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Nomenclature

b, unbiased estimator of B,

B: rth probability weighted moment where M ;¢

B moment ratio C2

B moment ratio Cg

Cy coefficient of variation

Cs coefficient of skewness

Ck coefficient of kurtosis

cdf cumulative distribution function

V& chi-square test statistic

D/M distribution/method

EV1 Gumbel or extreme value type I distribution

£i0 probability density function with estimated parameters
0

f 0 estimated probability density function

F; empirical probability for the ith wind speed observation

F; estimated cumulative probability for the ith observation

obtained with the theoretical cdf

F( cumulative distribution function

F1() inverse of a given cumulative distribution function
G Gamma distribution

GEV generalized extreme value distribution

GG generalized Gamma distribution

GMM  generalized method of moment

KAP Kappa distribution

ML maximum likelihood

MM method of moments

U, rth central moment

n number of wind speed observations in a series of wind
speed observations

N number of bins in a histogram of wind speed data

pi the relative frequency at the ith class interval

Di the estimated probability at the ith class interval

Py mean wind power density for the theoretical pdf f(v)

Po mean wind power density calculated from the observed

. wind speed data

Py mean wind turbine power from the theoretical pdf f(v)

Py mean wind turbine power from the observed wind
speed data

P3 Pearson type III distribution

pdf probability density function

R? coefficient of determination

R? adjusted R?

R,Z,P coefficient of determination giving the degree of fit be-

tween the theoretical cdf and the empirical cumulative
probabilities of wind speed data

RéQ coefficient of determination giving the degree of fit be-
tween the theoretical wind speed quantiles and the

KS Kolmogorov-Smirnov test statistic wind speed data
bq sample rth L-moment RMSE root mean square error
LM method of L-moments Tr rth L-moment ratio
LN2 2-parameter Lognormal distribution tr rth sample L-moments ratio
LN3 3-parameter Lognormal distribution v; the ith observation of the wind speed series
LP3 Log-Pearson type III Vi predicted wind speed for the ith observation
my rth sample central moment W2 2-parameter Weibull distribution
M,,;s  probability weighted moment of order p, r, s W3 3-parameter Weibull distribution
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1. Introduction

The assessment of wind energy potential at a given site is often
based on the use of probability density functions (pdfs) to charac-
terize short term wind speed observations [1-16]. The selection of
the appropriate pdf to model wind speed data is crucial in wind
power energy applications as it reduces wind power output esti-
mation uncertainties. Traditionally, the two-parameter Weibull
(W2) is the most used pdf in studies related to wind speed data
analysis [17]. While being extensively used in studies dedicated
to the assessment of wind energy [18-25], the Weibull is not
able to represent every wind speed regime [26-28]. Recently, a
number of studies have used a variety of other pdfs with variable
levels of success [17,22,27-40]. The pdfs used include the
Gamma (G), Inverse Gamma (IG), Inverse Gaussian (IGA), two
and three-parameter Lognormal (LN2, LN3), Logistic (L), Log-
logistic (LL), Gumbel (EV1), Generalized Extreme Value (GEV),

three-parameter Beta (B), Pearson type III (P3), Log-Pearson
type Il (LP3), Burr (BR), Erlang (ER), Kappa (KAP) and Wakeby
(WA) distributions. Ouarda et al. [27] found the GG and KAP to
be superior to W2 in the United Arab Emirates (UAE). Mert and
Karakus [34] found the Burr distribution to be more suitable than
the GG or W2 for wind speed data in Antakya, Turkey.

A number of authors have proposed mixture distributions
[13,27,28,31,41-46]. The mixture models were found to provide
better fit in the case of distributions presenting bimodal character-
istics. A model composed of two Weibull distributions is most
often used [27,31,46-48]. Other mixture models used are the
Normal-Normal, Truncated Normal-Weibull and Gamma-Weibull.
Shin et al. [28] applied a large number of different mixture models
to wind speed data in the UAE and concluded that the Weibull-
Extreme value type-1 is the most appropriate distribution. The
use of distributions generated by the maximum entropy principle
is also common [13,49-52]. These distributions have the advantage
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of being able to model wind regime with high percentages of null
wind speeds and with bimodal distributions [50]. Non-parametric
models were also proposed by a number of authors to model wind
speed distribution. Qin [53] proposed to apply the kernel density
concept to wind speed. This method was since adopted in a num-
ber of studies [27,35,54,55].

Different goodness-of-fit criteria are traditionally used for the
assessment of the adequacy of pdfs. An exhaustive review of the
most used criteria is presented in this paper along with a discussion
of their advantages and disadvantages. Such criteria include the
log-likelihood (In L) [27,33,56,57], the Akaike and the Bayesian
Information Criteria (AIC, BIC) [27,28,30,42,56], the coefficient
of determination (RZ) [1,3,11,12,15-17,21,27,28,30-32,35,37,39,4
6,49,50,58-62], the root mean square error (RMSE) [1,2,9,13,15,16,
33,36,37,39,53,56,60-71], the Chi-square test statistic ()?) [1,2,
13,15,27,28,32-36,39,40,49,53,55,57,60,68,72], the Kolmogorov-
Smirnov test statistic (KS) [9,13,27,30,32-35,38-40,53,55,56,61,69,
73-75] and the Anderson-Darling test statistic (AD) [32,40,50,76].

An alternative method for the evaluation of the goodness-of-fit
of pdfs, the moment ratio diagram, has been used extensively in
hydro-meteorology [77]. Bobee et al. [78] pointed out that moment
ratio diagrams have been used as a means to select a distribution
to be used as a probability model for the fitting of a given data
sample, to compare the shapes of distributions from a given set
and to classify a set of distributions by separating them into a finite
number of categories. With this approach, all possible values of the
square of the coefficient of skewness and coefficient of kurtosis are
represented in a coordinate system for each distribution. The selec-
tion of the appropriate distribution to fit a data sample is made
based on the location of the data sample in the coordinate system.
The main advantage of this approach is that it allows an easy com-
parison of the fit of several pdfs on a single diagram. Moment ratio
diagrams are also easy to implement with the information and
equations readily available in the literature, giving the approxi-
mate relationship between moments for popular pdfs [79,80].
The position of a time series (i.e., a station) on the diagram is sim-
ply computed with the equations of moments.

The L-moment ratio diagram, a variant of the conventional
moment ratio diagram, introduced by Hosking [81], has been used
to select suitable pdfs for modeling hydro-meteorological variables
in a large number of studies [79,81-98]. Hosking and Wallis [79]
presented the theoretical advantages of L-moments over conven-
tional moments: They are able to characterize a wider range of dis-
tributions and they are more robust to the presence of outliers in
the data when estimated from a sample. They also indicated that
experience shows that L-moments are less subject to bias in esti-
mation. Vogel and Fennessey [99] concluded that L-moment ratio
diagrams should be preferred over moment ratio diagrams for
applications in hydrology. The main reason is that L-moment
estimators are nearly unbiased for all sample sizes and all
distributions.

