPNPaymentRequest object to the constructor of a
PayGuardianTransaction object.

e Call the runOnCompletion method and provide an implementation for the
completion.

e Implement a handler for the returned BPNPayment and/or NSError.

3.1.1. BPNPaymentRequest

The constructor of the BPNPaymentRequest object is:

- (instancetype) initinvoiceNumber:(NSString *_Nonnull) invoiceNumber
pnRefNum:(NSString * Nullable) pnRefNum
amount:(NSDecimalNumber *_Nullable) amount
tipAmount:(NSDecimalNumber *_Nullable) tipAmount
cashBackAmount:(NSDecimalNumber * Nullable) cashBackAmount
tenderType:(NSString * Nonnull) tenderType

transactionType:(NSString * Nonnull) transactionType
username:(NSString * Nonnull) username

password:(NSString *_Nonnull) password

merchantCode:(NSString * Nonnull) merchantCode
merchantAccountCode:(NSString * Nonnull) merchantAccountCode
paymentAccountNumber:(NSString * Nullable) paymentAccountNumber
token:(NSString * Nullable) token

expirationDate:(NSString * Nullable) expirationDate
terminalType:(NSString *_Nullable) terminalType
industryType:(NSString * Nonnull) industryType
healthCareData:(BPNHealthCare * Nullable) healthCareData
disableEmv:(BOOL) disableEmv

testMode:(BOOL) testMode;

‘ﬂ BridgePay

TRANSACTION_TYPE_SALE: Makes a purchase with a
credit card, debit card, gift card, or loyalty card.
TRANSACTION_TYPE_SALE_AUTH: (Authorization
only) Verifies/authorizes a payment amount on a
credit card.

TRANSACTION_TYPE_REFUND: Returns a credit card
or debit card payment.

TRANSACTION_TYPE_VOID: Removes a credit card
transaction from an unsettled batch.
TRANSACTION_TYPE_CAPTURE: Places a

‘TRANSACTION_TYPE_SALE_AUTH’ transaction into the

open credit batch for settlement. Requires the Original
Reference Number and updated Amount.
TRANSACTION_TYPE_TIP_ADJUST: Modifies
previously authorized ‘TRANSACTION_TYPE_SALE’
transaction to include a TipAmount and updates the
transaction total amount. Requires the Original
Reference Number. Can only be used on an unsettled
transaction.

Amount Required. Total transaction amount (includes subtotal, | NSDecimalNumber
cash back, tax, and tip) (Format example: DDDD.CC) Min = 4;
Max =12
TipAmount The tip amount. The tip is not added into the total NSDecimalNumber
amount, it is an in-addition-to the specified amount. Min = 4;
(Format example: DDDD.CC) Max = 12
InvoiceNumber Required. POS system invoice/tracking number. NSString
(Alpha/Numeric characters only) Min =1;
Max =12
TenderType Required. Valid values are: NSString;
TENDER_TYPE_CREDIT, Constant
TENDER_TYPE_DEBIT,
TENDER_TYPE_GIFT,
TENDER_TYPE_LOYALTY
TransactionType Required. Valid values are: NSString;

Constant — valid
values are listed.

assigned to a transaction.

Username Required. Username of the BridgePay Merchant. NSString;
Min Value =5;
Max Value = 25
Password Required. Password of the BridgePay Merchant. NSString
Min Value =7;
Max Value = 25
MerchantCode Required. BridgePay Merchant Code. NSString
Numeric (0-9)
MerchantAccountCode Required. BridgePay Merchant Account Code. NSString
Numeric (0-9)
industryType Required. Indicates the Industry type of the merchant | NSString;

D BridgePay

Valid values:

TRANSACTION_INDUSTRY_TYPE_RETAIL
TRANSACTION_INDUSTRY_TYPE_RESTAURANT
TRANSACTION_INDUSTRY_TYPE_ECOMMERCE
TRANSACTION_INDUSTRY_TYPE_DIRECT_MARKETING

Constant — valid
values are listed.

healthCareData

Required. Represents the inclusion of Healthcare
related fields. Valid values are:
nil (indicates no Healthcare related fields present)

NSString; or
NSDecimalNumber
(as indicated)

healthCareAmt (NSDecimalNumber). The portion of Min Value =1;
the Total Amount spent on healthcare related services | Max Value =50
or products.
transitAmt (NSDecimalNumber). The portion of the
Total Amount spent on healthcare related
transportation.
prescriptionAmt (NSDecimalNumber). The portion of
the Healthcare Amount spent on prescription drugs or
products.
visionAmt (NSDecimalNumber). The portion of the
Healthcare Amount spent on vision related medical
services.
dentalAmt (NSDecimalNumber). The portion of the
Healthcare Amount spent on dental related medical
services.
clinicAmt (NSDecimalNumber). The portion of the
Healthcare Amount spent on hospitalization.
isQualifiedllAS (NSString). Indicates whether purchase
items are verified against lIAS as qualified for
healthcare purchases. Can be lower case ‘true’, or
lower case ‘false’.
pnRefNum Gateway transaction ID/Previous transaction reference | NSString
number. Only required for voids, refunds, and tip Min Value =1;
adjustments. Max Value = 15
disableEmv Optional. Used to test non-EMV transactions. Boolean;
Valid Value = Yes or
No
CashBackAmount Not implemented. NSString
PaymentAccountNumber | Card number. NSString
Min Value =13;
Max Value = 16
expirationDate Card number expiration date in MMYY format. NSString;
Min Value =4;
Max Value =4
ShippingAddress Reserved for future use. NSString

terminalType

Optional. Valid values are:

nil (indicates no terminal used)
TERMINAL_TYPE_INGENICO_BLUETOOTH
TERMINAL_TYPE_INGENICO_IP
TERMINAL_TYPE_MAGTEK_IDYNAMO

NSString; Constant
—valid values are
listed.

ﬁ BridgePay

10

TERMINAL_TYPE_IDTECH_SHUTTLE
TERMINAL_TYPE_IDTECH_UNIPAYIII
TERMINAL_TYPE_BBPOS_CHIPPER2
TERMINAL_TYPE_BBPOS_WISEPAD2
TERMINAL_TYPE_PAX_D180

testMode Gateway testing mode flag. Boolean;
Value =Yes or No

Token Represents the tokenized card number received from a | NSString;
token request. Used in place of the Value =22
PaymentAccountNumber. characters

3.1.2. PayGuardianTransaction

The construction for a PayGuardianTransaction is:
initWithPaymentRequest:(BPNPaymentRequest *)request;
The run method with completion is:

- (void)runOnCompletion:(void (*)(BPNPayment *payment, NSError *error)) onCompletion
onStateChanged:(void (*)(PayGuardianTransactionState state)) onStateChanged;

The completion must be implemented to capture the results of a transaction request.

