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Abstract—Generalized additive models (GAMs) can model
the nonlinear relationship between a response variable and a
set of explanatory variables through smooth functions. GAM is
used to assess the direct, diffuse, and global solar components in
the United Arab Emirates (UAE), a country which has a large
potential for solar energy production. Six thermal channels of the
spinning enhanced visible and infrared imager (SEVIRI) instru-
ment onboard Meteosat second generation (MSG) are used as
explanatory variables along with the solar zenith angle, solar time,
day number, and eccentricity correction. The proposed model
is fitted using reference data from three ground measurement
stations for the full year of 2010 and tested on two other stations
for the full year of 2009. The performance of the GAM model is
compared to the performance of the ensemble of artificial neural
networks (ANNs) approach. Results indicate that GAM leads
to improved estimates for the testing sample when compared to
the bagging ensemble. GAM has the advantage over ANN-based
models that we can explicitly define the relationships between the
response variable and each explanatory variable through smooth
functions. Attempts are made to provide physical explanations
of the relations between irradiance variables and explanatory
variables. Models in which the observations are separated as
cloud-free and cloudy and treated separately are evaluated along
with the combined dataset. Results indicate that no improvement
is obtained compared to a single model fitted with all observations.
The performance of the GAM is also compared to the McClear
model, a physical-based model providing estimates of irradiance
in clear sky conditions.

Index Terms—Assessment of solar radiation, generalized addi-
tive models (GAMs), satellite images, solar energy, spline func-
tions.

NOMENCLATURE

DNI direct normal irradiance (W/m2)
DHI diffuse horizontal irradiance (W/m2)
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GHI global horizontal irradiance (W/m2)
θz solar zenith angle (degrees)
ε eccentricity correction
δ total optical depth of the atmosphere
I0 solar constant (1367 W/m

2)
m air mass
T04 SEVIRI T04 channel (3.9 µm) observed

brightness temperature (K)
T05 SEVIRI T05 channel (6.2 µm) observed

brightness temperature (K)
T06 SEVIRI T06 channel (7.3 µm) observed

brightness temperature (K)
T07 SEVIRI T07 channel (8.7 µm) observed

brightness temperature (K)
T09 SEVIRI T08 channel (10.8 µm) observed

brightness temperature (K)
T10 SEVIRI T10 channel (12.0 µm) observed

brightness temperature (K)
ANN artificial neural network
GAM generalized additive model
GLM generalized linear model
RMSE root-mean-squared error
MBE mean bias error
rRMSE relative RMSE (%)
rMBE relative MBE (%)
X matrix of explanatory or independent variables
Z model matrix for the basis functions
A influence matrix
Y response or dependent random variable
X explanatory or independent random variable
y vector of observed values of Y
g the link function in GAM and GLM
β unknown parameters of the linear model
θ vector of unknown parameters of the basis

functions
f smooth functions
b spline basis functions
λ smoothing parameter

I. INTRODUCTION

S OLAR radiation reaching the earth is divided into differ-
ent components. Direct normal irradiance (DNI) refers to

the radiation received from a straight beam of light from the
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direction of the sun at its current position to a surface that is
always normal to that solar beam. Diffuse horizontal irradi-
ance (DHI) is the radiation received by a horizontal surface
from radiation scattered by the atmosphere and coming from
all directions. Global horizontal irradiance (GHI) is the total
amount of radiation received on a surface parallel to the ground.
Assessment of solar radiation on the earth’s surface is of pri-
mary importance for many applications in solar energy. For
instance, the accurate assessment of DNI is needed for concen-
trating solar power systems or other installations that track the
position of the sun. To model the global tilt irradiance for fixed
flat plate collectors, the assessment of DNI, DHI, and GHI is
required [1], [2].

Solar resource assessment is crucial for efficient realiza-
tion of solar energy applications but is often limited by the
lack of sufficient ground measurements which incur high costs
[3]. Infrared images acquired by satellites at different frequen-
cies can characterize earth’s emission and the atmospheric
constituents, which can be used to obtain estimates of solar
radiation information in areas where there are no ground mea-
surements. Since satellite data are continuous in time and space,
it would be possible to perform solar resource assessment over
the entire region. Solar maps derived from satellite-based meth-
ods have been proven to be more efficient than interpolation of
solar data from ground measurements [4].

Data acquired from satellite images have been extensively
used for estimation of solar radiation on the earth’s surface.
Several models classified as physics-based, empirical, and
hybrid models were proposed with a good adaptation for the
regions of interest. An example of the physics-based model-
ing is the model of Gautier et al. [5] to estimate the GHI in
North America. It was later on adapted by Cogliani et al. [6]
using Meteosat images to produce SOLARMET. The original
Heliosat model of Cano et al. [7] was used to estimate GHI,
DNI, and DHI over the USA. It was later adapted by Perez
et al. [8] for GOES images. The operational physical model
of Schillings et al. [3] was used to estimate DNI from Meteosat
images. The Heliosat model has been modified and improved
through different versions [9]–[14]. Heliosat-4 model is being
currently validated [15], [16]. Another physics-based model for
cloud-free conditions is the McClear model [17], which is based
on look-up tables established with the radiative transfer model
libRadtran [18].

