

Fire Resistant Hydraulic Fluids

Improving Safety, Reducing Risk

Jon Brown - Market Manager

Contents

- » **Combustibility of Mineral Oil Base Lubricants**
- » **Fire Resistant Hydraulic Fluid Overview**
- » **Fluid and Grease Demonstrations**
- » **Questions**

Overview

- » **Hydraulic systems are used for the generation, control, and transmission of power by the use of pressurized fluids.**
- » **In the early 1900s, mineral oil based fluids became the most used hydraulic fluids due to inherent lubrication and fluid mechanical properties.**
- » **While mineral oils are inexpensive and have good technical properties, they are extremely flammable.**

Minimize Risk

Mineral Oil Fires Can Lead to

Safety risks for staff

Capital loss of millions

Production losses

- » **Fire-resistant hydraulic fluids should be used in such applications to control risk**

Fire-Resistant Markets

ALUMINUM

- » Smelting
- » Casting
- » Cold and Hot Rolling

POWER GENERATION

- » Turbines

TUNNELING

- » Tunnel Bore Machines (TBM)

OFFSHORE

- » Blow Out Preventer (BOP)

MINING

- » Longwall Roof Supports
- » Storage Fluid
- » Mobile equipment

TUBE & PIPE

- » Casting
- » Hot Rolling

STEEL

- » Casting
- » Cold and Hot Rolling
- » Galvanizing

DIE CASTING

- » Casting
- » Heat Treating

Fire resistant hydraulic fluids are used in applications:

- Located in high temperature environments
- Close to open flames to reduce fire risks and consequential losses

Fire Resistant Hydraulic Fluids

Water-based Fluids

HFA-E Oil in water emulsions

water content > 80 %

common use 1 to 5 % HFA-E

HFA-S Synthetic aqueous solutions

water content > 90 %

common use 1 to 5 % HFA-S

HFB Water in oil emulsions

water content ~ 40 %

oil content ~60%

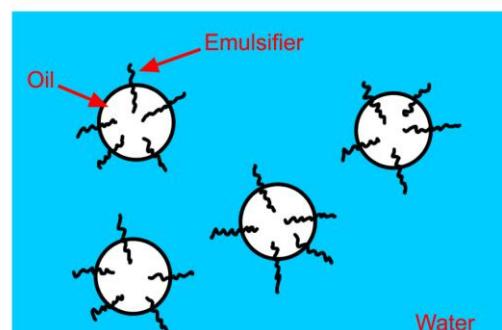
HFC Water glycol solutions

water content > 35 %

Water-free Fluids

HFD-R Phosphate ester based

HFD-U Based on other compounds, mainly synthetic polyol ester and natural esters (renewable resources)


QUINTOLUBRIC® 888

Properties HFA-Emulsions

Oil-In-Water Emulsions

- » High water based fluids which generally contain 95% H₂O and 5% mineral oil
- » Offer excellent fire resistance due to high water content
- » Stable, non-toxic, economical and readily available
- » Typical operating temperatures is between 41°F - 131°F
- » Water and oil content monitored with use of refractometer
- » Are used where high fluid losses can be tolerated
- » Use is limited to light duty systems
- » Lower long-term corrosion preventatives, lubrication and viscosity than mineral oils
- » Bacterial attack due to high water content requires pH control (>8) and biocide use

Water-In-Oil Emulsions

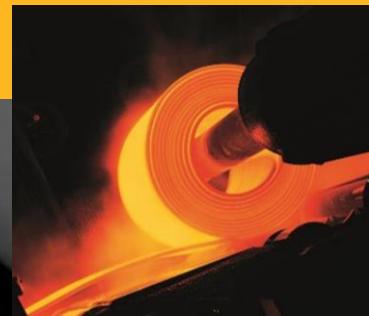
- » **Called invert emulsion or “mouse milk”**
- » **Typical formulation is 40% water and 60% oil**
- » **Fluid loses fire resistance below 35% water and anti-wear protection when water content exceeds 45%**
- » **System operating temperatures is between 41°F - 140°F**
- » **Very stable in hydraulic systems**