3.1.3. BPNPayment

The BPNPayment is the response from a PayGuardianTransaction. It contains two fields:
BridgeCommResponse and BPNReceipt. The BridgeCommResponse contains the gateway response
fields and the BPNReceipt contains the fields necessary for an EMV compliant receipt.

3.1.4. BridgeCommResponse

Transactionld Transaction authorization code from the NSString
payment processor. This value is an Max Value = 15
approval code for approved transactions or
an error code/message for declined
transactions.

RequestType The actual amount approved by the host. NSString
This may differ from the requested amount. | Max Value = 15
ResponseCode BridgeCommResponseCodeSuccess = 0 Enum
BridgeCommResponseCodeCancel =1 Max Value =6

BridgeCommResponseCodeError = 2
BridgeCommResponseCodeDeniedByCusto
mersBank = 30032

11
D BridgePay

ResponseDescription

Plain text response message.

NSString

N/A
Token Unique token assigned to a transaction. NSString
Max = 22
ExpirationDate Card expiration date. NSString
Max =7
AuthorizationCode Authorization code for a transaction. NSString
Max = 50
OriginalReferenceNumber Original reference number from a request. NSString
Max =12

AuthorizedAmount

Amount authorized by the processor.

NSDecimalNumber
Max =12

OriginalAmount

Original requested amount of the
transaction.

NSDecimalNumber
Max =12

GatewayTransactionID Unique ID of a transaction in the gateway. NSString

Max = 12

GatewayMessage Details from the processor or payment NSString

gateway regarding the transaction result. Max = 50

InternalMessage Internal Message from the gateway. NSString

Max = 50

GatewayResult Result message from the gateway. NSString
Max =5

AVSMessage AVS Match Result Message. NSString

Max =10

AVSResponse AVS Response code. NSString

Max = 10

CVMessage CVV/CVV2 Match Result Message. NSString

Max =10

CVResult CVV/CVV2 Result code. NSString

Max = 10

TransactionCode Reserved for future use. NSString
TransactionDate Date/time of the transaction. NSString

Max =10

RemainingAmount

Amount remaining of the original amount.

NSDecimalAmount
Max =12

ISOCountryCode Country code for currency. NSString
Max =3
ISOCurrencyCode Currency code for a transaction. NSString
Max =3
ISOTransactionDate Date of transaction from the processor. NSString
Max = 10
ISORequestDate Date of request at a processor. NSString
Max = 10
NetworkReferenceNumber Unique ID of a transaction at the processor. | NSString
Max = 12

ﬁ BridgePay

12

NetworkCategoryCode

Processor specific category code.

NSString

Processor dependent

NetworkMerchantld

Merchant ID from the gateway.

NSString

Processor dependent

NetworkTerminalld

Network terminal ID from the gateway.

NSString

Processor dependent

CardType Reserved for future use. Type of card. NSString
MaskedPAN Reserved for future use. Masked card NSString
number.
IsCommercialCard “True” or “False” NSString
StreetMatchMessage Reserved for future use. Message about NSString
street match for AVS.
SecondsRemaining Reserved for future use. NSString
MerchantCode Gateway merchant code used in a NSString
transaction. Numeric (0-9)
MerchantAccountCode Gateway merchant account code used in a NSString
transaction. Numeric (0-9)
MerchantName Name of a merchant. NSString
Max = 50
ReceiptTagData EMV tag data. Processor dependent. NSString
IssuerTagData EMV issuer tag data. Processor dependent. NSString

Applicationldentifier

Reserved for future use.

TerminalVerificationResults Reserved for future use.
IssuerApplicationData Reserved for future use.
TransactionStatusinformatio Reserved for future use.
n

3.1.5. BPNReceipt

The EMV compliant receipt components returned in the BPNPayment object.

MaskedCardNumber PA-DSS masked card number for the NSString
transaction. Min =13;
Max = 19
ChipCardAID Reserved for future use. NSString
Invoice Invoice number from transaction. NSString
Min = 1/Max = 24
Seq Sequence number NSString
AuthorizationCode Gateway authorization code. NSString
Min = 5;
Max = 50

13
D BridgePay

EntryMethod

Card number entry method.

NSString
Max =50

TotalAmount

Total amount of the transaction.

NSDecimalNumber
Max =12

Applabel Name of application NSString
Max =50
CardHolderName Name on the card NSString
Min=1;
Max = 50
NetworkMerchantID Merchant ID. Dependent on processor. NSString
NetworkTerminallD Terminal ID. Dependent on processor. NSString
CardFirstFour First four digits of a card NSString
Min =4;
Max =4
CardType Type of card NSString
Min =4;
Max =4

3.1.5.1 Sample examples

Basic transaction request / response and receipt output examples.

MSR Sale Type Request
An example of a basic MSR sale transaction request.

_request = [[BPNPaymentRequest alloc]
initinvoiceNumber: @”8888”
pnRefNum:nil
amount:[NSDecimalNumber decimalNumberWithString:@"5.50"]
tipAmount:nil
cashBackAmount:nil
tenderType:TENDER_TYPE_CREDIT
transactionType: TRANSACTION_TYPE_SALE
username:@"emvpgtest"
password:@"57!sE@3Fm"
merchantCode:@"320000"
merchantAccountCode:@"320001"
paymentAccountNumber:nil
token:nil
expirationDate:nil
terminalType:(Valid terminal type here)
industryType:TRANSACTION_INDUSTRY_TYPE_RETAIL
healthCareData:nil
disableEMV:NO
testMode: YES];

_transaction = [[PayGuardianTransaction alloc] initWithPaymentRequest:_request];

ﬁ BridgePay

14

[_transaction runOnCompletion: A(BPNPayment *payment, NSError *error) {
//process response

} onStateChanged: A(PayGuardianTransactionState state) {

//process state change

1

MSR Sale Type Response
An example of a basic MSR sale transaction response.

BPNPayment.BridgeCommResponse:
transactionID: 8888

requestType: 004

responseCode: 0

responseDescription: Successful Request
token: 11110000000068530608
expirationDate: 1225

authorizationCode: 290144

originalReferenceNumber: MCC7754741020
authorizedAmount: $5.50

originalAmount: $5.50
gatewayTransactionID: 214973401
gatewayMessage: A01 - Approved
internalMessage: Approved: 290144 (approval code)
gatewayResult: 00000

AVSMessage:

AVSResponse:

CVMessage:

CVResult:

transactionCode: (null)

transactionDate: 20161020
remainingAmount: $0.00

ISOCountryCode: (null)

ISOCurrencyCode: usD
ISOTransactionDate: 2016-10-20 14:32:47.86
ISORequestDate: 2016-10-20 14:32:47.86
networkReferenceNumber: MCC7754741020
merchantCategoryCode:

networkMerchantlD: 518564010126944
networkTerminallD: PPBO1.

cardType: Mastercard
maskedPAN: S¥**#x*xkxx%kx0608
responseTypeDescription: sale
isCommercialCard: False
streetMatchMessage:
secondsRemaining: (null)
merchantCode: (null)
merchantAccountCode: (null)
merchantName: (null)
receiptTagData: (null)

‘ﬂ BridgePay

issuerTagData: (null)
applicationldentifier: (null)
terminalVerificationResults: (null)
issuerApplicationData: (null)
transactionStatusinformation: (null)

MSR Sale Receipt

An example of the values returned on a basic MSR Sale receipt.