On the other hand, data-driven statistical approaches have
also been frequently used to perform solar radiation assessment.
Artificial neural networks (ANNs) have been used successfully
in a wide range of fields (see for instance [19]–[21]). They
have been adapted for solar resources assessment in a num-
ber of studies [22]–[28]. In these studies, location-dependent
parameters and meteorological parameters were used as inputs
to model solar irradiance components. ANNs with an ensemble
approach, which provide better generalization compared to a
single ANN [29], [30], were used in Eissa et al. [23] to retrieve
irradiance components over the United Arab Emirates (UAE).
A simple bagging-like approach was used to develop the
ensemble models. Alobaidi et al. [22] further improved on this
model, by introducing a novel ensemble framework which sig-
nificantly improved the results compared to the results obtained

in the previous studies. The model employs a two-stage resam-
pling process to build ensemble architectures for nonlinear
regression. Although the model performs well, it involves an
ensemble of ensembles’ framework resulting in high computa-
tion load apart from the number of computationally expensive
optimization steps while training the architecture. Another
biggest drawback of ANN type models is that the relations
between the inputs and outputs cannot be explicitly presented.

In this work, we propose to use the generalized additive
model (GAM), which is an extension of the generalized lin-
ear model (GLM) which uses nonparametric smooth functions
to relate explanatory variables to the response variable. This
flexible method represents an interesting approach to model the
complex relation between irradiance and explanatory variables.
GAMs have been applied widely in environmental studies [31]–
[35] and in public health and epidemiological studies [36]–[41].
However, GAMs have never been used for solar irradiance
assessment. An advantage of GAM over ANN is that the rela-
tionship between each predictor and the response variable is
made explicit through a set of smooth functions.

The UAE presents a high potential for solar energy develop-
ment due to the long-day light period and the marginal amount
of cloud cover. Recently, Eissa et al. [23], [42] and Alobaidi
et al. [22] developed models to accurately estimate irradiance
components over the UAE territory in which they used images
of the earth’s surface acquired by the spinning enhanced vis-
ible and infrared imager (SEVIRI) onboard Meteosat second
generation (MSG) satellite.

The aim of the present paper is to use GAM for the assess-
ment of the irradiance components DHI, DNI, and GHI using
SEVIRI satellite images. Following previous work, six SEVIRI
thermal channels along with the solar zenith angle (θZ), solar
time (Time), day number (Day), and eccentricity correction (ε)
are used as explanatory variables in the model.

In Eissa et al. [23], DHI was directly estimated with the
ANN but DNI was deduced from the ANN estimated optical
depth (δ), and GHI was deduced from DNI and DHI estimates.
In the present study, we propose also to estimate directly the
DNI and GHI with GAM. In Eissa et al. [23] and Alobaidi
et al. [22], an algorithm was used to separate the training
and the testing dataset as cloud-free and cloudy subdatasets.
ANN models were then trained and tested separately on the
two sky condition samples. While this approach is also con-
sidered in the present work, we additionally propose to develop
a global model to the all sky training dataset and to validate
it on the cloud-free, cloudy, and all sky testing datasets. GAM
allows explicitly defining the relationship between the response
variable and each explanatory variable through smoothing func-
tions. Attempts to find physical interpretations of the shape of
these curves are made in the present work.

A comparison is also made with the McClear model, a
physical-based model providing estimates of irradiance in
clear sky conditions. The results of McClear model are avail-
able through a web service at the website of the monitoring
atmospheric composition and climate project (MACC project)
(http://www.gmes-atmosphere.eu). Estimates could be obtained
by just providing the latitude, longitude, and altitude (optional)
of the target site, and the period of interest.
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Fig. 1. Location of the ground measurement stations. Triangles represent
stations of the training dataset and circles represent stations of the testing
dataset.

II. DATA

Ground measurements for DHI, DNI, and GHI consist of 10-
min resolution data available at five stations over the UAE.
At each station, data are collected using a rotating shadow-
band pyranometer (RSP). GHI is measured by the pyranometer
when the shadowband is stationary. The shadowband makes
a full rotation around the pyranometer. DHI is given by the
lowest measured irradiance since at that moment DNI is com-
pletely blocked by the shadowband. DNI is deduced from GHI
and DHI measured with the RSP. In the following, ground-
measured DNI refers to DNI that is estimated from ground
measured GHI and DHI. To match the 15-min resolution of the
satellite data, successive ground measured data were interpo-
lated. Data are available for the full year 2009 at the stations
of Masdar City, Al Aradh, and Madinat Zayed, and for the full
year 2010 at all stations. Fig. 1 presents the spatial distribution
of the stations across the UAE.

