This document has been provided to the Cameron Station Community Association to provide answers to frequently asked questions (FAQs) regarding the proposed design options for Cameron Station Boulevard. Further information about these options will be presented at the Town Hall meeting scheduled for September 8, 2016.

1. **Where did this proposal for Cameron Station Boulevard originate?**
 Over the past few years, the City has received a number of requests for traffic calming and pedestrian safety improvements along Cameron Station Boulevard. In Fall 2015, the City met with several Cameron Station residents regarding these concerns. The City collected data confirming excessive vehicular speeds on portions of Cameron Station Boulevard. Excessive speeding is defined when more than 15% of vehicles are exceeding the posted speed limit by more than 5 mph. After examining potential solutions to speeds and improve pedestrian safety, the City developed design options to address these issues. City staff presented these options to the HOA Board in June 2016 to receive feedback and determine if the board would like to move forward with a meeting to gather input on the options from the larger community. The Board then scheduled a Town Hall meeting for September 8, 2016 and requested that the City go over the design options with the residents to discuss the design options, answer questions, hear concerns and explain the process if the project moves forward.

2. **When is Cameron Station Boulevard anticipated to be resurfaced?**
 Cameron Station Boulevard is tentatively slated for resurfacing during Fiscal Year 2020 (July 2019 – June 2020). This may be subject to change once the new Pavement Condition Index (PCI) is released.

3. **Does the City have any details on the 5 year crash data?**
 Between January 2011 and August 2016, there have been 18 reported crashes on Cameron Station Boulevard. One reported crash involved a pedestrian struck at the intersection of Duke Street and Cameron Station Boulevard.

 2011: 2
 2012: 7
 2013: 5
 2014: 1
 2015: 2
 2016 (year to date): 2

4. **Has the City removed travel lanes on other streets in the City?**
 Yes. The City has removed (or is in the process of removing) travel lanes on other streets in recent years.
Stevenson Avenue was reconfigured to have one travel lane in each direction. Stevenson Ave. has 300 vehicles in the peak hour (VPH).

North Van Dorn Street, from Braddock Road to Menokin Drive, was recently reconfigured from two to one travel lane in each direction. North Van Dorn Street has peak hour volumes of more than 600.

On King Street, between Kenwood Ave. and Janney’s Lane construction is underway to remove one of two travel lanes in each direction. Peak hour traffic volumes on King Street are 750 VPH. An evaluation of North Van Dorn Street and King Street will be completed once these projects have been constructed.

For comparison, Cameron Station Boulevard has an AM peak hour volume of 330 VPH and a PM peak hour volume of 314 VPH.

5. **Does the City have any empirical evidence that reducing the lanes from two to one last has actually reduced the average speed?**

 According to the Federal Highway Administration (FHWA), a travel lane reduction has been found to reduce the 85th percentile speed from 8 to 12 percent. In Seattle, a 4 to 2 lane travel reduction was found to reduce top end speeders (those exceeding the speed limit by 10 mph or more) by more than 90%. FHWA’s studies can be found at the following links: https://www.fhwa.dot.gov/publications/publicroads/11septoct/05.cfm http://safety.fhwa.dot.gov/road_diets/case_studies/roaddiet_cs.pdf

6. **Has the City considered the use of speed cameras on Cameron Station Boulevard?**

 Commonwealth law prohibits the use of speed cameras.

7. **Has the City considered the implications of moving vans parked on the street and impacts to emergency vehicle access?**

 With limited street space, tradeoffs must be made and there are some situations where moving vans, stopped vehicles, shuttle buses, emergency vehicles, and taxis may need to temporarily use the buffered bicycle lane. On other streets in the City with buffered bike lanes, buses share this lane with cyclists at stops. The width of the buffered bicycle lane is the same width as an existing travel lane, in which case, these temporarily parked vehicles will not obstruct the remaining travel lane. No vertical elements, such as flexiposts, are proposed which would prevent vehicles from using the buffered bicycle lane.
Any substantial changes to the roadway, such as a removal of a travel lane, will need to be reviewed and approved by the City’s Fire Department to ensure emergency vehicle response times will not be adversely impacted. Any removal of a travel lane would also require approval by the Traffic & Parking Board at a public hearing.

8. **Has the City considered the implications to sight lines associated with the proposed option for back-in angle parking on Brenman Park Drive and at intersections along Cameron Station Boulevard?**

 With the proposed removal of a travel lane on Cameron Station Boulevard, all vehicular travel will be on the travel lane closer to the median. This configuration improves sight lines, as it allows drivers more space to carefully pull off the side street and onto Cameron Station Boulevard. In addition, this configuration eliminates the multiple threat scenario -- where vehicles in the right travel lane obscure vehicles in the left travel lane (closest to the median).

 Back-in angle parking provides clearer sight lines when pulling out as compared to parallel parking. The concept has many benefits over other parking types. Some of these benefits include increased parking capacity (10 to 12 feet of lateral curb per vehicle, versus 22 feet per vehicle for parallel parking), ease of loading and unloading cargo and helping children in and out of car seats, and protection for children because the open car door now directs young children back to a point of safety rather than out into the street.

9. **What impacts to parking spaces are associated with the proposed design options for Cameron Station Boulevard and Brenman Park Drive?**

 There will be no removal of existing parking spaces associated with this project. There is, however, an opportunity to add parking spaces on Brenman Park Drive with the proposed design options. Back-in angle parking spaces could add 32% more spaces to Brenman Park Drive. The number of parking spaces on Cameron Station Boulevard could be increased by as much as 10% by removing the individual parking space lines.

10. **Will the proposed design option for Cameron Station Boulevard cause any additional delay to vehicular traffic?**

 The delay anticipated by the removal of a travel lane with a bicycle lane is expected to be minimal. Cameron Station Boulevard is well under-capacity as a four-lane roadway, even during peak hours. The increase in traffic volume on Cameron Station Boulevard is projected to be negligible as the result of approved development citywide. An independent determination will be made to determine that the street is suitable with one travel lane in each direction.

11. **Are bicyclists still allowed to ride on the sidewalk if the street has bicycle lanes?**

 Bicyclists are encouraged to use the bicycle lanes, wherever provided, but the City acknowledges that not all bicyclists have the ability nor are comfortable with riding on the street in mixed traffic. Bicyclists will still be allowed to ride on any sidewalk in Cameron Station. When bicyclists are riding on the sidewalk, they are expected to yield the right-of-way to pedestrians and operate in a slow, safe, and polite manner. It is
anticipated that bicyclists will be less inclined to ride on the sidewalk when there is a bike lane available.

12. Are bicyclists still allowed to ride in the travel lane if the street has bicycle lanes? Bicyclists are not required to use a bicycle lane on a street if such a facility exists. In many instances, bicyclists may have to share the travel lane in order to make turns from the bicycle lane, access a destination, or avoid a hazard, such as a parked car. It is anticipated that more bicyclists will choose to use the bicycle lane, than not use the bicycle lane.

More information about the proposed design options can be found on the project website at https://www.alexandriava.gov/93303.

Please contact Ray Hayhurst, Complete Streets Coordinator, at raymond.hayhurst@alexandriava.gov, if you have any questions or concerns about this project.