BPNPayment.BPNReceipt:
maskedCardNumber: 5*******x**xxx060g:
chipCardAID: (null) //< No AID for non-emv trx
invoice: 8888

seq: 8888

authorizationCode: 290144
entryMethod: Swipe_Read

totalAmount: 5.5

applabel:

cardHolderName: (null)
networkMerchantld: 518564010126944
networkTerminalld: PPBO1.
cardFirstFour: 5413

cardType: Mastercard
requiresSignature: YES

pinEntered: NO

Sale_Auth Transaction Type Request

An example of a basic authorization only transaction request.

_request = [[BPNPaymentRequest alloc]

initinvoiceNumber:@”33333”
pnRefNum:nil

amount:[NSDecimalNumber decimalNumberWithString:@"7.50"]

tipAmount:nil

cashBackAmount:nil
tenderType:TENDER_TYPE_CREDIT
transactionType:TRANSACTION_TYPE_SALE_AUTH
username:@"emvpgtest"
password:@"57!sE@3Fm"
merchantCode:@"320000"
merchantAccountCode:@"320001"
paymentAccountNumber:nil

token:nil

expirationDate:nil

terminalType:(Valid terminal type here)
industryType:TRANSACTION_INDUSTRY_TYPE_RETAIL

iﬂ BridgePay

16

healthCareData:nil
disableEMV:NO
testMode: YES];

_transaction = [[PayGuardianTransaction alloc] initWithPaymentRequest:_request];

[_transaction runOnCompletion: ~(BPNPayment *payment, NSError *error) {
//process response

} onStateChanged: A(PayGuardianTransactionState state) {

//process state change

1

Sale_Auth Transaction Type Response
An example of a basic authorization only transaction response.

BPNPayment.BridgeCommResponse:
transactionID: 33333

requestType: 004

responseCode: 0

responseDescription: Successful Request
token: 11110000000077149269
expirationDate: 0325

authorizationCode: 786986
originalReferenceNumber:
authorizedAmount: $7.50

originalAmount: $7.50
gatewayTransactionlD: 214972201
gatewayMessage: A01 - Approved
internalMessage: Approved: 786986 (approval code)
gatewayResult: 00000

AVSMessage:

AVSResponse:

CVMessage:

CVResult:

transactionCode: (null)

transactionDate: 20161020
remainingAmount: $0.00

ISOCountryCode: (null)

ISOCurrencyCode: usbD

ISOTransactionDate: 2016-10-20 14:02:46.153
ISORequestDate: 2016-10-20 14:02:46.153
networkReferenceNumber:
merchantCategoryCode:

networkMerchantID: 518564010126944
networkTerminallD: PPBO1.

cardType: Visa
maskedPAN: 4¥**¥*xkx*xx%9269
responseTypeDescription: auth

iﬂ BridgePay

17

isCommercialCard: False

streetMatchMessage:

secondsRemaining: (null)
merchantCode: (null)
merchantAccountCode: (null)
merchantName: (null)
receiptTagData: 4F:A0000000031010;95:8080008000;9F10:06010A03A00000;
9B:6800;91:;8A:

issuerTagData:

applicationldentifier: A0000000031010

terminalVerificationResults: 8080008000
issuerApplicationData: 06010A03A00000

transactionStatusinformation: 6800

Sale_Auth Receipt
An example of the values returned on a basic authorization only receipt.

BPNPayment.BPNReceipt:
maskedCardNumber: 4****x**xx*%xg)g0Q.
chipCardAID: A0000000031010
invoice: 33333

seq: 33333

authorizationCode: 786986
entryMethod: Chip_Read

totalAmount: 7.5

applabel: VISA DEBIT
cardHolderName: CARDHOLDER/VALUED
networkMerchantld: 518564010126944
networkTerminalld: PPBO1.
cardFirstFour: 4204

cardType: Visa

requiresSignature: YES

pinEntered: NO

Capture Transaction Type with Tip Request
An example of a basic capture transaction request that includes a tip amount in the
summary total.

_request = [[BPNPaymentRequest alloc]
initinvoiceNumber:@”33333”
pnRefNum:@”214972201” //gatewayTransactionID from SALE_AUTH
amount:[NSDecimalNumber decimalNumberWithString:@"9.50"] //adjust amount
with tip
tipAmount:[NSDecimalNumber decimalNumberWithString:@"2.00"] //tip amount for
record
cashBackAmount:nil
tenderType:TENDER_TYPE_CREDIT

18
iﬂ BridgePay

transactionType:TRANSACTION_TYPE_CAPTURE
username:@"emvpgtest"
password:@"57!sE@3Fm"
merchantCode:@"320000"
merchantAccountCode:@"320001"
paymentAccountNumber:nil

token:nil

expirationDate:nil

terminalType:nil
industryType:TRANSACTION_INDUSTRY_TYPE_RETAIL
healthCareData:nil

disableEMV:NO

testMode: YES];

_transaction = [[PayGuardianTransaction alloc] initWithPaymentRequest:_request];
[_transaction runOnCompletion: A(BPNPayment *payment, NSError *error) {
//process response

} onStateChanged: A(PayGuardianTransactionState state) {

//process state change

1

Capture Transaction Type with Tip Response
An example of a basic capture transaction response that includes a tip amount in the
summary total.

BPNPayment.BridgeCommResponse:
transactionID: 33333

requestType: 019

responseCode: 0

responseDescription: Successful Request
token: (null)

expirationDate: (null)

authorizationCode: (null)
originalReferenceNumber:
authorizedAmount: $0.00

originalAmount: $0.00
gatewayTransactionlD: 214972201
gatewayMessage: A01 - Approved
internalMessage: (null)

gatewayResult: 00000
AVSMessage: (null)
AVSResponse: (null)
CVMessage: (null)

CVResult: (null)

transactionCode: (null)
transactionDate: (null)
remainingAmount: $0.00

iﬂ BridgePay

ISOCountryCode: (null)

ISOCurrencyCode: (null)
ISOTransactionDate: (null)
ISORequestDate: (null)
networkReferenceNumber: (null)
merchantCategoryCode: (null)

networkMerchantID: (null)
networkTerminallD: (null)

cardType: (null)

maskedPAN:
responseTypeDescription: (null)
isCommercialCard: (null)
streetMatchMessage: (null)
secondsRemaining: (null)
merchantCode: (null)
merchantAccountCode: (null)
merchantName: (null)
receiptTagData: (null)

issuerTagData: (null)
applicationldentifier: (null)
terminalVerificationResults: (null)
issuerApplicationData: (null)
transactionStatusinformation: (null)

Capture Transaction with Tip Receipt
An example of the values returned on a basic capture transaction receipt that includes a tip
amount in the summary total.

