Cariflex®
Polyisoprene Products

Transparent Rubber Compound for Footwear Applications

December 2015
Cariflex® Polyisoprene (IR) – Pure – Strong - Soft

Cariflex IR

Ziegler-Natta IR (ZN-IR)

NR

Polyisoprene microstructure models.

- Cis 1,4-Bonds
- Trans 1,4-Bonds
- 3,4-Bonds
- Phospholipid / Fatty acid
- Proteins

Natural Rubber

Competitive IR

Cariflex® IR

Cariflex Isoprene Rubber features

- Anionic polymerization
- No protein
- Low residual metals
- Low gel content (~0 %)
- No odour
- Excellent transparency due to high purity
Kraton customers have used Cariflex® IR and IRL in the following applications:

- **Electronic coatings**
- **Printing inks**
- **Glues**
- **Marine coatings**
- **Medical stoppers and other medical rubber pieces**
- **Catheters (heart, urinary)**
- **Dental Dams**
- **Condoms**
- **Transparent shoe soles**
- **Stoppers for IV bags**
- **Needle shields**
- **Cold seal adhesives for food & medical packaging**
- **IR Latex material**
 - Pure
 - Transparent
 - Elastic
 - Soft
 - Strong

Visit WWW.KRATON.COM for more information.
Cariflex® Transparent Rubber Compounds

Kraton Polymers has developed Cariflex® Transparent Rubber Compounds, using Cariflex® IR307 as an ingredient.

Cariflex® TRC
- can provide “crystal-clear” transparency over a wide range of hardness with good purity and mechanical strength, including abrasion resistance and soft touch. To our knowledge, no other rubber can provide the same balance of properties.
- can offer excellent clarity and sharp coloring
- can be processed with most conventional rubber compounding technology.
- can be sterilized with most sterilization methods without, or with limited performance deterioration.

We have identified potential applications for Cariflex® TRC in Footwear, both for the outer sole and the inner sole.

Key features for this material are:
- Fits the fashion trend of transparent shoes
- Excellent clarity and sharp coloring possible
- Better abrasion resistance than TPE soles
- Good UV stability

Optimization of the technology is still ongoing.

Please note, that Kraton has filed patent applications on the Cariflex® TRC technology and related applications described in this presentation.
Cariflex® TRC - Comparison with other materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cariflex® TRC</td>
<td>- Cariflex® TRC has excellent transparency and mechanical performance compared with other types of rubber</td>
</tr>
<tr>
<td>ZN-IR</td>
<td>- Competitive ZN-IR is hazy</td>
</tr>
<tr>
<td>Urethane</td>
<td>- Urethane has good transparency, but suffers from poor heat, hydrolytic and UV stability (discoloration)</td>
</tr>
<tr>
<td>Silicone</td>
<td>- Silicone can come close in transparency, but is costly (LSR), or weak in tear strength and adherence issues in laminate structures</td>
</tr>
<tr>
<td>EPDM</td>
<td>- EPDM is somewhat hazy, and much less elastic</td>
</tr>
</tbody>
</table>
Transparent Rubber Compounds – The Landscape

- **Water clear**
 - TPE’s
 - Cariflex® TRC Conventional
 - Liquid Silicone Rubber
 - EPDM Clear Grade

- **Transparency**
 - Poor abrasion & permanent set
 - Conventional
 - Low tear & abrasion
 - Low tear, adhesion
 - Low stability, yellowing

- **Hazy**
 - Urethane Rubber
 - Solid Silicone Rubber
 - Cariflex® TRC Footwear / abrasion (IR/RB blend)
 - Cariflex® TRC High Strength (IR/MD blend)

- **Mechanical Strength**
 - Low
 - Tear strength
 - Tensile strength
 - Conventional
 - ZN-IR
 - NR
 - ZN-IR
 - NR

- **High**
 - Footwear / abrasion (IR/RB blend)
 - Low tear & abrasion
 - Urethane Rubber
 - Solid Silicone Rubber
 - Cariflex® TRC High Strength (IR/MD blend)

- **Cariflex® TRC Silicone**

WWW.KRATON.COM
Generic formulation for a Carilfex® Transparent Rubber Compound

<table>
<thead>
<tr>
<th>Ingredients</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymers</td>
<td></td>
</tr>
<tr>
<td>Polyisoprene - Carilfex® IR307</td>
<td></td>
</tr>
<tr>
<td>Syndiotactic-1,2-polybutadiene, JSR RB820</td>
<td></td>
</tr>
<tr>
<td>Curing agent</td>
<td>Peroxide (2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane) (like: Trigonox® 101, Luperox® 101, Perhexa® 25B)</td>
</tr>
<tr>
<td>Curing co-agent</td>
<td>Ethylene glycol dimethacrylate (EGDMA)</td>
</tr>
<tr>
<td>Anti-oxidant</td>
<td>Irganox® 1726 (4,6-bis(dodecylthiomethyl)-o-cresol)</td>
</tr>
</tbody>
</table>