Satellite images of the SEVIRI optical imager onboard MSG
satellite were used in the present study. They provide continu-
ous images of the earth in 12 spectral channels with a temporal
resolution of 15 min and a spatial resolution of 3 km. Images
from 6 thermal channels, T04 (3.9 µm), T05 (6.2 µm), T06
(7.3 µm), T07 (8.7 µm), T09 (10.8 µm), and T10 (12.0 µm),
were collected and converted into brightness temperature. For
each station, 3× 3 pixels, with the station located in the center
pixel, were extracted from satellite data. The other variables,
solar zenith angle (θZ), Time, Day, and eccentricity correction
ε, were computed for each pixel. The choice of the selected
thermal channels is justified in Eissa et al. [23] by their sensi-
tivity to the different constituents of the atmosphere: channels
T05 and T06 are known to be affected by water vapor and T07,
T08, and T09 are frequently used for dust detection. T04 was
also selected in Eissa et al. [23] because it had improved their
model accuracy.

The dataset is divided into training and testing datasets. The
model is developed using the training dataset and tested using
the testing dataset. The training dataset includes data from the

stations of Masdar City, East of Jebel Hafeet, and Al Wagan for
the full year 2010. The testing dataset includes data from the
stations of Al Aradh and Madinat Zayed for the full year 2009.
The training and testing datasets are further divided, respec-
tively, into cloud-free and cloudy datasets. For this, a cloud
mask was applied in which each pixel was classified as cloud-
free or cloudy. The thin cirrus test [43], employing the T09
and T10 channels of SEVIRI, was used as a cloud mask fol-
lowing [23]. In all, the cloud-free and cloudy training datasets
contain 29 193 and 7086 observations, respectively, and the
cloud-free and cloudy testing datasets contain 16 864 and 2856
observations, respectively.

III. METHODOLOGY

A. Generalized Additive Model

GLMs [44] generalize the linear model with a response dis-
tribution other than normal and a link function relating the
linear predictor with the expectation of the response variable.
Let us define Y , a random variable called response variable, and
X, a matrix whose columns are a set of r explanatory variables
X1, X2, . . . , Xr. The GLM model is defined by

g[E(Y |X)] = α+

r∑
j=1

βjXj (1)

where g is the link function, and βj and α are unknown param-
eters. With GLM, the distribution of Y is generalized to have
any distribution within the exponential family. The role of the
link function is used to transform Y to a scale where the model
is linear.

The GAM model [45] is an extension of the GLM in
which the linear predictor is replaced by a set of nonparamet-
ric functions of the explanatory variables. GAM can then be
expressed by

g[E(Y |X)] = α+

r∑
j=1

fj(Xj) (2)

where fj are smooth functions of Xj . This model is more
flexible by allowing nonlinear relations between the response
variable and the explanatory variables through the smooth func-
tions. Because of the additive structure of GAM, the effect of
each explanatory variable on Y can be easily interpreted. A
smooth function can be represented by a linear combination of
basis functions

fj(xj) =

qj∑
i=1

θjibji(xj) (3)

where bji(xj) is the ith basis function of the jth explanatory
variable evaluated at xj , qj is the number of basis functions for
the jth explanatory variable, and θji are unknown parameters.

Given a basis function, we define a model matrix Zj for each
smooth function where the columns of Zj are the basis func-
tions evaluated at the values of the jth explanatory variable.
Equation (2) can be rewritten as a GLM in a matrix form as

g(E(y)) = Zθ (4)



1556 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 4, APRIL 2016

where y is a vector of observed values of the response vari-
able Y , Z is a matrix including all the model matrix Zj , and
θ is a vector including all the smooth coefficient vectors θj .
Parameters θ could be estimated by the maximum likelihood
method, but if qj is large enough, the model will generally
overfit the data. For that reason, GAM is usually estimated by
penalized likelihood maximization. The penalty is typically a
measure of the wiggliness of the smooth functions and is given
by θT

jSjθj for the jth smooth function where Sj is a matrix
of known coefficients. The penalized likelihood maximization
objective is then given by

lp(θ) = l(θ)− 1

2

∑
j

λjθj
TSjθj (5)

where l(θ) is the likelihood of θ and λj are the smooth-
ing parameters which control the degree of smoothness of
the model. For given values of the parameters λj , the GAM
penalized likelihood can be maximized by penalized iterative
reweighted least squares (P-IRLS) to estimate θ (see [46]).
However, λj should be estimated by an iterative method like
Newton’s method [46]. For each trial of λj , the P-IRLS is
iterated to convergence. In this study, λj are optimized by min-
imizing the generalized cross-validation score (GCV) which is
based on the leave-one-out method. This method ends up being
computationally less expensive as it can be shown that the GCV
score equals

νg =
n
∥∥∥y − Zθ̂

∥∥∥2
[n− tr(A)]

2 (6)

where A = Z(ZZ+ λZ)−1ZT is the influence matrix. In this
study, all GAM model parameters are estimated with the R
package mgcv [46].