BPNPayment.BPNReceipt:
maskedCardNumber:
chipCardAID: (null)
invoice: 33333

seq: 33333
authorizationCode: (null)
entryMethod: (null)
totalAmount: (null)

applabel:

cardHolderName: (null)
networkMerchantld: (null)
networkTerminalld: (null)
cardFirstFour: (null)
cardType: (null)
requiresSignature: NO

pinEntered: NO

20

iﬂ BridgePay

Tip Adjust Transaction Type Request

An example of a basic transaction request that adds or updates a Tip Amount into a Sales
Transaction and sums both amounts into the summary total of the transaction. Can only be
performed on an unsettled Sale transaction.

_request = [[BPNPaymentRequest alloc]

initinvoiceNumber: @”8888"

pnRefNum:@”235531904” //gatewayTransactionID from SALE
amount:nil //adjustment will be calculated at gateway from tip
tipAmount:[NSDecimalNumber decimalNumberWithString:@"2.00"] //tip amount
for adjustment

cashBackAmount:nil

tenderType:TENDER_TYPE_CREDIT
transactionType:TRANSACTION_TYPE_TIP_ADJUST
username:@"emvpgtest"

password:@"57!sE@3Fm"

merchantCode:@"320000"

merchantAccountCode:@"320001"
paymentAccountNumber:nil

token:nil

expirationDate:nil

terminalType:nil
industryType:TRANSACTION_INDUSTRY_TYPE_RETAIL
healthCareData:nil

disableEMV:NO

testMode: YES];

_transaction = [[PayGuardianTransaction alloc] initWithPaymentRequest:_request];
[_transaction runOnCompletion: A(BPNPayment *payment, NSError *error) {
//process response

} onStateChanged: A(PayGuardianTransactionState state) {

//process state change

1;

Tip Adjust Transaction Type Response
An example of a basic tip adjust transaction.

iﬂ BridgePay

BPNPayment.BridgeCommResponse:
transactionl|D: 8888

requestType: 004

responseCode: 00000
responseDescription: Successful Request
token: (null)

expirationDate: (null)
authorizationCode: 987090
ReferenceNumber:
authorizedAmount: $7.00
originalAmount: $5.00

21

gatewayTransactionlD: 235531904
gatewayMessage: A12 — Tip Adjustment Posted
internalMessage: Tip Adjustment Posted
gatewayResult: 00000
AVSMessage: (null)

AVSResponse: (null)

CVMessage: (null)

CVResult: (null)

transactionCode: (null)
transactionDate: (null)
remainingAmount: $0.00
ISOCountryCode: (null)
ISOCurrencyCode: (null)
ISOTransactionDate: (null)
ISORequestDate: (null)
networkReferenceNumber: (null)
merchantCategoryCode: (null)
networkMerchantID: (null)
networkTerminallD: (null)
cardType: (null)

maskedPAN:
responseTypeDescription: (null)
isCommercialCard: False
streetMatchMessage: (null)
WalletID: (null)
WalletPaymentMethodID: (null)
WalletResponseCode: (null)
WalletResponseMessage: (null)

Sale Transaction Type Request using a Token
An example of a basic sale transaction using a token to replace the payment card.

iﬂ BridgePay

_request = [[BPNPaymentRequest alloc]
initinvoiceNumber:@”33333”

pnRefNum:nil

amount:[NSDecimalNumber decimalNumberWithString:@"8.00"]
tipAmount:nil

cashBackAmount:nil

tenderType:TENDER_TYPE_CREDIT
transactionType:TRANSACTION_TYPE_SALE
username:@"emvpgtest"

password:@"57!sE@3Fm"

merchantCode:@"320000"

merchantAccountCode:@"320001"

paymentAccountNumber:nil

token:@"11110000000077149269" // € Token from a previous sale or auth
expirationDate:@”0325” //< expirationDate used with Token
terminalType:nil // € terminalType not used with Token
industryType: TRANSACTION_INDUSTRY_TYPE_RETAIL

22

healthCareData:nil
disableEMV:NO
testMode: YES];

_transaction = [[PayGuardianTransaction alloc] initWithPaymentRequest:_request];
[_transaction runOnCompletion: ~(BPNPayment *payment, NSError *error) {
//process response

} onStateChanged: A(PayGuardianTransactionState state) {

//process state change

1

Sale using Token Transaction Response
An example of a basic sale transaction response where a token was submitted in the
transaction request.

BPNPayment.BridgeCommResponse:
transactionID: 33333

requestType: 004

responseCode: 0

responseDescription: Successful Request
token: 11110000000077149269
expirationDate: 0325

authorizationCode: 099912
originalReferenceNumber:
authorizedAmount: $8.00

originalAmount: $8.00
gatewayTransactionlD: 214972001
gatewayMessage: A01 - Approved
internalMessage: Approved: 099912 (approval code)
gatewayResult: 00000

AVSMessage:

AVSResponse:

CVMessage:

CVResult:

transactionCode: (null)

transactionDate: 20161020
remainingAmount: $0.00
ISOCountryCode: (null)
ISOCurrencyCode: usD
ISOTransactionDate: 2016-10-20 13:55:27.3
ISORequestDate: 2016-10-20 13:55:27.3
networkReferenceNumber:
merchantCategoryCode:

networkMerchantID: 518564010126944
networkTerminallD: PPBO1.

cardType:

maskedPAN:
responseTypeDescription: sale
isCommercialCard: False
streetMatchMessage:

23
iﬂ BridgePay

secondsRemaining: (null)
merchantCode: (null)

merchantAccountCode: (null)
merchantName: (null)
receiptTagData: (null)

issuerTagData: (null)
applicationldentifier: (null)
terminalVerificationResults: (null)
issuerApplicationData: (null)
transactionStatusinformation: (null)

Sale using Token Receipt
An example of the values returned on a basic sale transaction where a token was submitted
in the transaction request.