Despite its advantages, the moment ratio diagram approach has
never been used for the assessment of wind speed distributions. It
is proposed, in the present study, to develop the moment and
L-moment ratio diagram approaches for wind speed data analysis
and apply these approaches to wind speed data from the UAE.
Ouarda et al. [27] evaluated the suitability of a wide selection of
pdfs to fit wind speed data recorded at 7 stations at 10 m height
in the UAE. The adequacy of the pdfs was evaluated using
goodness-of-fit criteria. For comparison purposes, the same pdfs
used in Ouarda et al. [27] for wind speed analysis are represented
on the moment ratio diagrams. These pdfs include the W2, W3,
EV1, G, GG, GEV, LN2, LN3, P3, LP3 and KAP. Both moment and
L-moment ratio approaches are used and compared to the results
obtained from goodness-of-fit criteria.

The present paper is organized as follows: Section 2 reviews the
different criteria of goodness-of-fit, found in the literature, for the
assessment of probability distribution functions for wind speed
data. Section 3 presents the theoretical background on the conven-
tional moment ratio diagrams and the L-moment ratio diagrams.
Section 4 presents the methodology used to represent the selected
pdfs on moment ratio diagrams. A case study dealing with the
application of moment ratio diagrams is presented in Section 5
and the results are presented in Section 6. Finally, conclusions
are given in Section 7.

2. Review of the criteria used for the assessment of goodness-
of-fit

A standard approach for the assessment of the goodness-of-fit is
to visually compare the fit of the candidate pdfs. For that, wind
speed samples are usually divided into class intervals and frequen-
cies are represented with histograms. Candidate distributions are
then superimposed on the histograms. Alternatively, plots of the
cumulative probability, P-P plots or Q-Q plots are also represented.
However, goodness-of-fit criteria provide an objective comparison
of the candidate distributions and are extensively used along with
the visual approach. This section reviews the criteria commonly
used in the literature related to wind energy applications.

In general, the most used criteria are the In L, AIC, BIC, R?, 32, KS,
and AD. The KS, y? and AD statistics are associated to statistical
tests that allow to identify if a sample is generated from a given
theoretical distribution. In the context of wind speed distribution
assessment, the statistics of these tests are used to compare the
fit obtained by several theoretical distributions. Alternatively,
assessment of the fit is also based on the ability of the model to
predict wind power accurately.

2.1. Log-likelihood (In L), and Akaike and Bayesian Information
Criteria (AIC, BIC)

A given pdf f;(x) fitted on a wind speed data set has distribution
parameter estimates 0. In L is then defined by:

InL=1In (ﬁfo(vi)) 1
i=1

where v; is the ith observed wind speed and n is the number of
observations in the data set. A higher value of this criterion indi-
cates a better fit of the model to the data.

AIC [100] and BIC [101] are related to the log-likelihood and are
defined by:

AIC = —21In <1£[f0(vi)> +2k 2)
i=1
BIC = —2In (fmw) +klIn(n) 3)

where k is the number of parameters of the distribution to estimate.
A lower value of these criteria indicates a better fit of the model to
the data. These criteria take into consideration the parsimony of the
model as they include a penalty term that increases with the num-
ber of parameters. For n > 8, BIC provides a stronger penalty than
AIC for additional parameters.

2.2. Coefficients of determination (R?)

R? is a measure of how much the variance of the observed data
is explained by the model. The general form of R? is given by:
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- Z?ﬂ;l i —x)°
Zi:] (.VI - y)z

where y; is the ith observed data, x; is the ith predicted data and n is
the sample size. Alternatively, the square of the coefficient of corre-
lation is also frequently used. 4 different versions of this statistic are
presented here.

(4)

22.1. R,

R2, is the coefficient of determination associated with the P-P
plot defined by the model cumulative probabilities versus the
empirical cumulative probabilities. An example of a P-P plot is

given in Fig. 1a. R, is computed as follows:

" (Fi—F;
R%p=1fiz'ﬂ( ) (5)

S F-F

where F; is the predicted cumulative probability of the ith observed
wind speed, F; is the empirical probability of the ith observed wind
speed and F = 15 i1Fi. To compute the empirical probabilities, the
Weibull plotting position is generally used:
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where i =1,...,n is the rank for ascending ordered observed wind
speeds. This formula is frequently used with P-P plots because it
always gives an unbiased estimate of the empirical cumulative
probabilities regardless of the underlying distribution being consid-
ered [31]. Another alternative is to use the Cunnane plotting posi-
tion [102]: F(v;) = =04

n+0.2*

222.R},
RéQ is the coefficient of determination associated with the Q-Q

plot defined by the predicted wind speed quantiles versus the
observed wind speeds. An example of a Q-Q plot is given in Fig. 1b.

The ith predicted wind speed quantile #; is given by #; = F~'(F;),
where F'(x) is the inverse function of the theoretical cdf and F;
is the empirical probability of the ith observed wind speed. RéQ is
computed as follows:

D DU
D S RER "

where ; is the ith observed wind speed and o =131, ;.
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Fig. 1. Examples of a P-P plot (a), a Q-Q plot (b), a P-P plot using the histogram approach (c), and a graph of probabilities at class intervals (d) for the W2 fitted to the wind
speed data at Sir Bani Yas. The solid line represents the ideal case where the theoretical distribution is equal to the observed distribution.
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223. R,

For the following two R? statistics, observed wind speed data
are arranged in a relative frequency histogram having N class inter-
vals. RZ_ is the coefficient of determination measuring the fit
between the theoretical cdf and the cumulative relative frequency
histogram of wind speeds. It is similar to R3, but is based on a his-
togram approach. An example of a P-P plot with histogram is given
in Fig. 1c. R?, is computed as follows:

N ~ .2
IS LAIE ®
> iy (Fi=F)

where F; is the predicted cumulative probability at the ith class
interval, F; is the cumulative probability of relative frequencies at

the ith class interval and F = 1 ) | F;.

224.R,

Rf,_c is the coefficient of determination measuring the fit
between the predicted probabilities at the class intervals obtained
with the theoretical pdf and the relative frequencies of the his-
togram of wind speed data. An example of a graph representing
the relation between these theoretical and observed probabilities

is given in Fig. 1d. R} is computed as follows:

N 52
(i —Di)
Rf,_C:l—iZ*l ’

S i)

where p; = F(v;) — F(v;_1) is the estimated probability at the ith
class interval, z;_; and z; are the lower and upper limits of the ith
class interval, p; is the relative frequency at the ith class interval

and p = %Z:‘Vﬂpr

)

2.2.5. Adjusted R?

In the R? statistics presented above, the parsimony is not con-
sidered. These statistics tend hence to favor more complex models,
which use a larger number of parameters and provide increased
flexibility. The adjusted R?, denoted RZ, was developed to penalize
the statistic for additional parameters. It is given by the following
adjustment formula:

5 S5 N-1
Ra_l—(l—R)m (10)
where R? is anyone of the R? statistics presented above, d is the
number of parameters in the model and N is the wind speed sample
size or the number of class intervals in the case of statistics based
on the histogram approach.