The smooth functions used in this study are cubic regres-
sion splines. Cubic splines are constructed with piecewise cubic
polynomials joined together at points called knots. The def-
inition of the cubic smoothing spline basis arises from the
solution of the following optimization problem [47]. Among all
functions f(x), with two continuous derivatives, find one that
minimizes the penalized residual sum of squares

n∑
i=1

{yi − f(xi)}2 + λ

∫ b

a

f ′′(x)2dx (7)

where y1, y2, . . . , yn is a set of observed values of the response
variable and x1, x2, . . . , xn a set of observed values of an
explanatory variable, λ is the smoothing parameter, and a ≤
x1 ≤ x2 ≤ · · · ≤ xn ≤ b. The first term of (7) measures the
degree of fit of the function to the data, while the second
term adds a penalty for the curvature of the function, and the
smoothing parameter controls the degree of penalty given for
the curvature in the function. With regression splines, the num-
bers of knots can be considerably reduced, and the position
of the knots needs to be chosen. In fact, with cubic-penalized
splines, the exact location of the knots and their numbers are
not as important as the smoothing parameters. In this study, the
positions of the knots will be evenly spaced along the dimension
of each explanatory variable.

Fig. 2. Density scatter plots of residuals versus model fitted values for (a) δ and
(b) log(δ).

B. Model Configurations

For the GAM models of this study, the identity link function
and the Gaussian error with mean zero and a constant variance
σ2 are assumed. In each model, residuals obtained are checked
for any trends in the variance and for normality to confirm the
model assumptions. In Eissa et al. [23], DHI was estimated
directly with the ANN trained with ground-measured DHI. The
model for the GAM estimated DHI is given by the following
expression:

DHI = α+
r∑

j=1

fj(Xj) (8)

where Xj is the jth explanatory variable, r is the number
of explanatory variable included in the model, and α is the
intercept.

DNI estimations in Eissa et al. [23] were deduced from the
ANN-estimated δ. DNI estimations were then computed using
the Beer-Bouguer-Lambert law which relates δ to DNI by the
following equation:

DNI = I0 ε exp(−mδ) (9)

where I0 is the solar constant with an approximate value of
1367 W/m2, and m is the air mass. The values of δ were com-
puted from ground measured DNI. Parameters m and ε can be
easily computed for any location on a given day by knowing
θZ . For the estimation of δ with GAM, the following model is
used:

log(δ) = α+
r∑

j=1

fj(Xj). (10)

The logarithmic transformation of δ in (10) is used to meet
the model assumptions. Fig. 2 presents the residuals against
the fitted values for the models with and without a logarithmic
transformation. Fig. 2(b) clearly improves the residual constant
variance assumption. In this study, we also propose to esti-
mate DNI directly with GAM fitted on ground-measured DNI.
Estimated DNI is then denoted by DNID, and the following
model similar to that of DHI is used:

DNID = α+

r∑
j=1

fj(Xj). (11)
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TABLE I
RESULTS OBTAINED FOR THE MODELS FITTED ON THE SEPARATE CLOUD-FREE AND CLOUDY SKY CONDITIONS TRAINING DATASETS

AND TESTED ON THE SEPARATE CLOUD-FREE AND CLOUDY SKY CONDITIONS TESTING DATASETS

The GHI is deduced from the estimated DHI and DNI using
the following relation:

GHI = DNI cos θZ + DHI. (12)

In this study, we also propose to estimate GHI directly with
GAM fitted on ground-measured GHI. Estimated GHI is then
denoted by GHID, and the following model is used:

GHID = α+

r∑
j=1

fj(Xj). (13)

C. Validation Method

For comparison with the results of Eissa et al. [23] and
Alobaidi et al. [22], the same validation method is used in the
present study. On the five ground stations in the UAE, the data
from three stations for the full year 2010 are used for fitting the
model, and the data from the two remaining stations for the full
year 2009 are used for testing the model. With this approach,
the model is trained and tested on completely independent
conditions with different locations and a different year.

The performances are evaluated in terms of the root-mean-
squared error (RMSE), mean bias error (MBE), relative RMSE
(rRMSE), and relative MBE (rMBE). The rRMSE and rMBE
are defined here by

rRMSE =

⎛
⎝
√√√√ 1

n

n∑
i=1

(yi − ŷi)

⎞
⎠ · 100

ȳ
(14)

rMBE =

(
1

n

n∑
i=1

(yi − ŷi)

)
· 100

ȳ
(15)

where yi is the measured irradiance, ŷi is the estimated irradi-
ance, and ȳ is the mean of the measured irradiance.

IV. RESULTS

A. Models Trained and Tested on the Cloud-Free and Cloudy
Sky Datasets

This section presents the results of the estimation of irra-
diance variables with GAM. Two separate models for each
irradiance variable were fitted on the cloud-free and cloudy
training datasets with all the explanatory variables included.