- » **Foaming can be an issue**
- » **Reduction in viscosity at high shear rates**
- » **High specific gravity holds contamination particles more readily than mineral oils**

Properties HFC- Water Glycol

Water Glycol

- » **Solutions of water, ethylene glycol, and additives with high viscosity poly glycals**
- » **Typical formulation contains 35-45% water**
- » **Perform at low temperatures better than water-in-oil emulsions**
- » **Typical operating temperatures is between -4°F - 140°F**
- » **Product will become thicker when water evaporates**
- » **Very good fire resistance due to high water content**
- » **Low in cost, similar to mineral oils**
- » **Represents 50% of the fire resistant hydraulic fluid market**
- » **Low performance attributes leading to lower component service life and requiring increase fluid management**



Properties HFD- Synthetic Fire Resistant Fluids

Synthetic Fire Resistant Fluids

- » Predominantly either polyol esters or phosphate esters
- » Fluid performance equivalent to mineral oil based products
- » Used in high temperature environments including
 - » Steam turbine governors
 - » Steel mills
 - » Aerospace
 - » Mobile equipment
- » Excellent fire resistance - Self extinguish and do not propagate flame
- » Very good lubricity characteristics
- » Excellent anti-wear properties, shear stability, and oxidation stability

HFD-Phosphate Esters vs Polyol Esters

HFD-R (Phosphate Esters)

ADVANTAGES

- » **Highest fire resistance**
- » **Good initial lubrication but can age/oxidize quickly**

DISADVANTAGES

- » **Expensive (10-15 times cost of mineral oil)**
- » **Combustion fumes are neurotoxic**
- » **Materials to formulate are CMR (carcinogenic, mutagenic, reprotoxic)**

HFD-U (Polyol Esters)

ADVANTAGES

- » **High fire resistance**
- » **Relatively inexpensive (2 times cost of mineral oil)**
- » **High life of oil with good lubrication properties**
- » **MSHA approved and can replace certain fire suppressant systems**
- » **Biodegradable/non-toxic**

DISADVANTAGES

- » **Higher cost than mineral oil**

Fire Resistance

WATER FREE VERSIONS

Property	Mineral oil	QUINTOLUBRIC® 888 - HFDU
Fire Point ASTM D92 (Especially for Factory Mutual)	250 °C/ 482 °F	365 °C/ 689 °F
Auto Ignition Point	300 °C/ 572 °F	465 °C/ 869 °F