BPNPayment.BPNReceipt:
maskedCardNumber:
chipCardAID: (null)
invoice: 33333

seq: 33333
authorizationCode: 099912
entryMethod: (null)
totalAmount: 8

applabel:

cardHolderName: (null)
networkMerchantld: 518564010126944
networkTerminalld: PPBO1.
cardFirstFour: (null)
cardType:

requiresSignature: NO
pinEntered: NO

Invalid Tender Type Request

An example of how to submit a sale transaction with an unacceptable tender type.

iﬂ BridgePay

_request = [[BPNPaymentRequest alloc]

initWithAmount:[NSDecimalNumber decimalNumberWithString:@"7.00"]
tipAmount:nil

invoiceNumber:@"12345"

tenderType:@"abcd" //<----- Invalid Tender Type will fail validation
transactionType:TRANSACTION_TYPE_SALE
username:@"emvpgtest"

password:@"57!sE@3Fm"

merchantCode:@"320000"

merchantAccountCode:@"320001"

originalReferenceNumber:nil

connectionService:nil

connectionQueue:queue

24

cashBackAmount:nil
PaymentAccountNumber:nil
ExpirationDate:@""
shippingAddress:nil
DeviceType:@"icmp"
testMode:YES
withToken:@""];

_transaction = [[PayGuardianTransaction alloc]
initWithPaymentRequest:_request];

[_transaction runOnCompletion: A(BPNPayment *payment, NSError *error) {
//process response

} onStateChanged: A(PayGuardianTransactionState state) {
//process state change

1

Invalid Tender Type Response
An example of a sale transaction response error where an unacceptable tender type was
processed.

NSError:

Error Domain=com.bridgepaynetwork.PayGuardian
Code=2 "Invalid payment request"
Userinfo={NSLocalizedDescription=Invalid payment request}

Cancel Transaction Request
An example of how to submit a sale transaction to simulate the cancellation of a transaction
after the transaction has been initiated.

_request = [[BPNPaymentRequest alloc]
initWithAmount:[NSDecimalNumber decimalNumberWithString: @"6.75"]
tipAmount:nil
invoiceNumber:@"7575"
tenderType:TENDER_TYPE_CREDIT
transactionType:TRANSACTION_TYPE_SALE
username:@"emvpgtest"
password:@"57!sE@3Fm"
merchantCode:@"320000"
merchantAccountCode:@"320001"
originalReferenceNumber:nil

25
iﬂ BridgePay

connectionService:nil
connectionQueue:queue
cashBackAmount:nil
PaymentAccountNumber:nil
ExpirationDate:nil
shippingAddress:nil
DeviceType:nil
testMode:YES
withToken:nil];

_transaction = [[PayGuardianTransaction alloc]
initWithPaymentRequest:_request];

[_transaction runOnCompletion: A(BPNPayment *payment, NSError *error) {
//process response

} onStateChanged: A(PayGuardianTransactionState state) {
//process state change

1

Cancel Transaction Error Response
An example of a cancelled sale transaction error response where the cancellation of a
transaction occurred after the transaction was initiated.

Error Domain=com.bridgepaynetwork.PayGuardian
Code=6 "Card failed to read"
Userinfo={NSLocalizedDescription=Card failed to read}

3.2. EMV Transaction Support

3.2.1. EMV Implementation Details

PayGuardian also supports EMV transactions. Upon receiving the transaction request, PayGuardian
calls the device to obtain the card information. The device will prompt to Swipe or Insert the Card.
Upon the card insertion or card swipe, the transaction will be processed according to the user
selection.

Minimum Requirement:

Card Reader Version: 15.0.4 RBA
26

‘ﬂ BridgePay

When a transaction is being processed as an EMV transaction, the communication messages
between the Card Reader device and the PayGuardian Application are uniquely identified by a “33.”
message identifier. There are currently seven message types used during EMV transactions. The
message type is selected using a subcommand identifier which is embedded in the message.
Subcommand identifiers are used to identify the different message types:

1. EMV Transaction Initiation Message
The '00.' EMV Transaction Initiation message is sent from the PayGuardian to the device to
indicate the type of transaction purchase.

2. EMV Track 2 Equivalent Data Message
The '02.' EMV Track 2 Equivalent Data message is sent from the device to the PayGuardian.
This data is similar to the Track 2 data which is stored on a magnetic stripe card.

3. EMV Authorization Request Message
The '03.' EMV Authorization Request message is sent from the device to the PayGuardian to
provide the cryptographic information necessary to authorize the transaction. The
authorization process is initiated by the device issuing a request to the PayGuardian.

4. EMV Authorization Response Message
The '04.' EMV Authorization Response message is sent from the PayGuardian to the device in
response to the EMV Authorization Request message. This message includes cryptographic
information which is read by the embedded microchip on the card.

5. EMV Authorization Confirmation Response Message
The '05.' EMV Confirmation Response message is sent from the device to the PayGuardian,
and contains the results from applying the authorization data to the embedded microchip on
the EMV card.

3.2.2. EMV Purchase Transaction Flow

This section describes the message flow for EMV transactions once PayGuardian receives the
transaction request from the mPQOS application.

e PayGuardian will activate the Device based on the terminal type specified in the transaction
payment request.

e The card number, expiration date, and cardholder name will be transmitted in the
transaction request through the Device (Ingenico terminals will prompt for amount
confirmation).

e The transaction response will be returned to PayGuardian and to the Device. If the Device
has a signature capture pad, the customer will be prompted to Sign and Accept on the
Device.

e If the electronic signature is captured, it will be returned encoded in the response object.

e Remove the EMV card from the Device.

27
ﬁ BridgePay

Sample EMV Sale Request:

An example of a basic EMV sale transaction request.

iﬂ BridgePay

_request = [[BPNPaymentRequest alloc]

initWithAmount:[NSDecimalNumber decimalNumberWithString: @"6.00"]
tipAmount:nil

invoiceNumber:@"12345"
tenderType:TENDER_TYPE_CREDIT
transactionType:TRANSACTION_TYPE_SALE
username:@"emvpgtest"
password:@"57!sE@3Fm"
merchantCode:@"320000"
merchantAccountCode:@"320001"
originalReferenceNumber:nil
connectionService:nil
connectionQueue:queue
cashBackAmount:nil
PaymentAccountNumber:nil
ExpirationDate:@""

shippingAddress:nil

DeviceType:@"icmp"

testMode:YES

withToken:@""];

_transaction = [[PayGuardianTransaction alloc]
initWithPaymentRequest:_request];

[_transaction runOnCompletion: A(BPNPayment *payment, NSError *error) {
//process response

} onStateChanged: #(PayGuardianTransactionState state) {
//process state change

28

Sample EMV Sale Response:

An example of a basic EMV sale transaction response.