TABLE II
RESULTS OBTAINED FOR THE MODELS FITTED ON THE ALL SKY

CONDITIONS TRAINING DATASET AND TESTED ON THE CLOUD-FREE,
CLOUDY, AND ALL SKY CONDITIONS TESTING DATASETS

Finally, each model was validated with either the cloud-free or
the cloudy testing dataset. Table I presents the results obtained
for the irradiance variables in terms of RMSE, MBE, rRMSE,
and rMBE for cloud-free and cloudy conditions, and for both
GAM and ANN models.

The comparison of the relative statistics obtained with GAM
indicates that the best estimations are obtained for GHI and
GHID in both sky conditions. The rRMSEs reach their lowest
values for GHI and GHID (7.1% and 6.5% for cloud-free condi-
tions and 15.3% and 13.5% for cloudy conditions, respectively).
In cloud-free conditions, the worst estimations are obtained for
DHI with an rRMSE of 23.8%. In the cloudy case, the worst
estimations are obtained for DNI and DNID with rRMSEs equal
to 36.7% and 35.9%, respectively. When comparing results for
cloud-free and cloudy conditions, the worst estimations are sys-
tematically obtained for cloudy conditions. The rRMSE and
rMBE values are significantly higher for cloudy conditions for
most irradiance variables compared to cloud-free conditions.

Results for DNID and GHID, directly estimated with GAM,
are compared with results for DNI and GHI. In cloud-free
conditions, GHID results are slightly better than GHI, while
DNI results are slightly better than DNID. In cloudy condi-
tions, absolute and relative RMSEs are improved slightly with
directly estimated DNI and GHI. More important improve-
ments are observed for absolute and relative MBEs: For
instance, absolute MBEs obtained for DNI and DNID in cloudy
conditions are −50.2 and −25.3 W/m2, respectively. For GHI
and GHID, they are −36.7 and −13.4 W/m2, respectively.
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Fig. 3. Density scatter plots of estimated versus ground measured irradiance
and residuals versus ground measured irradiance for the models fitted and tested
on the all sky conditions training and testing datasets.

For comparison purposes, results obtained in Eissa et al.
[23] and Alobaidi et al. [22] with the ANN approach using
the same case study and validation procedure are presented
in Table I. Comparison of GAM and Bagging ANN results of
Eissa et al. [23] shows that significant improvements are gener-
ally obtained with GAM for DNI, DNID, GHI, and GHID with
respect to absolute and relative RMSE and MBE for both sky
conditions. For instance, in the case of cloud-free conditions,
the RMSE for DNI is 140.0 W/m2 with ANN compared to
115.1 W/m2 with GAM. For DHI, RMSEs are relatively sim-
ilar in both sky conditions, but MBEs are significantly better
for GAM in both sky conditions. Overall, the results indicate a
clear advantage of GAM over ensemble ANN model of Eissa
et al. [23].

Fig. 4. Mean ground measured DHI, DNI, and GHI as function of time for the
training dataset. Solid lines represent cloud-free conditions and dashed lines
represent cloudy conditions.

TABLE III
RESULTS OBTAINED WITH MODELS WITHOUT ε

The models are fitted and tested on the all sky conditions training and testing
datasets.

The results of Alobaidi et al. [22] are comparable for the
cloud-free conditions and are slightly better for the cloudy
conditions. For the cloud-free conditions, the RMSE of the pro-
posed GAM model is slightly higher for DHI, but the results of
GAM model have lower MBE. The DNI results are very simi-
lar. The GAM model, however, produces better estimates of the
GHI for cloud-free conditions which implies that the errors in
DHI and DNI cancel each other.

B. Single Model Trained on All Sky Dataset and Tested on
Cloud-Free, Cloudy, and All Sky Datasets

In Eissa et al. [23] and Alobaidi et al. [22], two differ-
ent ANN ensemble models were trained and tested separately
for cloud-free and cloudy datasets. The impact of using sep-
arate datasets based on sky conditions is evaluated here. For
that, a global model was fitted to the all sky conditions dataset
and tested separately on the cloud-free, cloudy, and all sky
testing datasets. Results obtained with the global model are
presented in Table II. In the following, they are compared to
the results of Table I. For the cloud-free case, RMSEs are in
most cases slightly higher with the global model and MBEs
equivalent for both approaches. For the cloudy case, no gen-
eral conclusion can be made concerning RMSEs and MBEs.
However, MBEs are significantly reduced for DNI and DNID

with the global model. For the all sky conditions case, rela-
tive statistics represent a tradeoff between results when tested
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Fig. 5. Smooth functions of explanatory variables for the model estimating DHI fitted on the all sky conditions dataset. The dotted lines represent the limits of the
5% confidence interval.

on the cloud-free testing dataset and when tested on the cloudy
testing dataset. This reflects the fact that both sky conditions
testing datasets are mixed together. These overall results show
that using separate models trained on cloud-free and cloudy
conditions do not have a significant positive impact on the
performances.