The amount of each ingredient can be tailored to suit the mechanical properties and transparency requirements of the application.
For footwear we typically recommend 50 phr of polyisoprene and 50 phr of JSR RB820 to achieve an abrasion resistance of < 100 mm³
Cariflex® TRC processing

<table>
<thead>
<tr>
<th>Process</th>
<th>Steps</th>
<th>Details</th>
<th>Processing Parameters</th>
<th>Storage Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compounding (in 2-Roll Mill OR Internal Mixer)</td>
<td>Step 1</td>
<td>Mix masterbatch using Cariflex® IR307, JSR RB820 and Anti-oxidant (AO)</td>
<td>Temperature: Blend RB820 and AO into IR at 120°C (max 130°C)</td>
<td>• Limit exposure to oxygen and UV light</td>
</tr>
<tr>
<td></td>
<td>Step 2</td>
<td>Mix green compound using masterbatch of Step 1, peroxide and co-agent</td>
<td>Temperature: about 75°C</td>
<td>• Shelf-life = 3 weeks at max. T of 60°C</td>
</tr>
<tr>
<td>Molding</td>
<td></td>
<td>Compression Molding</td>
<td>Temperature: 160°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Injection molding also possible</td>
<td>Time: 6 – 7 minutes</td>
<td></td>
</tr>
</tbody>
</table>

WWW.KRATON.COM
Cariflex® TRC FW properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>CF - TRC</th>
<th>CF - TRC – aged *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasion (mm³) – 6mm</td>
<td>51 - 100</td>
<td>90 - 110</td>
</tr>
<tr>
<td>Transparency (%) – 6mm</td>
<td>87</td>
<td>87 - 89</td>
</tr>
<tr>
<td>Haze (%) – 6 mm</td>
<td>9.4 – 14.5</td>
<td>~ 15</td>
</tr>
<tr>
<td>Yellowness Index – 6 mm</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Tensile (MPa)</td>
<td>10.7 – 11.6</td>
<td>TBD</td>
</tr>
<tr>
<td>Modulus 100% (MPa)</td>
<td>3.8 – 5.8</td>
<td>TBD</td>
</tr>
<tr>
<td>Elongation@Break (%)</td>
<td>147 - 201</td>
<td>TBD</td>
</tr>
<tr>
<td>Tear (kN/m)</td>
<td>24 - 27</td>
<td>TBD</td>
</tr>
<tr>
<td>Shore A 0 sec</td>
<td>71 - 72</td>
<td>69</td>
</tr>
<tr>
<td>Shore A 30 sec</td>
<td>67 - 68</td>
<td>66</td>
</tr>
<tr>
<td>Stickiness</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

* Properties of cured sheets that had been aged for 1 month at 40 °C

No yellowing of cured sheets is observed after 1.5 hr at 120 °C
Further aging tests still underway
Cariflex® TRC – Further Developments Ongoing

High-Abrasion Resistant Transparent Rubber Compounds

• Recently adapted a Cariflex® TRC formulation targeting even lower abrasion resistance
• Achieved by addition of 1-4 phr of a trans-polyoctenamer - Vestenamer® 8012
• As amount of Vestenamer increases, the abrasion resistance improves (to below 50 mm³), but slightly at the expense of transparency

High-Strength Transparent Rubber Compounds

• By blending Cariflex® IR307 with a unique Kraton developmental polymer grade, we can tailor the formulations to have improved mechanical properties, specifically tensile and tear strength. This goes at the expense of abrasion resistance
• This technology will be valuable for softer Transparent Rubber Compounds with requirements of improved strength for which abrasion resistance is not critical

Vestenamer® is a trademark of Evonik Degussa GmbH
Cariflex® TRC - Summary

- Cariflex® IR is a unique polyisoprene rubber with proven track record in applications requiring PURE - STRONG – SOFT properties.