2.3. Root mean square error (RMSE)

The RMSE evaluates the difference between the observed and
predicted values. It is generally used either with predicted wind

. N 12 .
speed values (i.e., RMSE, = [Z}”’:](ui— vi)z/n] ), or with pre-
dicted relative frequencies of the histogram of wind speed data,
. . 12 . . .
(i.e., RMSE, = [ZL (p; — p,-)z/N} )- RMSE, is associated with the

Q-Q plot in Fig. 1b and RMSE, is associated with the graph in
Fig. 1d. It is important to mention that the RMSE is considered as
an important performance index since it combines both the disper-
sion and the bias. It can be shown for instance in the case of RMSE,

(see [103]) that we have: RMSE2 = "1)STD? + bias> where STD, is

n

1 T
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0.1+ 1

Wind speed (m/s)

Fig. 2. An example of a theoretical cumulative probability distribution (solid line)
and the empirical cumulative probability distribution (dashed line) of the observed
wind speed data at Sir Bani Yas. The position of the maximum deviation between
both curves is indicated by the vertical thin dashed line.

the standard error of the data and bias, is the bias of predicted
wind speed values.

2.4. Chi-square test statistic ()

The Chi-Square test accepts or rejects the null hypothesis that
the observed sample distribution is consistent with a given theo-
retical distribution. The test statistic is first computed and a critical
value for the test is found at a given significance level. In the con-
text of the assessment of model distributions for wind speed data,
the statistical value of the test is often used to compare the
goodness-of-fit of several theoretical distributions. To compute
the Chi-Square test statistic, the sample is arranged in a frequency
histogram having N class intervals. The Chi-Square test statistic is
given by:

N _FA2
2=y O a1

i=1

where O; is the observed frequency in the ith class interval and E; is
the expected frequency in the ith class interval. E; is given by
F(v;) — F(v;_1) where v;_; and v; are the lower and upper limits of
the ith class interval. A minimum expected frequency is usually
required for each class interval as an expected frequency that is
too small for a given class interval will have too much weight. When
an expected frequency of a class interval is too small, it is usually
combined with the adjacent class interval.

2.5. Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) test
statistics

The KS and AD tests are also used to judge the adequacy of a
given theoretical distribution for a given set of observed wind
speed data. Like the Chi-Square test in the context of the assess-
ment of model distributions to wind speed data, the values of
the statistics of these tests are often used to compare the
goodness-of-fit of several theoretical distributions to the observed
data. Both KS and AD statistics compare the cdf of the theoretical
distribution with the empirical cumulative probability distribution
of wind speed data. Fig. 2 illustrates an example of both cumulative
distributions sketched together on the same plot. The KS test
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(a) B

0 Av Ay

(b)y
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Fig. 3. Hypothetical cumulative distribution function (a) and the inverse hypothetical cumulative distribution function (b).

computes the largest difference between the predicted and the
observed distribution. The KS-test statistic is given by:

D = max|F; — Fi|.

1<i<n (12)
where F; is the ith predicted cumulative probability from the theo-
retical cdf and F; is the empirical probability of the ith observed
wind speed. The AD [104] test statistic is defined by the following
equation:

A=n " F0) — B W (F)dF(x)

00

(13)

where y(x) = [F(x)(1 — F(x))] ' is a nonnegative weight function.
Eq. (13) can be rewritten for a finite data sample as:

A:{nﬁé”nlpmﬁ)um1ﬁmﬂﬂ}

i=1

(14)

Because of the weight function, the AD test gives more weight
to the tails of the distribution than the KS test.

2.6. Advantages and disadvantages of the different methods

The methods presented above have different advantages and
disadvantages. R3p, R? ., KS and AD are related to the P-P plot. They
are hence more sensitive to the middle part of the wind speed
distribution where the gradient of the cumulative distribution
function is the largest [105]. Fig. 3a presents a graph of a hypothet-
ical cdf showing the effect of small differences in wind speed (Av)
on the probabilities p. It can be seen that Az in the middle part
of the distribution produces a larger variation in p than in the
right tail. Because of the weight function involved in the definition
of the AD test, it is more sensitive to the tails of the distribution
than KS.

RZQQ is related to the Q-Q plot. It is hence more sensitive to the
tails of the distribution where the gradient of the inverse cumula-
tive distribution function is largest [105]. Fig. 3b presents a graph
of a hypothetical inverse cdf showing the effect of small differences
in the percentile (Ap) on the wind speed quantiles ». It can be seen
that Ap in the right tail of the distribution produces a larger varia-
tion in the quantiles than in the middle part.

The use of P-P plots is often preferred over the use of Q-Q plots
because the Weibull plotting position provides an unbiased esti-
mate of the observed cumulative probabilities for the P-P plot inde-
pendently of the theoretical distribution considered [31,32]. Ln L,
AIC and BIC are also more sensitive to the tails of the distributions.
Indeed, the definition of these criteria includes the sum of the log-
arithmically transformed densities of the observed wind speeds,
and the magnitude of the logarithmically transformed density is
larger in the tails than in the middle part of the distribution.

R;_C, RMSE, and y? are associated with probabilities in class
intervals. Because y? is a measure of the relative error in class
intervals, it is more sensitive to the tails of the distribution, where
the expected frequencies are small, than Rﬁ_c and RMSE,.

The majority of the criteria discussed above do not take into
account the parsimony of the models. AIC, BIC and R, on the other
hand, penalize models that have a larger number of parameters.
The use of the adjusted R* (R?) is more relevant when the his-
togram approach is adopted (R%vc, R12,7C). On the other hand, when
no histograms are defined and the wind speed data is used directly
(R%p, R3o). the adjusted R® is very similar to the conventional R*
because of the large sample size usually available in wind speed
analysis. Indeed, Eq. (10) shows that when N is very large com-
pared to d, we have Rﬁ ~ R? and the adjustment due to the number
of parameters is not significant.

Criteria that use the histogram approach (y2, R}, R’. and
RMSE, ) have the advantage of being less affected by individual
observations. However, the results depend on the subjective choice
of class intervals.

It is important to note that y2, KS and AD are commonly used in
practice to evaluate if a given theoretical distribution represents
the parent distribution of a given data set. This is due to the fact
that these represent statistical tests with explicitly defined test
critical values. The critical values for 2 and AD depend on the the-
oretical distribution, while the critical value is independent of the
theoretical distribution for KS.

Finally, the values of the criteria R?, 2, KS and AD are on scales
that are independent of the sample considered and thus these cri-
teria can be used to compare the fit of different samples (stations).
This is not possible with criteria such as AIC or RMSE, as their val-
ues will differ significantly from one data sample to another. These
criteria can only be used to compare the fit of different models for
the same data set.