Fig. 3 presents the density scatter plots of estimated variables
versus ground measured variables. For DHI, a downward trend
in residuals is observed and a positive bias is visible in the zone
with the highest density. DNI and DNID present similar scatter
plots. A downward trend in residuals is also observed for these
variables. Residuals in the scatter plot of for GHI and GHID are
similar. They are evenly distributed around the line representing
zero bias, and no trend is observed.

Mean ground measured DHI, DNI, and GHI were computed
for separate cloud-free and cloudy conditions. Fig. 4 presents
the mean ground measured DHI, DNI, and GHI as a function of
time for the training dataset. Cloud-free and cloudy conditions
were computed separately. For DHI, the received irradiance is
superior for cloudy conditions. For DNI, the inverse occurs
where the irradiance received is superior for cloud-free condi-
tions. For GHI, both curves confound each other. These curves
are explained by the fact that under cloudy sky conditions, the

scatter irradiance is increased, resulting in an increased DHI
and a reduced DNI. However, the total irradiance received is
not affected by sky conditions as GHI is equal for both condi-
tions. These results advocate the use a single model for both sky
conditions for GHI.

C. Interpretation of Smooth Functions

In GAM, the sum of the smooth functions of one or more
explanatory variables and the intercept give a function of the
response variable [see (2)]. Each smooth function then repre-
sents the effect on the response variable of one predictor in
relation with the effect of the other predictors. Smooth func-
tions are graphically presented here and attempts to provide
physical explanations are made. The global model fitted on
the all sky conditions training dataset is used here for illustra-
tion as no important improvement was obtained by using two
separate models for both sky conditions as shown in the last
section.

Attempts to obtain simpler models were carried out through
stepwise regression methods. However, in most cases, the best
model ends up being the model with all variables. Nevertheless,
with GAM, it is hypothesized that the inclusion of ε is
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Fig. 6. Smooth functions of explanatory variables for the model estimating DNID fitted on the all sky conditions dataset. The dotted lines represent the limits of
the 5% confidence interval.

unnecessary. Indeed, ε is computed at each location with a
formula that depends only on day number, which is already
included as an explanatory variable in the model. Table III
presents the results obtained for the estimation of radiation vari-
ables with models using all explanatory variables except ε. The
results obtained with and without ε are very similar and show
that ε is redundant.

The smooth functions of each explanatory variable are rep-
resented in Figs. 5–7 for DHI, DNID, and GHID, respectively,
using the model without ε and fitted on the all sky conditions
training dataset. The dotted line represents the 5% confidence
interval. To help interpreting the smooth functions, Figs. 8–10
present the scatter plots of measured DHI, DNI, and GHI
versus each explanatory variable, respectively, for the all sky
conditions training dataset.

The smooth function of DHI versus Day increases with Day
until summer then decreases until the end of the year. The scat-
ter plot of DHI with Day in Fig. 8 shows a similar relation.
For DNID and GHID, an inverse relation in the smooth func-
tions is observed where the irradiance reaches its minimum
during summer. The scatter plot of DNI with Day in Fig. 9
reveals a similar relation. This result is counterintuitive because
irradiance is expected to increase during summer. A possible

explanation could be the significantly higher air humidity dur-
ing summer and/or more dust scattering the solar radiation
during the summer season.

The smooth function of DHI versus Time increases with time
to reach a maximum at around noon and decreases afterward.
Because time is related to the sun height and therefore to irra-
diance intensity, it is expected to observe a similar shape of
smooth curve for every irradiance variable. However, for DNID

and GHID, an inverse relation is observed where the minimum
irradiance is reached at around noon. This behavior is explained
by the fact that the explanatory variable θZ , included in the
model, also explains the sun position. In the case of DHI, the
smooth function of θZ is strictly increasing. In this case, the
time explains the sun position, and θZ explains a complemen-
tary portion of the total variance. In the case of DNID and GHID,
θZ rather explains the sun position as the smooth functions are
strictly decreasing with θZ .

The interpretation of the smooth functions of the predictors
related to thermal channels is difficult because of their num-
ber and the fact that they are not independent. In all cases,
a change in the slope of the curve occurs in midtempera-
tures. Confidence intervals are larger for low temperatures and
decrease to become very small with increasing temperatures.
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Fig. 7. Smooth functions of explanatory variables for the model estimating GHID fitted on the all sky conditions dataset. The dotted lines represent the limits of
the 5% confidence interval.

This is explained by the fact that there are fewer observations
for small temperatures as seen in the scatter plots of Figs. 8–10.

The analysis of the smooth curves seems to indicate that
the seasonal pattern may be caused by the solar scattering by
airborne particles. To further study this hypothesis, we quanti-
fied the aerosol particle content over the UAE, using data from
the AErosol RObotic NETwork (AERONET) map, a ground-
based aerosol monitoring network initiated by NASA [48]. The
dataset includes the aerosol optical thickness (AOT) for differ-
ent wavelengths and the total water vapor in the column. Fig. 11
presents the mean daily aerosol optical thickness (AOD) at the
wavelength of 500 nm and the mean daily water vapor at the
Abu Dhabi station (24.44 ◦N, 54.62 ◦E). This figure shows an
important seasonality in the dust and the water vapor peaking
during summer.