Fire Resistance

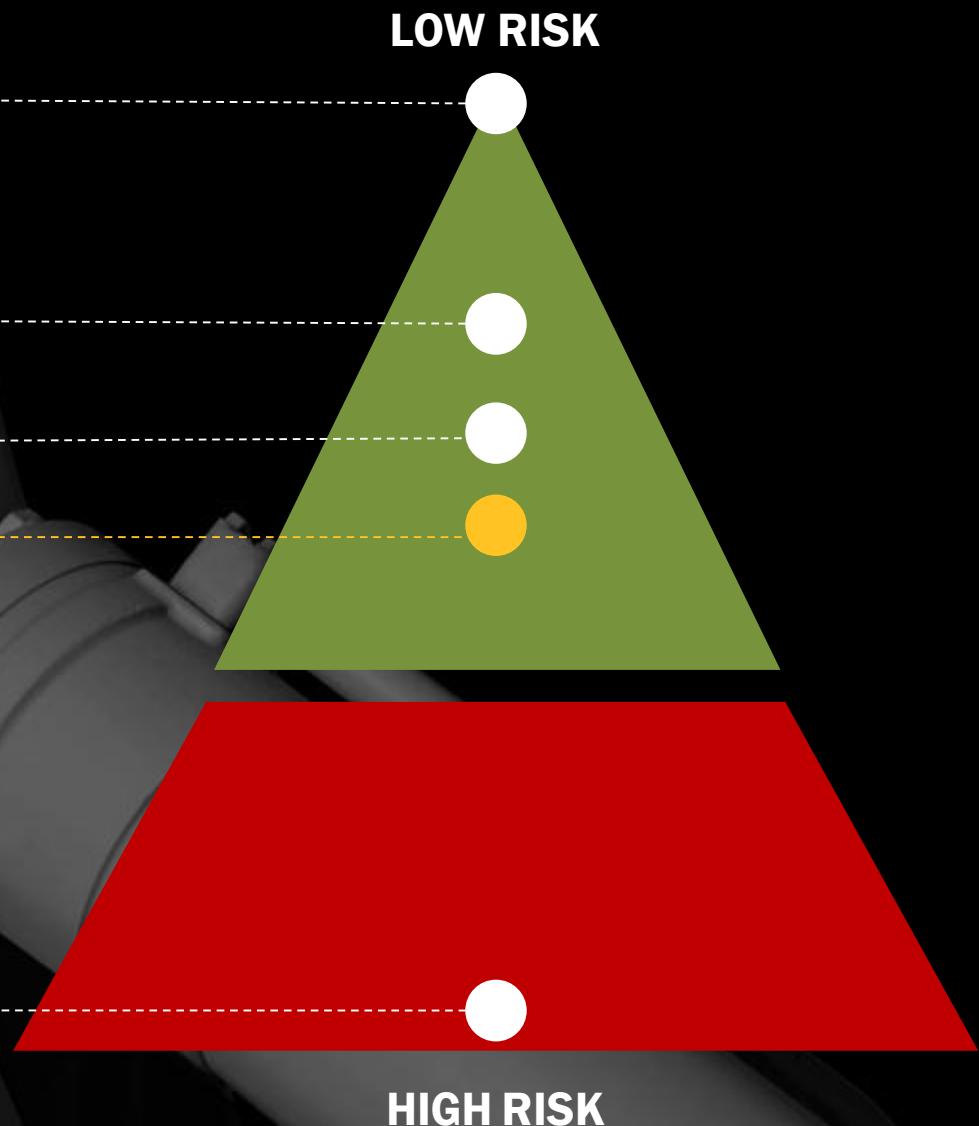
Spray ignition test

Mineral oil