2.7. Wind power error

Celik [4] points out that in the field of wind engineering, wind
speed distribution functions are ultimately used to correctly model
the wind power density. Therefore, the most important criterion
for the suitability of a possible wind speed distribution function
should be based on how successful it is in predicting the observed
wind power density. For a given theoretical pdf f(») fitted on the
wind speed data, the resulting wind power density distribution is
given by:

1 3
P(v) =5 pvf(v) (15)
where p is the air density. The fit is often evaluated visually by plot-
ting the estimated power density distributions of the candidate pdfs
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along with the wind power density histogram obtained from the
observed wind speed data. The R?, 2, standard deviation and RMSE
are commonly used as objective criteria to measure the goodness-
of-fit in these graphs [4,15,17,21,51,66,68,69].

Another popular approach involves comparing the mean wind
power output [1,13,26,31,32,65] (or the wind energy output
[5,21]) generated from the theoretical pdf with the mean wind
power output calculated from the observed wind speed data. The
mean wind power density for the theoretical pdf f(v) is obtained
by integrating Eq. (15):

Py = % /Ox pvf(v)dv. (16)

The mean wind power density calculated from the observed
wind speed data is given by:

_1 s
Pofipv. (17)

Alternatively, a specific wind turbine is sometimes considered
for the computation of the power output. In that case the mean
wind turbine power from the theoretical pdf and from the
observed wind speed data are given respectively by:

- / Pu(v)f(v)dv, (18)
l_)w:%zn:l)w(vi)v (19)

i=1
where P, (v) is the power curve of the wind turbine. The difference

between the theoretical power output and observed power output
is often represented by the relative percent error:

P-P

¢= ' % 100, (20)

where P = Py(P,) and P = I:’o(l:’w).

3. Theoretical background on moment and L-moment ratio
diagrams

In the following, we present the mathematical background of
conventional moment ratio diagrams and L-moment ratio dia-
grams respectively.

3.1. Moment ratio diagram

Let us define a random variable X. The rth central moment of X
is given by
W= E(X - :u)rv

where u = E(X) is the mean of X. The rth moment ratio for r higher
than 2 is defined by

r=2,3,..., 1)

c, =t (22)

r/2°
2

The 3rd and 4th moment ratios, also defined respectively as the
coefficient of skewness (Cs) and the coefficient of kurtosis (Cx), are
then

C=Cs=-12, (23)
2
Hy
Cy=Ck=". 24
4 K ,u% ( )

Moments are often computed from a data sample. Let us define
X1,X2,...,Xs, a data sample of size n. The rth sample central
moments are

mo=n"'> (x-%, r=23,., (25)
i=1

where X = n~1Y"" |x; is the sample mean. Sample estimators of the
coefficient of skewness and the coefficient of kurtosis are then
respectively

Cs=—%
my?

(26)

Cp=ma
Cx = m2 (27)

Traditionally, moment ratio diagrams represent on a graph
every possible value of f; in terms of §, where f;, = C2 and
B, = Cx. Two-parameter distributions with a location parameter
and a scale parameter plot as a single point in the moment ratio
diagram. Two and three-parameter distributions with one shape
parameter plot as a curve. Three and four-parameter distributions
with two or more shape parameters cover a whole area in the dia-
gram. For all distributions, it can be shown that the condition
B — By —1 = 0 must be satisfied and thus an impossible region
exists in the diagram graph [106].

Moment ratio diagrams can be used to select a pdf to model a
given data sample. For this, the sample estimates B, = Eg and
By = Cy are computed from the data sample and the point
(B1, B2) representing the sample is plotted in the moment ratio dia-
gram. The pdf is then selected by comparing the position of this
point with the theoretical pdfs represented on the moment ratio
diagram.

3.2. L-moment ratio diagram

L-moments, introduced by Hosking [81], are linear combina-
tions of probability weighted moments (PWM). They are analogous
to the conventional moments. Let us define a random variable X
with a cumulative distribution function F(X) and a quantile func-
tion x(u). PWMs were defined in Greenwood et al. [107] by the fol-
lowing expression:

M5 = E[XP{ECQ}Y {1 ~ F(X)°) . (28)
A useful special case of the PWM is B, = Mo given by
1
B = E[X{F(X)}'] :/ x(u)u'du. (29)
0

The L-moments of X are defined in Hosking [81] to be the
quantities

r
;-r+] = Zp;kBkv (30)
k=0

where

pa= o () (") 31

The dimensionless L-moment ratios, L-variation, L-skewness
and L-kurtosis, are respectively defined by

Ty = Ao/’
T3 = /13//12 . (32)

1'4:/14//12
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List of probability density functions, domains, number of parameters and estimation methods used.

Name Probability density function (f(x)) Domain Parameters Estimation method
EV1 Lexp [-5E —exp (-] —00 < X < 400 1 location, 1 scale ML, MM
k- K <
w2 k) Texp [—(i) :} 0<x< o0 1 scale, 1 shape ML, MM
G I__o;’,‘(_)xk—l exp(—ox) 0<x< 1 scale, 1 shape ML, MM
LN2 1_ex [7 (Inx— L)Z] 0<x< o0 1 location, 1 scale ML, MM
X027 p 202
k-1 _unk <x< i
W3 E(XTN) exp [7(%) } H<X< oo 1 location, 1 scale, 1 shape ML
LN3 1 exp {7 []n(x—mz)fu]z} m<x< oo 2 location, 1 scale ML, MM
(x—m)av271 20
GEV 1 1/k < i 1 location, 1 scale, 1 sh. ML, MM
T =k x— ) exp{—[]—‘i(x—u)} } f'o:z/f< Jfocjk llgllzig ocation, 1 scale, 1 shape
GG %th—l exp (—ox)" 0<x< o0 1 scale, 2 shape ML, MM
]
P3 %(X — )k exp [—a(x — w)] H<X< oo 1 location, 1 scale, 1 shape ML, MM
LP3 ﬁ_\(%k\) [oe(logyx — 0)]* " exp [—o(logyx — )] %t/i gi <u/0; 1? o> g 1 location, 1 scale, 1 shape GMM
<x<e if o <
where g = log,ne
KAP a1 = k(x — ) /o] F (o)) oo < X< u+a/k if k>0 1 location, 1 scale, 2 shape LM, ML

1/h
where F(x) = (1—h(1 —k(x— )/2)") "’ L+ ok < x < o

,u+o<(1—h”‘)/k<x<oo if h>0

if h<0,k<0

1 location parameter.

m: second location parameter (LN3).
o: scale parameter.

k: shape parameter.

h: second shape parameter (GG, KAP).
I'(): gamma function.

L-moments possess an important property which makes them
attractive for distribution fitting to sample data and for the assess-
ment of the goodness-of-fit: If the mean of the distribution exists,
then all L-moments exist and the L-moments uniquely define the
distribution [79,81]. 74 is usually plotted against 75 in L-moment
ratio diagrams. As with conventional moment ratio diagrams, the
number of shape parameters determines if the pdf plots as a point,
a curve or an area in the diagram.