BPNPayment.BridgeCommResponse:
transactionID: 12345

requestType: 004

responseCode: 0

responseDescription: Successful Request
token: 11110000000077149269
expirationDate: 0325

authorizationCode: 471130
originalReferenceNumber:

authorizedAmount: $6.00

originalAmount: $6.00
gatewayTransactionID: 214971801
gatewayMessage: AO1 - Approved
internalMessage: Approved: 471130 (approval code)
gatewayResult: 00000

AVSMessage:

AVSResponse:

CVMessage:

CVResult:

transactionCode: (null)

transactionDate: 20161020
remainingAmount: $0.00

ISOCountryCode: (null)

ISOCurrencyCode: usD

ISOTransactionDate: 2016-10-20 13:39:46.987
ISORequestDate: 2016-10-20 13:39:46.987
networkReferenceNumber:
merchantCategoryCode:

networkMerchantlD: 518564010126944
networkTerminallD: PPBO1.

cardType: Visa

maskedPAN: g*#xkx*®x®x%9269
responseTypeDescription: sale
isCommercialCard: False
streetMatchMessage:
secondsRemaining: (null)
merchantCode: (null)
merchantAccountCode: (null)
merchantName: (null)
receiptTagData: 4F:A0000000031010;95:8080008000;9F10:06010A03A0000
0;9B:6800;91:;8A:

issuerTagData:

applicationldentifier: A0O000000031010
terminalVerificationResults: 8080008000
issuerApplicationData: 06010A03A00000
transactionStatusinformation: 6800

29
‘ﬂ BridgePay

Sample EMV Sale Receipt

An example of the values returned on a basic EMV Sale receipt.

BPNPayment.BPNReceipt:
maskedCardNumber: 4*****x***xx*g9369;
chipCardAID: A0000000031010
invoice: 12345

seq: 12345

authorizationCode: 471130
entryMethod: Chip_Read

totalAmount: 6

applabel: VISA DEBIT
cardHolderName: CARDHOLDER/VALUED
networkMerchantld: 518564010126944
networkTerminalld: PPBO1.
cardFirstFour: 4204

cardType: Visa

requiresSignature: YES

pinEntered: NO

ﬁ BridgePay

A. Appendix

A.1. Response Values

A.1.1. Result Codes

The following table contains descriptions of the result codes returned in the ResultCode
response field from PayGuardian. Please note that when programmatically validating the
result of a transaction, you should use this value instead of any other response message
describing the result.

0 Approved.

1 Cancelled. Review ResultTxt field in PaymentResponse to determine
why the transaction was not processed.

2 Declined. Review ResultTxt field in PaymentResponse to determine
why the transaction was not processed.

A.1.2. AVS Response Codes

The following table contains the possible descriptions of the response values returned for
Address Verification (AVS) in the AvsResponse response field from PayGuardian.

Please Note: If the response returned is blank for this specific field tag, it is possible that
your selected processor does not support the full range of AVS codes.

00 AVS Error — Retry, System unavailable, or Timed out
40 Address not available (Address not verified)

43 Street address not available (not verified), ZIP matches
44 Address failed

45 Street address and Zip don’t match

46 Street address doesn’t match, 5-digit ZIP matches

47 Street address doesn’t match, 9-digit ZIP matches

S BridgePay

aA Street address or ZIP doesn’t match

4D Street address matches, ZIP does not

4E Street address and 5-digit ZIP matches

4F Street address and ZIP match

53 Account holder name incorrect, billing postal code matches

55 Unrecognized response — Account holder name, billing address, and
postal code are all incorrect

5C Account holder name incorrect, billing address matches

5F Account holder name incorrect, billing address and postal code match

70 Account name matches

73 Account holder name and billing postal code match

7C Account holder name and billing address match

7F Account holder name, billing address and postal code match

80 AVS service not supported by issuer — Issuer doesn’t participate in AVS

A.1.3. CV Response Codes

The following table contains the possible descriptions of the response values returned for
a CVV2/CVC2/CID check in the CvResponse response field from PayGuardian.

Please Note: If the response returned is blank for this specific field tag, it is possible that
your selected processor does not support the full range of CVV response codes.

M CVV2/CVC2/CID — Match.

N CVV2/CVC2/CID — No Match.

P Not Processed.

S Issuer indicates that the CV data should be present on the card, but the

merchant has indicated that the CV data is not present on the card.

u Unknown. Issuer has not certified for CV or issuer has not provided
Visa/MasterCard with the CV encryption keys.

X Unrecognized reason. Server provided did not respond.

32
D BridgePay

A.2. Errors

A.2.1.10S App Extension Errors

E1001 Invalid invoice number

E1002 Invalid amount.

E1003 Invalid username.

E1004 Invalid password.

E1005 Invalid merchant code.

E1006 Invalid merchant account code.
E1007 Invalid tender type.

E1008 Invalid transaction type.
E1009 Invalid payment request
E1010 Invalid reference number.
E1011 No network connection.

E1012 Device not found.

E1013 Xml deserialization error.
E1014 Xml serialization error

E1015 Xml base64 encode error.
E1016 Xml base64 decode error.
E1017 Unable to process transaction
E1018 Unable to access device.
E1019 Transaction cancelled, Device TimedOut.
E1020 Transaction cancelled.

D BridgePay

33

A.3. Test Cards and Data
A.3.1. Swiped / MSR Test Transaction Info

The following test card numbers are required for use in both integration testing and certification for
PayGuardian iOS, but only for ‘'NON-EMV TRANSACTIONS’ (a separate test account will be provided
for EMV transaction testing):

Test Cards & Bank Accounts

The following accounts will be accepted by the test server's validation mechanism and thus can be
used for preliminary testing:

Card Type Card Brand Card Number Expiration Date | Track Data
%B4111111111111111”Smith/John~16041011000
Credit Visa 4111111111111111 | 1017
1111A123456789012?
) %B54997400000000572Smith/John”*16041011000
Credit MasterCard 5499740000000057 | 1017
1111A123456789012?
%B6011000991001201"Smith/John”16041011000
Credit Discover 6011000991001201 | 1017
1111A123456789012?
%B371449635392376"Smith/John*16041011000
Credit Amex 371449635392376 1017
1111A123456789012?
)) %B4217651111111119°Smith/John~16041011234567
Debit Visa 4217651111111119 | 1017
440?;4217651111111119=16041011234567440?
%B5149612222222229"Smith/John~16041011234567
Debit MasterCard 5149612222222229 | 1017
4407;5149612222222229=160410112345674407

34
ﬁ BridgePay

Encrypted Data

Card Number

Expiration
Date

Secure Format

MSRKSN

Track 1 Encrypted

Track 2 Encrypted

5526399000648568

0416

SecureMagV2

310601012B000
B40007B

BD12FA1B13FB19BD889
7CBCF4109205B69133A
78F2B2181F2D3849B48
4303FACEB54FD285774
8BOD92E72EOBAFB9D9
876C431FF24F37128665
50DA1D697E84F353F3E
EBB8AA42EAF