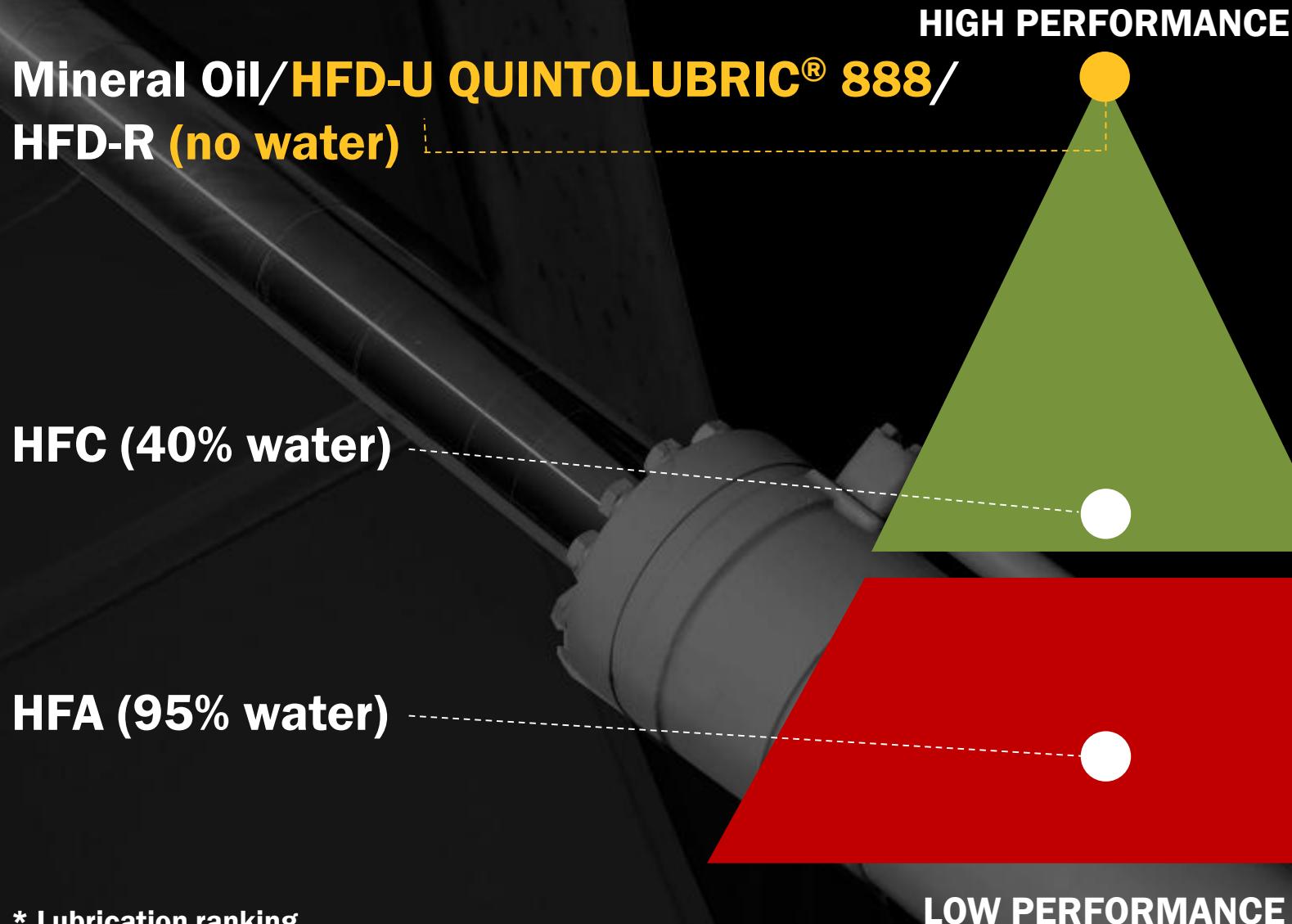
Fast aggressive ignition
Stabilised flame
Flame propagation