L-moments are often estimated from a finite sample. Let us
define Xx1.; < X2.0 < -+ < Xpn, an ordered sample of size n. An unbi-
ased estimator of the rth probability weighted moment B, is

n-1\"< /j—1
b, =n"! in
() 30
Jj=r+1
The sample L-moments are defined by
b= pibe, T=0,1,...n-1 (34)

k=0

Analogously to Eq. (32), the sample L-moment ratios are
defined by

t, = 42/51
ts = 03/05. (35)
ty = [4/22

4. Representation of probability distribution functions in
moment ratio diagrams

This section presents the methodology used to represent the
selected pdfs in the moment and L-moment ratio diagrams. Table 1
presents the pdfs of all selected distributions with their domain
and number of parameters. For several pdfs, explicit expressions
of 8, as function of g, or 74 as function of 75 are available in the lit-
erature in the form of polynomial approximations. These expres-
sions are then directly used to represent the points or curves.

The expressions relating ; and 8, on one side, and 74 and 73 on
the other sides, for the distributions EV1, GEV, G, P3, LN2 and
LN3 are given in Rao and Hamed [80] and Hosking and Wallis
[79] respectively. They also give the explicit expression for the
bounds delineating the impossible regions. G and P3 on one side
and LN2 and LN3 on the other side have the same 3rd and 4th
moment ratios, and are hence represented by the same curve on
the diagrams. The curve of the W2 distribution can be obtained
using the fact that 753 and 74 (or Cs and Ci) for the W2 equal respec-
tively —73 and 74 (or —Cs and C) for the GEV.

For pdfs that define areas (GG, LP3 and KAP), we are interested
in defining the curves that define the bounds of the areas. Analyt-
ical expressions of these curves are not available. The relations
between moments and distribution parameters are hence used
and the numerical method described below is applied. For a given
pdf with three or four-parameters, let us define two shape param-
eters h and k, and a position parameter y and/or a scale parameter
o.. The 2nd and 3rd moment ratios are independent of ¢ and o, and
are hence given arbitrary values. Parameters h and k are varied
over a large range within the feasibility domain of the given pdf
with small intervals (h = hy, hy, ..., hy;k =ky, ks, ... ky). For each
possible pair (h;,k;), where h; and k; are the ith and jth shape
parameters, the corresponding pairs of moment ratios (f;;, f2;;)
and (73,5, T4;;) are obtained and are plotted on the moment ratio
diagram and L-moment ratio diagram respectively. This way, the
contours of the regions defined by these points are found. For most
distributions, the shape parameters are unbound either in the pos-
itive or the negative direction, and sometimes in both directions.
This makes it impossible to explore the entire feasibility domain
of each parameter. However, for a given parameter, as its value
becomes very large or very small, points obtained in the moment
ratio diagrams always converge to a limit case. By using ranges
with sufficiently extreme values for parameters in unbound direc-
tions, an approximate area that accurately describes the feasible
region is obtained.

The application of this method requires the use of the
expressions relating moments and L-moments with distribution
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Fig. 5. L-moment ratio diagram with selected pdfs. EV1 defines a point, W2, W3, GEV, G, P3, LN2 and LN3 define a curve, and GG, KAP and LP3 define an area.

parameters. Bobee et al. [78] derived the expressions relating
and B, with the parameters of the GG and LP3 from the existing
relation between noncentral moments ; and distribution param-
eters and from the relation between central moments . and non-
central moments . given in Kendall and Stuart [108]. This same
approach is applied here for the KAP distribution where the rela-
tion between p,. and the distribution parameters are found in
Winchester [109]. The expressions of L-moment ratios 73 and 74
as functions of the distribution parameters of the KAP are given
in Hosking and Wallis [79]. However, explicit expressions of L-
moments in terms of the distribution parameters of the GG and

LP3 are not available. In this case, the values of B, in Eq. (29) are
solved by numerical integration. Estimated B;, B, and B3 are then
put in Eq. (30) to obtain 4,, 43 and /4 and subsequently 73 and 74.

Figs. 4 and 5 present the moment ratio diagram and the
L-moment ratio diagram obtained for the selected pdfs of this
study. These diagrams allow to analyze the flexibility of the differ-
ent pdfs: a pdf that can take on many different values of skewness
and kurtosis is more flexible in terms of shape of the distribution
[77]. EV1 plots as a single point. Without any shape parameter,
it has no flexibility. It is a special case of the GEV. The GEV,
W2-W3, G-P3 and LN2-LN3 distributions having one shape param-
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Table 2

Description of the meteorological stations. Maximum, mean, median, standard deviation (SD), coefficient of variation (Cy), coefficient of skewness (Cs) and coefficient of kurtosis

(Ck)-

Station Station name Altitude Latitude Longitude Period Maximum Mean Median SD (m/ Cy Cs Cx
number (m) (year/month) (m/s) (m/s) (m/s) s)
1 Al Aradh 178 23.903°N  55.499°E  2007/06-2010/08 12.42 247 2.20 1.73 0.70 0.97 4.20
2 Al Mirfa 6 24.122°N  53.443°E  2007/06-2009/07 17.17 4.28 3.96 2.26 053 0.71 3.58
3 Al Wagan 142 23.579°N  55.419°E  2009/08-2010/08 12.36 3.67 3.31 222 0.61 0.66 3.08
4 East of Jebel 341 24.168°N  55.864°E  2009/10-2010/08 16.41 427 3.87 2.35 0.55 0.99 4.47
Haffet
5 Madinat Zayed 137 23.561°N  53.709°E  2008/06-2010/08 18.04 4.10 3.56 244 060 094 3.83
6 Masdar City 7 24.420°N 54.613°E  2008/07-2010/08 12.17 3.09 2.67 2.06 0.67 0.70 2.90
7 Sir Bani Yas 7 24.322°N 52.566°E  2007/06-2010/08 13.95 3.86 3.76 2.14 0.55 0.43 3.06
Island
51° E 52°E 53°E 54" E 55° E 56° E 57° E
1 1 1 1 1 1 1
26° N -26° N
25° N+ -25° N
Sir Bani Yas Island
(o]
24° N -24° N
.Madinat Zayed Wagan
United Arab Emirates
23° N Oman - 23° N
Saudi Arabia
1 I Ll 1 T ’ 1
51° E 52°E 53°E 54° E 55° E 56° E 57°E

Fig. 6. Geographical location of the meteorological stations.

eter plot as lines. They are equivalent around zero skewness.
G-P3 and W2-W3 are special cases of the GG. The location param-
eter p of LN2-LN3 also acts as a shape parameter because of
the logarithmic transformation on x. GG, LP3 and KAP plot as a
whole area. KAP is the most flexible followed by LP3 and GG. GG
and KAP have 2 shape parameters. The location parameter u of
LP3 also acts as a shape parameter because of the logarithmic
transformation on x.

5. Case study

The United Arab Emirates (UAE) is located in the south-eastern
part of the Arabian Peninsula. It is bordered by the Persian Gulf in
the north, the Arabian Sea and Oman in the east, and Saudi Arabia
in the south and west. It lies approximately between 22°40’'N and

26°N and between 51°E and 56°E. The total area of the UAE is about
83,600 km?. It can be divided into three ecological areas: the north-
eastern mountainous area, the sandy/desert inland area and the
marine coastal area. The desert covers 80% of the country. The cli-
mate of the UAE is arid with very high temperatures during sum-
mer. The coastal area has a hot and humid summer with
temperatures and relative humidity reaching 46 °C and 100%
respectively. During winter, temperatures are between 14 °C and
23 °C. The interior desert region has hot summers with tempera-
tures rising to about 50 °C and cool winters during which the tem-
peratures can fall to around 4 °C [110,111].