67E98B7924544F5803
BC4A4453834BD13D1
929CD7006360A551A

1890383011EBBEDBB
3442BD71F45

4012000033330026

0416

SecureMagV2

310601012B000
B400080

AA06168BOC7DFBF22D
FEC13D7B49242906D26
39C65E4AAF5364B143E
D5DCB9F45AA04BA73F
631032B83648311E88E4
ED921451FOE9684E866
613F35BD74F53802C3A
A9E56643863E988DD4B
ABD4753A5

D011E8820440DEO1C
D626AE55921ADA5F3
D475EB9150E2959DF
A1EE6353A3204EF7F
69797B97D753

5473500000000014

1225

SecureMag

9107010000000
0800007

EA02EB27DAFC3BE1AE
43C318D96F39E9ABI0D
55B0978614D7860C8957
21DDOE9EA358FDDCA4
AOFAADE3D1EOE69D91
FCB31B70E73B8FB5E49
FAE4AF6219AB9B6F75C
FFF8A6385DE6645426E
C7E9DDD128C7D63E66
2B2C6E969E3CEE75789
F66C48251B69A6BIC79
CDC570FD984867ACA2

4012002000060016

1225

SecureMag

9107010000000
0800008

C14C88046A89D221FA5
OEFODE61B61C4C11309
5BB6FB2D6185BC5100A
BBOABF6DDASF7D1F4F
3DFA16DFB365EA098C
C927195B4A3F9762BF8
5262D1530C88181B794
E3CADBEA469539DEBB
D341751599322B1A7A4
D2C760044CCC2B311B
4D175959FCEOE2DF9B0
BB7

ﬁ BridgePay

35

Test amount ranges

As a part of the testing, the amount ranges specified below, can be used to trigger specific response
codes from the server. Any valid account number and any properly formatted billing address can be

used for the test.

Sales and Authorizations

Amount Range

Credit Cards

In dollars In cents Response Message

5.00 — 69.99 500 — 6999 Approved.

70.00 — 79.99 7000 — 7999 Invalid Card Number (Invalid Account Number)
80.00 — 89.99 8000 — 8999 Card reported lost/stolen (Lost/Stolen Card)
90.00 — 99.99 9000 — 9999 Call for Authorization (Referral)*

100.00 — 109.99

10000 — 10999

Hold — Pick up card (Pick Up Card)

110.00 — 119.99

11000 — 11999

CSC is invalid (Decline CSC/CID Fail)

120.00 — 129.99

12000 — 12999

Insufficient Funds

130.00 — 139.99

13000 — 13999

Processing Network Unavailable

140.00 — 149.99

14000 — 14999

Processing Network Error

150.00 — 159.99

15000 — 15999

Partially Approved**

*This range is designated to test voice authorization. Sale, Auth request in the amount between
$90.00 — 99.99 will Response in a decline code, however if approval code 012345 is specified, then

an approval will be received.

**This range is designated to test partial authorizations. By setting Sale with this amount range the
partially approved transaction will be received. Approved amount will be $10 less than the originally

requested amount.

Credits

Amount Range (in dollars) | Amount Range (in cents)

Response Message

5.00 - 69.99 500 - 6999

Credit Posted

ﬁ BridgePay

36

A.4. Terms of Use Agreement

1. ACKNOWLEDGMENT AND ACCEPTANCE OF AGREEMENT

The Terms of Use Agreement “TOU” is provided by BridgePay to you as an end user
“USER” of the information obtained from BridgePay, any amendments thereto, and any
operating rules or policies that may be published from time to time by BridgePay, all of
which are hereby incorporated by reference. The TOU comprises the entire agreement
between USER and BridgePay and supersedes any prior agreements pertaining to the
subject matter contained herein.

2. DESCRIPTION OF SPECIFICATIONS AND INFORMATION

BridgePay is providing USER with the information concerning the technical requirements or
allowing point of sale software to send and receive electronic transaction data to the
BridgePay network for authorization and/or settlement. To utilize the Specifications, USER
must: (i) provide for USER's own access to the World Wide Web and pay any fees associated
with such access, and (ii) provide all equipment necessary for USER to make such connection
to the World Wide Web, including a computer, modem and Web browser.

3. USER'S REGISTRATION OBLIGATIONS

In consideration of use of the Specifications, USER agrees to: (i) provide true, accurate,
current, and complete information about USER as requested on the Registration Form, and
(ii) to maintain and update this information to keep it true, accurate, current and complete.
This information about a USER shall be referred to as "Registration Data". If any information
provided by USER is untrue, inaccurate, not current, or incomplete, BridgePay has the right
to terminate USER's access to the Specifications and refuse any and all current or future use
of the Specifications.

4. MODIFICATIONS TO AGREEMENT
BridgePay may change the TOU from time to time at its sole discretion. Changes to the TOU
will be announced and publicly available to all USERs.

5. MODIFICATIONS TO SPECIFICATIONS

BridgePay reserves the right to modify or discontinue, temporarily or permanently, the use
of any of the Specifications with or without notice to USER. USER agrees that BridgePay shall
not be liable to USER or any third party for any modification or discontinuance of a
Specification.

6. USER ACCOUNT, PASSWORD AND SECURITY

USER will receive a password when registering their company (account) to become a
Partner. Upon approval, that password will allow USER access into the Partner Portal. USER
is responsible for maintaining the confidentiality of the password and account, and is fully
responsible for all activities that occur under USER's password or account. USER agrees to
immediately notify BridgePay of any unauthorized use of USER's password or account or any
other breach of security.

7. LICENSE GRANT

37
ﬁ BridgePay

a. Subject to the terms and conditions of this Agreement, BridgePay hereby grants to
USER a personal, limited, perpetual, non-exclusive, non-transferable, annual
subscription license to make and use the SOFTWARE accompanying this TOU to be
installed on CPUs residing on Licensee's premises, solely for Licensee's internal use.
BridgePay and its suppliers shall retain title and all ownership rights to the product
and this Agreement shall not be construed in any manner as transferring any rights
of ownership or license to the SOFTWARE or to the features or information therein,
except as specifically stated herein. use and reproduce the following solely to
develop, manufacture, test and support the products: (i) in object code form (except
as may be agreed by the parties in writing or as otherwise set forth in this
Agreement), (ii) the applicable software in object code form, except as may be
agreed by the parties in writing or as otherwise set forth in this Agreement, (iii)
BridgePay materials which shall include all documentation.

b. Upon the annual anniversary date of the activation of the license, the USER will be
responsible the renewal of the subscription of the license either through their
RESELLER or directly to BridgePay.