- Cariflex® TRC, using Cariflex® IR as ingredient,
 - can provide “crystal-clear” transparency over a wide range of hardness with good purity and mechanical strength, incl. abrasion and soft touch. No other rubber can provide the same balance of properties.
 - can be processed with most conventional rubber compounding technology.
 - can be sterilized with most sterilization methods without, or with limited performance deterioration.
 - can meet requirements of medical and food applications requiring high level of purity (subject to adequate regulatory assessment, compound recipe, and processing conditions).

- JP provisional patent was published on Aug 28, 2014

- Potential applications are footwear/shoe soles, baby nipples, stoppers for transfusion bottles, vial stoppers, medical tubes such as joint drain tubes, high voltage insulation material incl. silicone rubber replacement, photo-curable rubbers, nice looking consumer goods.
Other potential developments

Kraton Polymers has unique Polymer Development Capabilities. Anionic polymerization allows for precise control over polymer molecular structure. For Cariflex® Polymers we could envision developing alternative rubber structures with specific property attributes.

<table>
<thead>
<tr>
<th>Design Tools</th>
<th>Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Weight</td>
<td>Melt viscosity</td>
<td>Adhesion</td>
</tr>
<tr>
<td>PS/BD/Isoprene Ratio</td>
<td>Solution parameters</td>
<td>Compatibility</td>
</tr>
<tr>
<td>Block structure Types</td>
<td>Hysteresis</td>
<td>Clarity</td>
</tr>
<tr>
<td>Block structure Length</td>
<td>Modulus</td>
<td>Strength</td>
</tr>
<tr>
<td>Vinyl Content</td>
<td>Strength</td>
<td>Softness/Hardness</td>
</tr>
<tr>
<td>Monomers</td>
<td>Glass Transition T_g</td>
<td>Processability</td>
</tr>
<tr>
<td>Phase Matrix</td>
<td>Temperature Resistance</td>
<td>Post reactivity (curing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viscosity enhancement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compression Set</td>
</tr>
</tbody>
</table>
LEGAL DISCLAIMER

For more information, please call 1-800-4-KRATON, or e-mail info@kraton.com

Kraton Performance Polymers, Inc. believes the information set forth herein to be true and accurate, but any recommendations, presentations, statements or suggestions that may be made are without any warranty or guarantee whatsoever, and shall establish no legal duty on the part of any Kraton Polymers affiliated entity. **The legal responsibilities of any Kraton Polymers affiliate with respect to the products described herein are limited to those set forth in Kraton’s conditions of sale or any effective sales contract. Kraton does not warrant that the products described herein are suitable for any particular uses, including, without limitation, cosmetics and/or medical uses. Persons using the products must rely on their own independent technical and legal judgment, and must conduct their own studies, registrations, and other related activities, to establish the safety and efficacy of their end products incorporating any Kraton products for any application.** Nothing set forth herein shall be construed as a recommendation to use any Kraton product in any specific application or in conflict with any existing patent rights. Kraton reserves the right to withdraw any product from commercial availability and to make any changes to any existing commercial or developmental polymer. **Kraton expressly disclaims, on behalf of all Kraton affiliates, any and all liability for any damages or injuries arising out of any activities relating to the use of any information set forth in this publication, or the use of any Kraton products.**

This publication includes "forward-looking statements," which are statements other than statements of historical fact and are often characterized by the use of words such as "believes," "expects," "estimates," "projects," "may," "will," "intends," "plans" or "anticipates," or by discussions of strategy, plans or intentions. All forward-looking statements in this publication are made based on management's current expectations and estimates, which involve risks, uncertainties and other factors that could cause results to differ materially from those expressed in forward-looking statements. These risks and uncertainties are more fully described in "Part I. Item 1A. Risk Factors" contained in our Annual Report on 10-K, as filed with the Securities and Exchange Commission and as subsequently updated in our Quarterly Reports on Form 10-Q. We hereby make reference to all such filings for all purposes. Readers are cautioned not to place undue reliance on forward-looking statements. We assume no obligation to update such information.

Kraton maintains a Cosmetics, Drugs and Medical Device Policy that restricts the use of Kraton’s Products in certain end use applications without Kraton’s prior written consent. Accordingly, Kraton does not guarantee that Kraton’s products will be available for use in all potential end use applications. **Kraton’s Cosmetics, Drugs and Medical Device Policy is available on Kraton’s website at www.kraton.com.**

Kraton, the Kraton logo and design, the Cariflex logo, Cariflex, Nexar and the Giving Innovators Their Edge tagline and, in some cases, their expression in other languages, are trademarks of Kraton Performance Polymers, Inc. and are registered in many countries throughout the world.

©2015 Kraton Performance Polymers, Inc. All rights reserved.