The Wind speed data used in this study comes from 7 meteoro-
logical stations located throughout the UAE. Anemometers are at
the 10 m height for all stations. Table 2 gives a description of the
stations including geographical coordinates, altitude, period
of record, and wind speed statistics including maximum, mean,
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Fig. 7. Moment ratio diagram where each wind station is represented by a dot.
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Fig. 8. L-moment ratio diagram where each wind station is represented by a dot.

median, standard deviation, coefficient of variation, coefficient of
skewness and coefficient of kurtosis. Periods of record range from
11 months to 39 months. A map indicating the location of the sta-
tions is given in Fig. 6. The whole geographical region of the UAE is
well represented by these stations: The stations of Sir Bani Yas
Island, Al Mirfa and Masdar city are located near the coastline,
the station of East of Jebel Haffet is located in the mountainous
north-eastern region, the station of Al Aradh is location in the foot-
hills and the stations of Al Wagan and Madinat Zayed are located
inland. The inter-annual variability and the long term evolution
of wind speed data in these stations was studied by Naizghi and
QOuarda [112].

Wind speed data used in this study was collected by anemome-
ters at 10-min intervals. Average hourly wind speed series, which
is the most common time step used for characterizing short term
wind speeds, were then computed from the 10-min wind speed
series. The resulting hourly wind speed data can theoretically con-
tain null values, as periods of calm can possibly last more than one
hour. For pdfs having a null probability of observing null wind
speed, this would make it impossible to estimate the distribution
parameters with some methods. Therefore, any null values are
removed from the hourly data series of this study. The impact of
removing null values was checked to be insignificant as observed
percentages of calms in the hourly time series are marginally low.
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Table 3
Ranking of D/Ms for all stations based on the goodness-of-fit criteria.
Station Criteria Rank of D/M
1st 2nd 3rd 4th 5th 6th
Al Aradh InL GG/ML GG/MM W3/ML KAP/ML W2/ML W2/MM
R2, KAP/LM P3/MM GG/MM LN3/MM GEV/MM W2/MM
R, GG/MM W3/ML W2/MM KAP/LM LP3/GMM GG/ML
7 GG/MM W2/MM W3/ML KAP/LM GG/ML LP3/GMM
KS GG/MM KAP/LM LN3/ML EV1/ML GEV/ML W3/ML
AD KAP/LM P3/MM LN3/MM GEV/MM GG/ML GG/MM
Al Mirfa InL W3/ML KAP/ML KAP/LM P3/ML P3/MM LN3/ML
R2, KAP/LM GG/MM KAP/ML W2/MM W2/ML LP3/GMM
R2, KAP/LM KAP/ML GG/MM P3/ML W2/MM W2/ML
P GG/MM KAP/ML P3/MM W2/MM KAP/LM W2/ML
KS KAP/LM KAP/ML GG/MM W2/MM LP3/GMM W3/ML
AD KAP/LM KAP/ML P3/ML P3/MM GG/MM W2/MM
Al Wagan InL GG/ML GG/MM KAP/ML W3/ML KAP/LM W2/ML
R2, KAP/LM LP3/GMM GG/MM GG/ML KAP/ML W3/ML
R, KAP/LM KAP/ML LP3/GMM GG/MM GG/ML W3/ML
7 GG/MM GG/ML KAP/ML KAP/LM W3/ML LP3/GMM
KS KAP/LM LP3/GMM KAP/ML GG/MM GG/ML W3/ML
AD KAP/LM GG/MM KAP/ML GG/ML W3/ML LP3/GMM
East of Jebel Haffet InL KAP/ML KAP/LM LN3/ML P3/ML LN3/MM GEV/ML
R2, KAP/LM EV1/ML LN3/ML KAP/ML GEV/ML GEV/MM
R2, EV1/ML GEV/ML EV1/MM KAP/LM LN3/ML GEV/MM
7 GEV/MM GEV/ML LN3/ML EV1/ML LN3/MM KAP/LM
KS KAP/LM LN3/ML EV1/ML KAP/ML GEV/ML EV1/MM
AD EV1/ML GEV/ML KAP/LM LN3/ML GEV/MM KAP/ML
Madinat Zayed InL KAP/ML P3/ML KAP/LM LN3/ML W3/ML P3/MM
R2, KAP/LM LP3/GMM P3/ML G/MM KAP/ML LN3/ML
R, LN3/ML GEV/ML P3/ML KAP/LM G/MM KAP/ML
2 KAP/ML KAP/LM P3/ML LP3/GMM GG/MM P3/MM
KS KAP/LM G/MM LN3/ML P3/ML LP3/GMM KAP/ML
AD LN3/ML P3/ML KAP/LM KAP/ML GEV/ML EV1/MM
Masdar City InL KAP/ML GG/ML GG/MM W3/ML W2/ML W2/MM
R2, KAP/LM LP3/GMM KAP/ML GG/MM GG/ML W3/ML
R2, KAP/LM LP3/GMM KAP/ML W2/ML GG/ML G/ML
2 LP3/GMM KAP/ML GG/MM GG/ML KAP/LM W3/ML
KS LP3/GMM KAP/LM KAP/ML GG/MM GG/ML W3/ML
AD KAP/ML GG/ML GG/MM W2/ML W3/ML W2/MM
Sir Bani Yas Island InL GG/ML W3/ML GG/MM KAP/ML P3/ML GEV/ML
R2, KAP/LM P3/MM LN3/MM GEV/MM GEV/ML GG/MM
R, GG/MM KAP/LM W3/ML P3/MM LN3/MM GEV/MM
2 GG/MM W3/ML GG/ML KAP/ML P3/MM KAP/LM
KS KAP/LM GEV/MM P3/MM LN3/MM GEV/ML P3/ML
AD P3/MM LN3/MM GEV/MM GEV/ML W3/ML LN3/ML
6. Results The selected pdfs were fitted to the wind speed data corre-

Sample moments and sample L-moments were computed for
each wind speed series with Eqs. (26) and (27), and (32) respec-
tively. Wind speed samples were plotted in the moment ratio dia-
gram and the L-moment ratio diagram. These diagrams are
presented in Figs. 7 and 8 respectively. Each station is numbered
according to its rank in Table 2. The analysis of the diagrams leads
to the following conclusions about the suitability of the pdf to fit
the stations sample data. The curve of the W2-W3 passes through
the middle of the cloud of points defined by the samples. The G-P3,
GEV and LN2-LN3 are located rather in the margin of the cloud of
points and are consequently not suitable to fit wind speed data.
This makes W2-W3 the most suitable pdf with one shape parame-
ter for wind speed data in the UAE. However, some station sam-
ples, such as stations 4 and 6, might be located far from the
curve of the W2-W3. Alternatively, all station samples are located
within the regions bounded by GG, LP3 and KAP.

sponding to all stations of this study. The methods used for the
estimation of the parameters of each pdf are also listed in Table 1.
For the majority of the distributions, the maximum likelihood
method (ML) and/or the method of moments (MM) were used.
For KAP, the method of L-moments (LM) was used instead of
MM. The algorithm used for estimating the parameters with LM
was proposed by Hosking [113]. For the LP3, the Generalized
Method of Moments (GMM) [114,115] is used.