8. TRADEMARKS

USER acknowledges that BridgePay owns exclusive rights in the BridgePay trademarks. USER

will not
will not

use BridgePay as part of any of its product, service, domain or company names and
take nor authorize any action inconsistent with BridgePay's’ exclusive trademark

rights during the term of this Agreement or thereafter. Nothing in this Agreement grants
USER ownership or any rights in or to use the BridgePay trademarks except in accordance
with this license. USER will use a legend on its website and, where commercially feasible, on
all printed materials and products bearing the BridgePay trademarks similar to the following:
“(USER name) uses the BridgePay™ mark under express license from BridgePay, LLC.”

9. USER OBLIGATIONS

a.

b.

ﬁ BridgePay

USER shall utilize its BridgePay assigned developer ID in each application utilizing the
BridgePay specification

USER shall not reverse-engineer, reverse-compile or disassemble any BridgePay
software or otherwise attempt to derive the source code to any BridgePay software.

USER shall have no right to (i) disclose any BridgePay source code or BridgePay
source code or BridgePay source code documentation other than as permitted or
contemplated by this Agreement. No licenses are granted by BridgePay to USER by
implication or estoppels to the BridgePay source code or BridgePay source code
documentation.

USER shall comply with all applicable card association regulations, applicable
federal, state and local statutes and BridgePay required procedures and identified
best practices. USER agrees (i) not to use the Specifications for illegal purposes; and
(ii) to comply with all applicable laws regarding the transmission of technical data
exported from the United States.

38

10. DISCLAIMER OF WARRANTIES
USER expressly agrees that use of the Specifications is at USER's sole risk. The Specifications
are provided on an "as is" basis.

a. BRIDGEPAY EXPRESSLY DISCLAIMS ALL WARRANTIES OF ANY KIND, WHETHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT

b. BRIDGEPAY MAKES NO WARRANTY THAT THE SPECIFICATION WILL MEET USER'S
REQUIREMENTS, NOR DOES BRIDGEPAY MAKE ANY WARRANTY AS TO THE RESULTS
THAT MAY BE OBTAINED FROM THE USE OF THE SPECIFICATIONS OR AS TO THE
ACCURACY OR RELIABILITY OF ANY INFORMATION OBTAINED THROUGH USE OF THE
SPECIFICATIONS. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF CERTAIN
WARRANTIES, SO SOME OF THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU.

11. TERMINATION BY BridgePay
USER agrees that BridgePay may terminate USER’s password, account or use of the
Specifications:

a. |If BridgePay determines in its sole discretion that USER has violated or acted
inconsistently with the letter or spirit of the TOU,;

b. Ifthe USER has violated the rights of BridgePay, or that USER's continued use of the
Specifications poses a material threat to the security, stability or ongoing operation
of the System or Specifications.

c. BridgePay may terminate this Agreement for cause at any time upon providing not
less than ten (10) business day’s prior written notice to USER. USER acknowledges
and agrees that any termination of access privileges to the Specifications under any
provision of the Agreement may be effected without prior notice.

d. BridgePay shall in the event that a license has not been renewed and BridgePay has
not received and validated payment from either the USER or the RESELLER within 30
days of the anniversary date of the original activation the deactivate or terminate
the usage of the license.

12. LIMITATION OF LIABILITY

In no event shall BridgePay be liable to USER for any incidental, consequential or punitive
damages related to this Agreement or the use of BridgePay software or specifications. The
liability of BridgePay hereunder shall be limited to the fees paid to BridgePay pursuant to
this Agreement. USER agrees that BridgePay shall not be liable for any direct, indirect,
incidental, special, or consequential damages, resulting from the use or the inability to use
the Specifications, including but not limited to, damages for loss of profits, use, data or other
intangibles, even if BridgePay has been advised of the possibility of such damages. Some
jurisdictions do not allow the limitation or exclusion of liability for incidental or
consequential damages so some of the above limitations may not apply to you.

NOTICE: Any notice to USER or to BridgePay shall be made via either e-mail or regular mail.
BridgePay may also provide notices of changes to the TOU or other matters by displaying
notices to USERs, generally on the Specifications.

39
ﬁ BridgePay

13. SPECIAL DAMAGES

In no event will BridgePay be liable to the USER, consequential or punitive damages,
including but not limited to, lost profits, even if such party knew of the possibility of such
damages.

14. INDEMNIFICATION

a. USER shall be liable to and shall indemnify and hold BridgePay, its employees,
representatives, successors and permitted assigns harmless from and against any and
all claims, demands by third parties, losses, liability, cost, damage and expense,
including litigation expenses and reasonable attorneys’ fees and allocated costs for in
house legal services, to which BridgePay, its employees, representatives, successors
and permitted assigns may be subjected or which it may incur in connection with any
claims which arise from or out of or as the result of (i) USER’s breach of this
Agreement, (ii) the performance by USER of its duties and obligations under this
Agreement or (iii) the negligent or willful misconduct of USER, its officers, employees,
agents and affiliates in the performance of their duties and obligations under this
Agreement.

15. PROTECTION OF CONFIDENTIAL INFORMATION

All information of a business nature relating to the BridgePay specification, software,
application interfaces, services, processes, merchant and cardholder data, product or
programming techniques of either party shall be deemed confidential (“Confidential
Information”). This shall not prohibit each party from disclosing such Confidential
Information to persons required to have access thereto for the performance of this
Agreement; provided, however, that such persons shall be required to keep such
Confidential Information confidential to the same standard that the disclosing party is
obligated to keep the Confidential Information confidential.

16. FORCE MAJEURE

In no event shall BridgePay be liable with respect to the failure of its duties and obligations
under this Agreement (other than an obligation to pay money) which is attributable to acts
of God, war, terrorism, conditions or events of nature, civil disturbances, work stoppages,
equipment failures, power failures, fire or other similar events beyond its control.

17. GENERAL
a. The Specifications Agreement and the relationship between USER and BridgePay
shall be governed by the laws of the State of Illinois without regard to its conflict of
law provisions.

b. The failure of BridgePay to exercise or enforce any right or provision of the TOU shall
not constitute a waiver of such right or provision. If any provision of the TOU is
found by a court of competent jurisdiction to be invalid, the parties nevertheless
agree that the court should endeavor to give effect to the parties' intentions as
reflected in the provision, and the other provisions of the TOU remain in full force
and effect.

c. USER agrees that regardless of any statute or law to the contrary, any claim or cause
of action arising out of or related to use of the Specifications or the Specifications

40
ﬁ BridgePay

Agreement must be filed within ninety (90) days after such claim or cause of action arose or
be forever barred.

18. SECTION TITLES
The section titles in the TOU are for convenience only and have no legal or contractual
effect.

41
ﬁ BridgePay