A strong seasonality is observed in both water vapor and
AOT. It is, therefore, important to verify whether this seasonal
behavior propagates also into the performance statistics. For
this purpose, the year of the testing sample was divided in four
seasons of three months, and the performance statistics were
computed for each season. Table IV presents the performances
for each season with the models without ε, fitted and tested
on the all sky conditions training and testing datasets (i.e., the

Fig. 8. Scatter plots of ground measured DHI versus explanatory variables for
the all sky training conditions dataset.

same models used in Table III). The results of Table IV show
that biases are in general higher during the summer (AMJ and
JAS), and RMSEs are higher during the winter season of JFM.
The high bias values associated to the summer season can be
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Fig. 9. Scatter plots of ground measured DNI versus explanatory variables for
the all sky conditions training dataset.

Fig. 10. Scatter plots of ground measured GHI versus explanatory variables for
the all sky conditions training dataset.

explained by the scattering by aerosol constituents. It is also
observed that the biases of DHI are generally of opposite sign
than DNID and DNI. GHI biases are generally very small due
to the canceling effect of the DHI and DNI biases.

In the second stage, the number of thermal channels was
reduced in order to ease the physical interpretation of the
smooth functions related to the thermal channels. In this way,
only three thermal channels, T04, T05, and T09, in addition to
the other variables were included in the models. T05 and T09
were chosen to represent the water vapor and dust constituents
of the atmosphere, and T04 was selected because it was shown
to be an important channel in the models. Smooth func-
tions obtained for each explanatory variable are presented in
Figs. 12–14 for variables DHI, DNID, and GHID. Performances
obtained with this configuration are shown in Table V. Because
the number of explanatory variables has been reduced, most
performance indicators decreased. However, RMSE values are
similar for GHI and GHID, and absolute and relative MBE
values for DNI have improved for the model with fewer
explanatory variables.

Fig. 11. Mean daily AOT at 500 nm and mean daily water vapor in Abu Dhabi.

TABLE IV
SEASONALITY IN THE PERFORMANCE STATISTICS

Results are obtained with models without ε. The models are fitted and tested on
the all sky conditions training and testing datasets.

Smooth functions of variables Day, Time, and θZ have sim-
ilar relationships with response variables than those obtained
with the model with more variables. There is an exception in the
case of DHI for θZ where the smooth function is now strictly
decreasing. For the thermal channels, most observations occur
after a certain threshold temperature which is channel depen-
dent. This can be clearly seen in the scatter plots. Consequently,
a change in slope occurs generally around this threshold tem-
perature in the smooth functions of thermal channels. As the
number of observations is negligible for the temperatures below
the threshold, the analysis is restricted on temperatures higher
than this threshold. For DHI, T09 is the most important ther-
mal channel. Its smooth function has a strong negative slope.
On the other hand, the smooth function for T04 increases
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Fig. 12. Smooth functions of explanatory variables for the model estimating
DHI fitted on the all sky conditions dataset (simplified model). The dotted lines
represent the limits of the 5% confidence interval.

Fig. 13. Smooth functions of explanatory variables for the model estimating
DNID fitted on the all sky conditions dataset (simplified model). The dotted
lines represent the limits of the 5% confidence interval.

continuously. The smooth function of T05 increases continu-
ously with a light slope. The scatter plots of Fig. 8 reveal that
DHI has a positive relation with temperature for T04. For DNID,
T09 is the most important thermal channel. Its smooth function
increases constantly with a strong slope. The smooth function
of T04 decreases continuously with a strong slope for high tem-
peratures (Fig. 13). The smooth function of T05 has a light

Fig. 14. Smooth functions of explanatory variables for the model estimating
GHID fitted on the all sky conditions dataset (simplified model). The dotted
lines represent the limits of the 5% confidence interval.

TABLE V
RESULTS OBTAINED WITH MODELS INCLUDING THE EXPLANATORY

VARIABLES DAY, TIME, θZ , T04, T05, AND T09

The models are fitted and tested on the all sky conditions training and testing
datasets.

decreasing slope. A strong positive relation of DNI with tem-
perature for T09 is also observed in Fig. 9 while being less
important for T04. For GHI, the smooth functions of T04 and
T09 are both strictly increasing (Fig. 14). Strong positive rela-
tions are also observed in the scatter plots of thermal channels
T04 and T09 in Fig. 10. The smooth function of T05 has a slope
of about zero and is thus not very important.