Each candidate distribution/method (D/M), a combination of a
distribution with an estimation method from Table 1, was fitted
to the wind speed series presented in the case study. The following
criteria of goodness-of-fit were then calculated: In L, R , RIZ,‘C, 22, KS
and AD. For the coefficients of determination Rf, and R, the
adjusted version is considered. Table 3 lists the 6 best pdfs based
on the goodness-of-fit criteria. In Fig. 9, each criterion except In L
is presented with box plots representing the various D/Ms for all
stations combined. For each distribution, the D/M with the method
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Fig. 9. Box plots of goodness-of-fit criteria: (a) Rﬁ_t, (b) R;C, (c) x%, (d) KS and (e) AD.

leading to the best fit is represented. LN2 leading to generally very
poor fits was discarded from these box plots.

The conclusions obtained from the moment ratio diagrams are
in general in agreement with those obtained with the analysis of
goodness-of-fit criteria. According to Ri.c’ KAP is by far the best

pdf followed by GG and LP3. According to Rﬁ_c, GG followed by
KAP and LP3 are the best pdfs. GG, W3 and KAP are, in this order,
the best pdfs with respect to the y? statistic, while KAP, GG and LP3
are, in this order, the best pdfs with respect to the KS statistic.
According to AD, KAP and LP3 are the best pdfs. Based on the ranks

obtained in Table 3 for In L, KAP is the best pdf followed in order by
GG and W3. KAP is more flexible and is listed among the best D/Ms
for all 7 stations while GG is not included among the best pdfs for
the stations of Al Mirfa, East of Jebel Haffet and Madinat Zayed.

Box plots reveal that the W2 is the best two-parameter dis-
tribution and leads to better performances than several
three-parameter distributions including the GEV, LN3 and P3.
According to most criteria, LP3 gives inferior fit than GG. This is
surprising considering the location of the samples which are
within the area covered by the pdf. This point will be further dis-
cussed below.
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Fig. 9 (continued)

The relations between the location of individual stations on the
moment and L-moment ratio diagrams and the results obtained
with the goodness-of-fit criteria are investigated. The analysis of
the conventional moment ratio diagram (Fig. 7) reveals the follow-
ing: For Station 6, located far from all curves, KAP, GG and LP3,
which are pdfs that define regions, are preferred with respect to

all criteria. Furthermore, the clear outlier for P3/MM in the box

plots of R, and Rﬁyc corresponds to Station 6. Station 7 is close to

the GEV curve in the diagram and this distribution received gener-
ally good ranks for this station. On the other hand, Station 4 is right
on the G-P3 curve but these pdfs are not particularly higher ranked
for this station.

In the L-moment ratio diagram (Fig. 8), the following can be
observed: Stations 1, 2 and 7 are very close to the W2 curve. The
ranks of the W2 or W3 for these stations are generally higher than
those of the other stations. Station 6 is also located far from the
curves of the pdfs in this diagram. Station 4 is located near the bor-
der of the region delineated by GG and LP3. This is in agreement
with the goodness-of-fit criteria which indicate that the GG and
LP3 do not perform very well for all criteria. Station 4 is also
located very close to the curve of the GEV and the point corre-
sponding to EV1. These pdfs perform much better for this station
while they perform poorly for the others. Station 5, is located near
the G-P3 curve. The goodness-of-fit criteria obtained for this sta-
tion are generally excellent.

In Fig. 10, the wind speed frequency histograms corresponding
to each station are presented. The pdfs of the W3/ML, GG/MM, LP3/
GMM and KAP/LM are superimposed over these plots. These plots

allow to visualize and validate the fit obtained by the selected dis-
tributions. The distribution parameters of the selected pdfs for
each station are presented in Table 4. The KAP distribution gives
generally the best fit. In the case of station 1, no distribution was
able to model the lower part of this particular shape of histogram.
This distribution presents a bimodal behavior. This case illustrates
the limitation of classical models in the presence of bimodality. W3
fails to model adequately the distribution of East of Jebel Haffet
and Masdar City (4 and 6 respectively). Consistently, stations 4
and 6 are located far from the W2-W3 theoretical curve in the
moment ratio diagrams. For East of Jebel Haffet and Madinat Zayed
(stations 4 and 5 respectively), the pdfs of W3 displayed on the his-
tograms underestimate the probability density in the part of the
distribution with the higher frequencies. Consistently, the loca-
tions of these stations in the L-moment ratio diagram indicate that
each sample data has a higher kurtosis than the theoretical distri-
bution of W2-W3 for a given skewness. In the conventional
moment ratio diagram, this consistency is not well observed as
the location of station 5 indicates that the observed data for that
station have a lower kurtosis than the theoretical distribution of
W2-W3 for the same skewness.

These results indicate that the goodness-of-fit criteria are more
consistent with the results obtained with the L-moment ratio dia-
gram than with the conventional moment diagram. Indeed, the
location of individual stations in the L-moment ratio diagram
allows drawing more conclusions in agreement with the
results obtained with the majority of the goodness-of-fit criteria.
This is in agreement with previous studies in the field of
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Fig. 10. Wind speed frequency histograms for each station.

hydro-meteorology, where the L-moment ratio diagram instead of
the conventional moment ratio diagram was recommended. Hosk-
ing [81] suggested the use of the L-moment ratio diagram espe-
cially for small size samples because L-moment estimators are
less biased than conventional moment estimates. Vogel and Fen-
nessey [99] found that conventional moment estimators are also
biased for large samples from highly skewed distributions.

As presented in the literature review, the model distributions
are also often evaluated for their ability to model the average wind
power. A comparison of the model distributions is also presented

herein using this criterion. The mean power density is computed
using Eq. (17) and the mean power densities for the theoretical dis-
tributions are computed using Eq. (16). Table 5 presents the mean
power density obtained for the observed data and from the theo-
retical distributions. The D/Ms that provide the best fits are LP3/
GMM, P3/MM, GG/MM, GEV/MM, LN3/MM and KAP/LM. These
results are somewhat different from those obtained with the other
criteria. Indeed the GEV and LN3 distributions which lead to good
results with the average wind power criterion did not lead to
equivalent performances with the other criteria. Fig. 11 presents
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Table 4
Distribution parameters for each station.