QUINTOLUBRIC®
by Quaker®

QUINTOLUBRIC®



Self extinguishing
No flame propagation
Safety under control

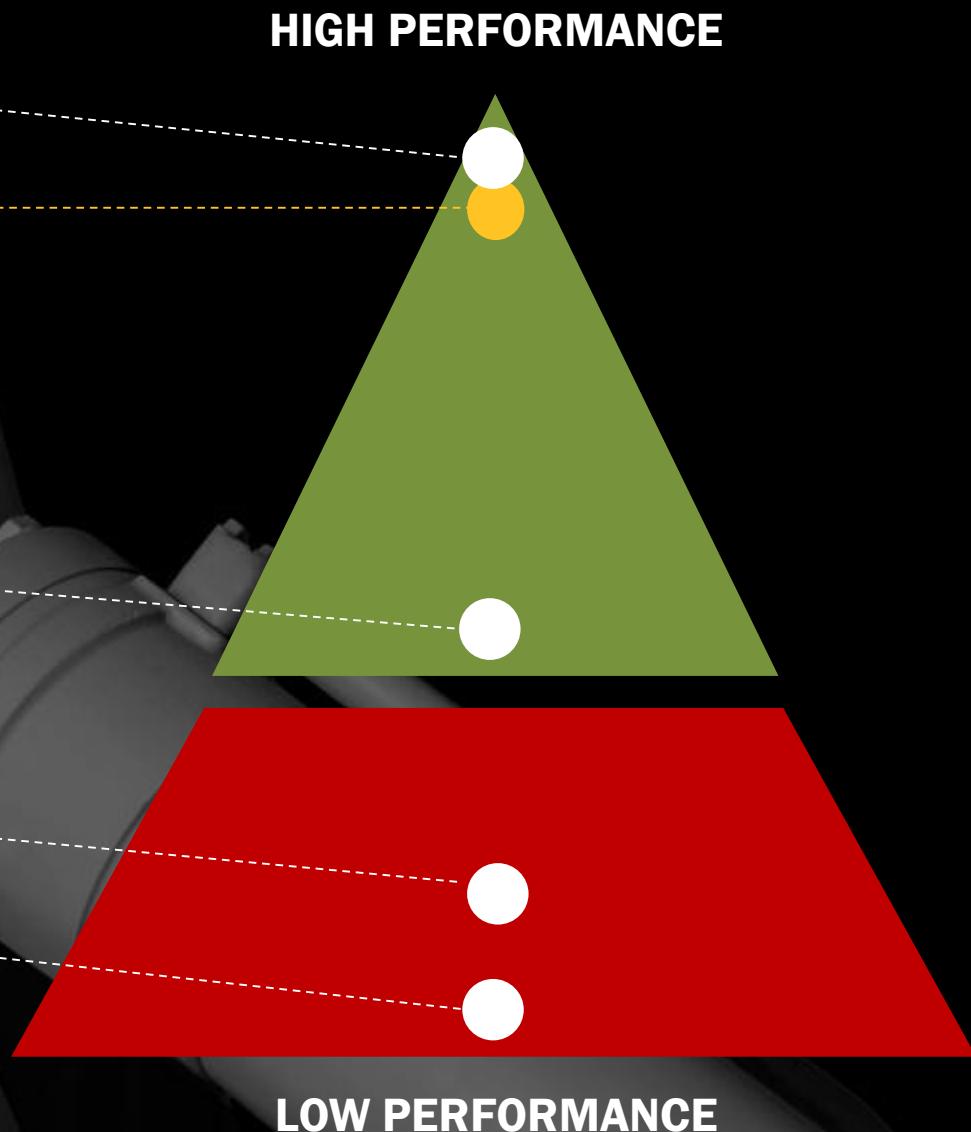

Fire Resistance - Safety

- HFA (95% water)
- HFC (40% water)
- HFD-R (no water)
- HFD-U (no water)
- QUINTOLUBRIC® 888**
- Mineral oil (no water)

Hydraulic Performance

Environmental Performance

HFA (95% water)


HFD-U (no water)

QUINTOLURIC® 888

HFC (40% water)

HFD-R (no water)

Mineral oil (no water)

* Biodegradability

HFD-U: The Best Solution

Fire Resistance -
Safety

Hydraulic
Performances

Environmental
Performances

NO RISK

HIGH PERFORMANCE

HIGH PERFORMANCE

HFD-U (QUINTOLUBRIC® 888)

Hydraulic Fluids Overview

Property	Mineral oil	Phosphate ester (HFDR)	Emulsions (HFA)	Water Glycol (HFC)	PAG (HFDU)	The best solution	
						QUINTOLUBRIC® 888 (HFDU)	
Fire resistance	--	++	+++	+++	+ and -	+	
Environmental performance	-	+ and -	++	+ and -	+ and -	++	
Thermal stability	++	++	--	-	+ and -	+	
Maintenance	+	--	--	--	+	+	
Component life	+	+ and -	--	--	+	+	
Price	++	--	+++	++	-	+ and -	
Total Cost of Operation	++	-	---	--	+ and -	+	

-- is relatively bad
++ is relatively good

SUMMARY

- » **While mineral oil is inexpensive, it can create safety and environmental issues**
- » **Fire resistant hydraulic fluids and greases increase operational safety without sacrificing performance**

Thank You