The thermal channels T05 and T09 were chosen to repre-
sent, respectively, water vapor and dust in the atmosphere. We
aim to evaluate to which extent these thermal channels capture
the seasonality of the airborne constituents. For this, the indi-
vidual thermal channel components of the linear predictor are
displayed as a function of the day of the year. The simplified
models DHI and DNID fitted on the all sky conditions dataset
are considered. Fig. 15 presents the mean daily predicted DHI
and DNI as a function of the day. It can be observed that the
curves for T04 follow the seasonal evolution of the ground
temperature with a peak during summer. For T05, a strong
attenuation due to water vapor is observed where no noticeable
seasonality can be observed. For T09, the same seasonal pattern
than T04 is notice but with a small attenuation during summer
due to dust. Fig. 16 presents the daily mean ground-measured
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Fig. 15. Components of the linear predictor related to the thermal channels as a function of the day. The models DHI (a,b,c) and DNID (d,e,f) fitted on the all sky
conditions dataset (simplified model) are considered.

Fig. 16. Daily mean ground measured thermal channels T04, T05, and T09 for the all sky conditions training dataset.

thermal channels T04, T05, and T09 as a function of the day for
the all sky conditions training dataset.

D. Comparison With McClear

Using the web service for McClear, estimates of irradiances
were obtained at the two stations included in the testing sample
during the same time period. Performance statistics computed
for the cloud-free condition testing sample are added in Table I.
Fig. 17 presents the density scatter plots of estimated variables
with McClear versus ground measured variables. Scatter plots
are rather similar to GAM. Same trends are observed in the
residuals. One small difference that can be observed is that
more observations of DHI are underestimated with McClear
for very high irradiances. There is also more positive bias with
McClear for very low DNI. Performances presented in Table I
show that McClear, compared to GAM, has higher RMSEs
for all variables and higher biases for DNI and GHI. In Eissa
et al. [49], the McClear model was validated for the same
stations as in the present study and better performances were
obtained. This can be explained by the fact that the two publi-
cations used different methods to discriminate the cloud-free
samples from the cloudy samples. Indeed, the algorithm of
Long and Ackerman [50] was used in Eissa et al. [49] instead

of the thin cirrus method used in the present work and in Eissa
et al. [23]. The application of the Long and Ackerman method
has resulted in a much lower proportion of retained cloud-free
instants where only 65% of the data were considered cloud-free
compared to 85% in the case of the present work. The algorithm
of Long and Ackerman is more restrictive in its discrimination
and might have removed some instants that were in fact cloudy.

V. CONCLUSION

In this study, GAM was used to estimate the irradiance com-
ponents DHI, DNI, and GHI in the UAE. Ground irradiance
measurements were available at five stations over the UAE. The
data from three stations for the full year of 2010 were used to
fit the model, and the data of the two remaining stations for
the full year of 2009 were used for the validation. In this way,
the model was trained and tested in completely independent
temporal and spatial conditions. For the purpose of estimating
irradiance throughout the UAE, six SEVIRI thermal channels
were used along with other variables including the solar zenith
angle θZ , Day, Time, and the eccentricity correction ε. These
variables can be calculated for any location over the UAE.

Results were compared with those obtained with an ANN
ensemble approach in Eissa et al. [23] and Alobaidi et al. [22]
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Fig. 17. Density scatter plots of estimated versus ground measured irradiance
and residuals versus ground measured irradiance for the McClear model fitted
and tested on the cloud-free conditions training and testing datasets.

where the same database and validation procedure were used.
Results indicate clearly that GAM leads to an improved estima-
tion when compared with the bagging ensemble, and is similar
or better for cloud-free conditions and slightly lower for cloudy
conditions compared to the two-stage ensemble architecture
proposed in Alobaidi et al. [22]. However, the simplicity of the
GAM models and their ability to provide explicit expressions
unlike the ANN ensemble are a clear advantage.

In Eissa et al. [23], the training and testing datasets were sep-
arated into cloud-free and cloudy subdatasets, and models were
fitted and tested separately for these two datasets. The same
approach was used in Alobaidi et al. [22] as well. The obtained
estimations were weaker in the case of cloudy conditions. In
the present study, a single model was also fitted using the train-
ing data for all sky conditions and was tested on the cloud-free
and cloudy testing datasets. Results have shown that similar
performances were obtained for both sky conditions with the
global model. This suggests that using two different models is
not necessary.

As mentioned before, the advantage of the GAM approach
over the ANN approach is that relations between irradiance
variables and explanatory variables can be defined explic-
itly. The smoothing curves for each explanatory variable were
graphically represented and analyzed to provide physical expla-
nations to the modeled relations.

It is proposed in future work to add more variables such as
relative humidity as explanatory covariates. Relative humidity

has a high variability throughout the year, with large values dur-
ing the summer. Its inclusion as covariate may help explain an
additional percentage of the variance, especially in the summer
season. The development of specific summer and winter mod-
els based on a rational definition of the seasons (see for instance
[51]) should also lead to improved models. The usage of coarse
resolution aerosol maps normally used in the physics-based
approaches can also be integrated into the proposed framework.
Future efforts can also focus on testing more advanced basis
functions in the GAM model.
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