D/M Station u o k h

W3/ML Al Aradh —-0.06 2.78 1.44 -
Al Mirfa -0.13 497 2.04 -
Al Wagan -0.11 424 1.74 -
East of Jebel Haffet -0.07 4.90 1.93 -
Madinat Zayed —0.08 4.70 1.78 -
Masdar City —-0.03 3.45 1.51 -
Sir Bani Yas Island -0.47 4.89 2.12 -

GG/MM Al Aradh - 0.27 0.67 1.83
Al Mirfa - 0.23 1.18 1.79
Al Wagan - 0.18 0.60 2.32
East of Jebel Haffet - 0.45 2.27 1.21
Madinat Zayed - 0.27 1.32 1.48
Masdar City - 0.18 0.43 2.56
Sir Bani Yas Island - 0.16 0.48 2.99

LP3/GMM Al Aradh 1.05 —5.46 4.33 -
Al Mirfa 1.23 -9.48 6.33 -
Al Wagan 1.10 —-5.69 3.60 -
East of Jebel Haffet 1.46 -13.27 11.94 -
Madinat Zayed 1.33 -9.21 7.44 -
Masdar City 1.02 —-4.34 2.87 -
Sir Bani Yas Island 1.03 -5.36 2.83 -

KAP/LM Al Aradh 1.30 1.81 0.13 0.38
Al Mirfa 2.99 2.31 0.16 0.24
Al Wagan 1.88 2.89 0.27 0.52
East of Jebel Haffet 3.14 1.96 0.03 0.07
Madinat Zayed 2.51 2.40 0.09 0.34
Masdar City 0.47 3.82 0.42 0.93
Sir Bani Yas Island 2.86 2.17 0.21 0.11

the wind power density frequency histogram for each station. Sim-
ilarly to Fig. 10, the distributions for the W3/ML, GG/MM, LP3/
GMM and KAP/LM are superimposed over these plots.

7. Conclusions and future work

In this study, a review of the various criteria used in the field of
wind energy was presented, along with a discussion of their advan-
tages and disadvantages. The methods of moment ratio and
L-moment ratio diagrams were used for the assessment of pdfs
to fit short term wind speed data samples. These methods, often
used in hydro-meteorology, offer a viable alternative to
goodness-of-fit tests and criteria commonly used for the analysis
of wind speed data. Their main advantage is that they allow an

Table 5
Power density (W/m?) for each station from the observed wind speed data or from
theoretical distributions.

D/M Al Al Al East of Madinat Masdar Sir Bani
Aradh Mirfa Wagan Jebel Zayed City Yas
Haffet Island
Po 2579 9341 67.77 99.00 95.44 45.89 70.36

EV1/ML 2570 103.73 73.73 101.94 95.19 47.63 86.96
EV1/MM 2631 9643 7042 100.10 97.16 48.03 74.44
W2/ML 29.28 9354 71.20 96.82 9499 49.62 76.41
W2/MM 2630 9298 69.12 96.77 94.52 47.69 72.07

G/ML 37.17 10899 86.03 108.81 110.52 58.86 103.83
G/MM 2713 9588 71.10 99.86 97.66 49.08 74.35
LN2/ML 98.91 205.96 140.80 185.71 246.62 102.80 210.54

LN2/MM 2885 99.80 71.87 103.78 102.73 50.14 76.83
W3/ML 2726 9273 69.32 96.39 93.66 48.90 71.09
LN3/ML 29.88 96.00 73.94 99.97 101.81 57.39 71.73
LN3/MM 2578 9340 67.74 98.95 9543 45.86 70.38
GEV/ML 2828 9397 69.95 99.74 100.87 53.09 70.54
GEV/MM 2581 9342 67.79 98.99 9545 45.90 70.37
GG/ML 25.63 93.08 67.76 97.50 94.73 46.02 70.30
GG/MM 2580 9342 67.78 99.06 9545 45.88 70.35
P3/ML 30.21 9526 74.09 97.86 97.29 54.84 72.33
P3/MM 25.78 9338 67.75 99.05 9541 45.85 70.34
LP3/GMM 25.83 9345 67.79 99.04 95.46 45.92 70.40
KAP/ML 2753 9419 68.72 98.86 95.09 46.74 73.05
KAP/LM 2545 9281 6734 99.46 96.97 45.45 69.74

easy comparison of the fit of several pdfs on a single diagram. They
are also easy to implement and the position of the time series on
the diagrams are easily computed with the moment equations.

Diagrams for the conventional moment ratios and for the
L-moment ratios were built for a selection of 11 pdfs. For most pdfs
defining a curve, expressions of f, in terms of 8, or 74 in terms of 75
are available in the literature. This allows a straightforward repre-
sentation of curves in the moment ratio diagrams. However, for
pdfs with two shape parameters (KAP, GG and LP3), an area is
instead covered in the moment ratio diagrams and analytical
expressions relating the moment ratios to the limits of the areas
are generally not available in the literature. An easy numeric pro-
cedure is used to define the limits of these areas. Plotting the posi-
tion of a given wind speed data set in these diagrams is
instantaneous and provides more information than a goodness-
of-fit criterion since it provides knowledge about such characteris-
tics as the skewness and kurtosis of the station data set. These dia-
grams have also the advantage of allowing an easy comparison of
the fit of several pdfs for several stations on a single diagram.

The method of moment ratio diagrams was applied here to a
study case consisting of short term wind speed data recorded in
the UAE. Moment ratio diagrams were used to evaluate the suit-
ability of several pdfs to fit wind speed data. The conclusions based
on the moment ratio diagrams are as follows: Compared to other
pdfs having one shape parameter and thus defining a curve on
the moment ratio diagram, W2 or W3 have the most central posi-
tion with respect to sample coordinates and should be considered
as the best choice among these pdfs. However, some samples could
be located far from this curve. The pdfs with two shape parameters,
GG, LP3 and KAP, cover an area that encompasses every sample.
KAP is the most flexible distribution and hence its area covers
the largest part of the diagrams.

Conclusions obtained with the diagrams were compared to
results obtained with goodness-of-fit criteria. It was observed that
a better agreement exists between the conclusions drawn from
goodness-of-fit criteria and those from the L-moment ratio dia-
gram, than those from the conventional moment ratio diagram.
This is in agreement with the theoretical advantages of the
L-moments and the results of the previous studies which
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Fig. 11. Wind power density histograms for each station.

concluded that L-moment ratio diagrams should be used instead of
conventional moment ratio diagrams. It is concluded that these
diagrams can represent a simple and efficient approach to be used
in association with commonly known goodness-of-fit criteria.
Classical frequency analysis tools used in wind speed modeling
are based on the hypothesis of temporal stationarity of the
wind speed data. In reality, such assumption is not always met.
A considerable amount of research dealt with the development of
non-stationary frequency analysis procedures for hydro-climatic

variables (see for instance [116,117]). Future work should focus
on the use of non-stationary frequency analysis techniques for
the modeling of wind speed series in various regions around the
globe. Moment ratio diagrams have never been used in the non-
stationary context and can be adapted easily to analyze the tempo-
ral evolution of wind speed characteristics. It is possible for
instance to study the evolution of the position of a given sample
in the moment or L-moment ratio diagrams by considering a mov-
ing window through the data series.
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